THE EFFECT OF IMAGE POINT DENSITY ON PHOTO-VARIANT AND PHOTO-INVARIANT BUNDLE ADJUSTMENT

W. Faig \& K. Owolabi
Department of Surveying Engineering
University of New Brunswick
P.O. Box 4400
Fredericton, New Brunswick, Canada
Commission III

Abstract

Various additional parameter sets are available for compensating systematic errors in bundle adjustment. However, the compensating powers of these models in the face of varying image densities and distributions have not hitherto been established. This paper compares the effectiveness of various additional parameter models in both photo-variant and photo-invariant bundle adjustment.

1. INTRODUCTION

The occurence of errors in our measurements is a natural phenomenon. The importance of their removal from the data, before making a decision based on these, has been emphasized for several centuries. In particular, the importance of identification and elimination of systematic errors in photogrammetric measurement has been stressed as a precondition for photogrammetry to perform reliably as a technique for high precision point determination. One major stumbling block to achieving this goal is the incomplete knowledge of systematic errors affecting the image coordinates.

The sources of some of these systematic errors in classical photogrammetry have been identified to include: film deformation, lens distortion, atmospheric refraction and other anomalous distortions. Significant contributions in their mathematical modelling have been made, among others, by Saastamoinen (1972, 1973) and Schut (1969) on refraction, Brown $(1966,1968)$ and Washer (1963) on lens distortion, and Ziemann $(1968,1971 \mathrm{a}, 1971 \mathrm{~b})$ on film deformation.

In the beginning, mathematical correction models were used for data refinement prior to entering a photogrammetric block adjustment. With systematic errors thought to have been adequately modelled and computationally accounted for, the disagreement in the results of theoretical and empirical studies among block adjustment procedures led to the hypothesis of existence of residual systematic image errors yet unaccounted for. This led to the concept of additional parameters in bundle adjustment as we know it today.

Individual research results (e.g. Bauer and Mueller, 1972; Bauer, 1974; Moniwa, 1977; El-Hakim and Faig, 1977; El-Hakim, 1979; Ackermann, 1980) encouraged the International Society of Photogrammetry and Remote Sensing to create a working group under Commission III for the period 1980-1984 to "unify the approