
SEQUENTIAL SATISFISATION FOR A PHOTOGRAMMETRIC 
TRIANGULATION AND A GEODETIC CONTROL NETWORK 

Fabio Crosilla <*), Tommaso Russo (**) 

BLOCK 

(*) Istituto di Scienze della 
viale Ungheria 43, 1-33100 Udine 

Terra, Universita' di Udine, 

<**) Centro di Calcolo, Universita' di Trieste, 
T82l01@icineca1.bitnet 

Commission III 

ABSTRACT 

Taking into account a generalized mixed model leading 
to the estimation of non stochastic unknown 
parameters and to the prediction of available 
stochastic prior information, a process is given to 
output an ideal dispersion matrix for the available 
control point coordinates that "satisfises" a 
criterion matrix for the photogrammetric unknowns. A 
second process is given to obtain a Second Order 
Design solution for the control network observations 
that also IIsatisfises" the criterion matrix for the 
photogrammetric unknowns. It is shown that the 
problem admits a solution if and only if the chosen 
criterion is "worse" than the unreachable dispersion 
matrix obtained in the hypothesis that available 
control point coordinates are exactly known, and 
"strictly worse" than it at least in the space of 
photogrammetric unknowns whose estimated value is 
affected by prior information; if not, a 5.0.0. of 
the photogrammetric model is required. A method is 
then given, to test if the required precision is 
compatible with a requested value for the external 
reliability of the control network, and, if so, to 
obtain a S.O.D. solution that fulfills both 
requirements. 

ANALITYCAL MODEL 

Let a mixed linear model, coming from a Gauss-Markov model, be 
considered for a bundle method of block adjustment when 
stochastic prior information about some of the control point 
coordinates are available. 

E(y) = Y - v = A x = A1 xl + A2 x2 rank A = q < m 

E(x2) = 0 

D( x2) = 2!. ee D ( y) = ~ vv + A2 :£ e e A 2 I 
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where: 

x (m x 1) is the vector of increments of unknown object 
coordinates and exterior orientation parameters to their 
approximate values, which can be partitioned in a fixed part 
x1(m-r x 1) and a stochastic part x2 (I" x 1) [where I" > m-q, 
being m-q the column rank deficency]; 

xl contains increments to approximate object coordinates and to 
orientation parameters; 

x2 contains increments to available control point coordinates; 

A(2n x m) is the design matrix which can be partitioned in two 
submatrices Al (2n x m-r) and A2 (2n x r) according to the 
partition of vector x in its fixed part xl and its stochastic 
part x2; 

y(2n x 1) is the observation vector obtained as the difference 
between the vector of image coordinates (xi, yip i = 1 n) 
and their approximate values; 

v (2n x 1) is the vector of residuals to the image coordinates; 

~vv (2n x 2n) is the positive definite dispersion matrix of 
the observations; 

~ee (I" x 1") is the (semi)positive definite dispersion matrix 
of the prior information; 

D( ) means dispersion; E( ) means expectation. 

In order to find a solution for the vector of increments of 
unknown object coordinates and of exterior orientation 
parameters x we certainly have to proceed to the estimation of 
vector xl and to the prediction of x2. In this work we only 
require the estimation of xl and its dispersion matrix ~ xl 
since we are interested in the formulation of criterion 
matrices for unknown parameters belonging exclusively to a 
photogrammetric model. 

The BLUUE of xl can be obtained by 
from: 

~l = H1 Y 

~ -4 
H 1: = [ A 1 I ( ~ vv + A 2 :E: e e A 2 I)" A 1 ] Ai' 

and its dispersion matrix from 

2: xl: = [ A 1 I (:E" vv + A 2 :r e e A 2 ' f'" Ai J - -1 

a least square method 

( 1 ) 

-4 ( 2- vv + A 2 ;E: e e A 2 ' ) 

( 2) . 

while the prediction of x2 can be subsequently obtained by 

X'2 = z:. ee A2 I <z: vv+A2 ~ eeA2 1)-1 < y - Ai Ql) 
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THE RELATION "BETTER THAN" 

A regular dispersion matrix Cl is IIbetter than" an analogous 
matrix C2 if (equivalent conditions) [Van Mierlo 1982): 

f' Cl f ~ f' C2 f 

Cl - C2 seminegative definite 

'- Y I C2- ~ Y l' y 

( 3 . 1 ) 

(3.2) 

(3.3) 

In fact, if Cl and C2 are the dispersion matrices of two sets 
of estimators ~1 and k2 of a vector k of unknowns, then (3.1) 
states that the precision of an¥ f(k) estimated by kl will be 
better than the precision of f(K2). 

The relation "better than" can be considered a purely 
mathematical operator released from the statistical meaning of 
matrices to which it is applied, and extended to any couple of 
symmetric square matrices of the same order, saying that A is 
(strictly) better than B, conversely that B is (strictly) worse 
than A in a given space S, if 

f' A f ~ «) f' B f )Jf eS,f;O 

If A is (strictly) better than B in any suitable space, A can 
be said (strictly) better than B tout court. 

The set of symmetric matrices of order n is not totally ordered 
with respecl to the relation "belter than": lhat is, "not 
better" does not imply "worse ll

• 

A number of useful theorems hold for this relational operator 
(see [Crosilla & Russo 1988) ). 

:::::: 
Assuming that ~ ee and E ee are two different dispersion 
matrices of the prio~ information in the same network datum, 
let us call i:xl and E. xl the dispersion matrices of the 
photogrammetric unknowns obtained replacing ~ee in formula (2) 
by i: ee and %: ee respec t i ve ly. 

Improving the precision of the prior information, the precision 
of the photogrammetric unknowns cannot be worsened: in fact, as 
it is shown in [Crosilla & Russo 1988), 

i:: ee bet tel' than ~ ee ==) ~ xl bet tel' than ~ xl 

Moreover, improving the precision of all the prior information, 
the precision of the photogrammetric unknowns will be 
effectively improved in some way. More precisely, we can state 
that (see below) 

j:- ee strictly better than E ee ==) i: xl strictly better than 
£xl except that in the null space of Ll', N(Ll'), where Ll 
stands for (Ai' ~ vv"-i, Ai )-.-1 Al' ~ vv- A A2 (see below). 
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This space has an intuitive meaning. It can be written as 
Ri(Ll) ::: R.L(Hl(o} A2), where Hl(o) is Hl given by (l) in the 
hypolhesis that the coordinates of control points are a~actly 
known (i.e., ~ ee ::: 0). A2 maps control point coordinates into 
a subspace R(A2) of coordinates of control point images; H1(~ 
maps this subspace into the subspace R(Hl(~A2} of unknowns of 
the photogrammetric model to be estimated. R~(Ll) lhus spans 
linear combination of unknowns whose estimation is not affected 
by values of control point coordinates. 

Conversely, however, a better precision of the unknowns does 
not imply (of course) a better precision of ALL the prior 
information: this is why a S.O.D. of a network can lead to a 
redistribution of weights of observation rather than to an 
increase of them all. 

FIRST STEP: AN IDEAL DISPERSION 
COORDINATES THAT "SATISFISES" A 
PHOTOGRAMMETRIC UNKNOWNS. 

MATRIX 
CRITERION 

FOR CONTROL POINT 
MATRIX FOR THE 

Let us define ~l(o)::: (Ai' :E" vv- 4 A1)-~ . This is equivalent 
to assuming that all coordinates of control points are exactly 
kn own (~e e ::: 0). 

~xl(O) represents an unreachable upper limit to the precision 
obtainable for the given photogrammetric unknowns, acting only 
on the precision of prior information: if a criterion matrix 
better than ~ xl~) is to be satisfised, this cannot be done by 
improving the precision of control point object coordinates 
only: a S.O.D. of the photogrammetric block triangulation is 
required [see Crosilla, Forlani & Russo, 1986]. 

On the contrary, if a criterion matrix 1.: ~l worse than .z: xl(O) , 
and strictly worse than it at least in the ortogonal complement ,...,..; 

of N(Ll') is chosen, it is always possible to satisfisy Lxl 
acting only on the precision of the cOl"'&trol network. This means 
that, calling Ac the design matrix of the control network, it 
is always possible to compute as will be shown in the following 
a positive definite diagonal weight matrix Ps for the 
measurements of the control network such that the resulting 
variance covariance matrix for the photogrammetric unknowns 

z: xl = { Al' [L. vv + A2 (Ac' Ps Ac )-1 A2' Al r1 

~ 

is better than ~ ~l. 

Such a criterion can be buill, for instance, computing ~xl 
with a given, feasible weight matri~ P and improving then the 
d i f fe rence :i: xl - 2:.. xl (~) by can t rac t i on of its dominan t 
eigenvalues. 
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The algorithm 

Considering one of the equivalent forms for the inverse of a 
sum of matrices reported in Henderson Searle [1981, pg. 581, 
the dispersion matrix ~xl given by (2) can also be expressed 
as 

~ xl: ::: [ N 11 - N 1 2 (I + z: e e N 22 )- Ii z: e e N 1 2 I ) - A 

where 

NIl : = Al' Evv-'" Al 
(0)--1 ( :::: z.. xl ) 

N12 : = Al' £ vv".A, A2 

N22 : = A2' ~ vv-"I A2 

Developing the inversion of the square bracket, it follows 
that 

2: xl: :: Nl[A + ... 

. .. + 

( I ~ N'"J PJ )-A ~ ee Nl"".J I Nll"'A 
••• +ttt::-ee "'" J;.. ,t;, 

setting Ll ::: Nll--1 Nl2 

L2 ::: Nl2' Nll--1 Nl2 

it turns out that 

~ xl :::: :E: xl (0) + Ll [I - ( 1+ L ee N22)- '" -... Z. ee L2] ... 

. . . ( 1+ .:E: ee N22)' '1 ~ ee L 1 ' 

which can be rewritten as 

::£ xl - L. xl (0) :::: Ll M Ll' 

M is symmetric and null in the same space where ~ ee is null 
and only there. This form shows evidently that any feasible 
:E xl is equivalent to L xl in N(Ll'), and. if ~ ee is positive 
definite, strictly~orse than it in N~(Ll/). 

Let us now consider the equation (for M unknown) 
....... 
:1: xl - :E: xl (0) ::: Ll M Ll' 

If col (A2) < col (Al), this equation is inconsistent: 
otherwise, it admits exact solutions. In both cases, let us 
find its approximate l.s. solution or its minimum norm exact 
solution as 

M ::: L 1 + ( E xl - ~ xl (c) L 1 ' .... 

po,J 

Since Exl - .z:x 1 (0) is positive definite at least in the 
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ortogonal complement of N(Ll'), and non-negative definite 
elsewhere, also 

L xl - 2: xl (0) :: Ll M Ll' ::: Ll Ll + (r xl - 'Z. xl (0) Ll' + Ll' 

will result positive definite in the ortogonal complement of 
N(Ll'), and null in N(Ll'). It will therefore be possible, 
finding the maximum general eigenvalue "max of Ll M Ll' with 
respec t to Z. xl - .L. x1(0) in thi s space, to obtain 

M ::: 11).. max M 

so that 

i:x1 :: Xxl(o) + L1 M Ll' 
,.."., 

satisfises rxl. 

The general eigenvalues of A with respect to B in 
N (B) are the eigenvalues of Vab: 

Vab :::: 0'+ A 0+ 

where 0 is given by the spectral decomposition of B: 

Now as M is given by 

--1 (I+I:"ee N22) ~ ee, 

it is legitimate to multiply on the left both the terms by 

(I + 2: ee N22) [I - (I + Lee N22 )--1 r ee L2 J 

obtaining 

'Lee [I + (L2 - N22) MJ ::: M 

== if the square bracket turns out to be regular, ~ ee can be 
computed as 

%"ee ::: M [ I + (L2 - N22) MJ- A 

such that 

r xl::: [ A 1 I (l: vv + A:2 i. ee A2 I )--~ 

(Should the square bracket be singular, it would be 
enough to divide M by a number slightly greater than 
1 and not egual to the module_of any singular value 
of (L2 - N22)M to obtain a new M that satisfises irxl 
and makes the square bracket invertible). 

~ee iurns out symmetric, positive definite_in the same space 
where M is positive definite, and null where M is null, namely 
in N(Ll). Also this space has an intuitive meaning: it can be 
rewritten as N(Hl(o) A2), a.nd is the space of coordinates of 
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control points whose value do not affect the estimated value of 
any photogrammetric unknown. For example, if a control point do 
not appear in any photo, its coordinates will fall in N(A2), 
and hence in NeLl). If an arbitrary matrix positive defi~ite in 
N(Ll) and null in its ortogonal complement is added to 2:ee to 
obtain a positive definite matrix i:ee. £xl remains unchanged. 

SECOND STEP: S.O.D. FOR THE CONTROL NETWORK 

,..,.." 

ree can be used as a criterion matrix to be salisfised by the 
control network. As is well known, the literature reports many 
approximating algorithms that lead eventually to a diagonal 
weight matrix P such that 

CAc' P Ac 

or Ac' P Ac :: 

-*' 

-4 ee 

ee 

Three problems arise: 

1) CAe' P Ac)-A is nol ensured to be better than i:ee. On the 
contrary, in the general case, since CAc' P ACJ~ - E-ee is just 
the residual whose norm has been minimized, "its elements 
should show an irregular pattern around zero" [Schaffrin 1983], 
and it will be neither positive nor negative definite. But, 
computing the greater eigenvalue of CAc' P Acr~ with respect to 
£.'ee, say ~ max, then CAc' ~max P Ac)-" turns out ,.., 
automatically better than E ee, so that the latter is 
satisfised. 

2) It is not ensured that P is positive definite. If some 
components of P are negative, however, leading them to zero or 
to an arbitrary positive value the result will be even better 
than the previous one [Russo 1988J. The second choice is 
preferable since it does not imply a First Order reDesign. 

3) The obtained solution A max P is to be considered as a set 
of minimum values tha satisfisy the imposed precision 
requirements: any diagonal with Pii ~ 1\ max Pii p satisfises 
as well the imposed criterion. However, high values of Pii 
should be avoided, not only for economical consideration (or 
tecnical infeasibili ), but also because high values of Pii 
are critical for the reliability of the network. 

FULLFILLMENT OF AN EXTERNAL RELIABILITY CONDITION 

As is well known, the external reliability of a network can be 
measured [Baarda 1977) by 

-2 - , 
$() :::: max (b i ) (4) 

[Forstner 1979) where: 
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~yi are the standard deviation of adjusted observations 
~vi are the standard deviation of the residuals 
[o~ is the non-centrality parameter of the non-central Fisher 
distribution when d probability for a first kind error and ~ 
probabili for second kind error are chosen. 

-~ -t-
If a maximum acceptable value 6 0 is imposed to ~t p then from 
(4), substituting G"'yit and G"vi2- by (Ac:E: ee Ac' )ii and by 
(P--1 - Ac ~ ee Ac ') ii respectively, the weights of observation 
must satisfy the following conditions: 

Pi i ~ (5) 

The problem is hence to find a diagonal matrix P that fulfills 
(~) and contemporaneously satisfises a given criterion matrix 
L.-ee. 

It is not said a priori that this problem admits solutions. It 
can be noted th~t, if (5) admits a solution Pr (as would be in 
the case where cl & has been computed for a given, feasible 
weigth matrix), then OIPr, where W is any positive scalar, is 
still a solution: so that it would be always possible to scale 
Pr so to obtain a set of weights that satisfises also the 
precision requirements. This is of little use, both because the 
obtained solution could be extremely unrealistic, and mainly 
because there is no simple way to obtain a set of weights that 
satisfies (5), if not previously known. 

,...., 
To search more realistically for a solution, % ee must not only 
be satisfised, but also approximate as closely as possible. 

Let us assume now that P is a diagonal weight matrix that 
satisfises a,..., given criterion t; ee, that is, CAc' P Ac)""-1 is 
better than Z:ee. Then, condition (5) is ensured if 

1 
Pi i Pii(lim) (6) 

[Ac ee Ac'Jii 

In fact, being Ac ee Ae' worse than Ac CAe' P Ac Ac', each 
diagonal term of the former is greater (or equal) than the 
corresponding one of the latter, so that each rigth-hand side 
term of (6) turns out smaller (or equal) than the corresponding 
term of (5). 

This can be easi verified substituting f in (3.1) 
by a vector whose i-th is 1 and all the 
remaining are zero. 

This allow us to perform a test that may ensure the existence 
of a solution for our lem before starting to search it. 
Computing 

2:ee (lim)::: (Ac' P(lim) Ac)--1 

1 



,..., 
if z: ee( lim) turns out better than r. ee, i.e., its maximum 
general eigenvalue wi th respect to i: ee, ~ Imax, is less than 
or equal to 1, P(lim) itself can be considered a solution, and 
A Imax P( 1 im) a more economi cal one. If thi s tes l fai 1 s , 

however, a solution cannot be said to exist, but could still 
""'" exisl: we can only state lhat, lo satisfisy ree, some of the 

weights should assume a value larger than the corresponding 
Pii(lim), bul condition (5) could slill be salisfied. 

Let us assume that the test suceeds. To obtain a better 
solution Ps of a S.O.D. 

needed. Furthermore, to obtain a 
Ps must be multiplied by the 
~smax of (Ac' Ps Ac~4 with respect 

~ 

approximation of ~ ee, the 
approximating algorithm is ,.., 
solution s~tisfisying Eee, 
maximum general eigenvalue 

N 

to :£. ee. 

If Asmax is close to 1, the solution ~smax Ps that satisfises -~ee showns to be also a well approximating solution. 

It is possible, however, that some components of )smax Ps do 
not satisfy (5), and hence the reliability requirements are not 
fulfilled. This is easy to obtain with very redundant networks, 
since S.O.D. algorithms tend to exalt the weight of only one or 
some of a group of related observations, decreasing the weight 
of the remaining ones (possibly to negative values). 

In lhis case, it is possible to fix the weights that exceed the 
corresponding right-hand side of (5) to a value thal ensures 
lhe requested reliability, and do nol prevenl salisfisation of 
IV 

~ee. Possible choiches are Pii(lim) (in which case, the 
reliability reqqirement (S) will be "just" fulfilled for that 
observation), or Almax Pii(lim} (in which case, il will be lhe 
precision requirement to be "just.. satisfised, while the 
reliability requirement will be even better fulfilled), or an 
intermediate value. 

New values for the weights not fixed in this way 
obtained by a IIstalic solution" of the 5.0.0. problem 
described in the literature [lllner 1988]}, so 

I'V 

approximate again £ ee, and then multiplying them 
computed maximum general eigenvalue to satisfisy it. 

can be 
(already 
as to 

by a new 

Partitioning P in Pu (unknown) and Pf (fixed), the 
S.O.D. problem can be written as: 

_;( tN 
(Au I Pu Au + Af I Pf Af) :: z:: ee 

Au' Pu Au + Af' Pf Af == ~ ee- A 

Au' 
: rJ A 

Pu Au ;; ~ ee- - Af' Pf Af 

-04. N A ........ ( Au I Pu Au) ::: (~e e _., -- Af I P f Af) 

If again some of the new weights do not fulfill (5), the 
process can be iterated. Since at each iteration some more 
weights are fixed, this method will always end up with a set of 
weights (at worse equal to Pii(lim», that will satisfisy 
~ ee and fulfill the reliability condition (5). If some of them 
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· turn out negative, they can be set with no damage to any 
suitable positive value lower than the corresponding Pii(lim). 

1ft h e in i t i a I t est fa i Is? i. e . ~ 1 max > 1, i tis 
possible to fix only for the next iteration each 
weight that do not fulfill (5) to the corresponding 
right-hand side term. The process should stop when 
(5) is met by all the weights (solution) or by none 
of them (infeasibility); however, convergence is not 
ensured. 
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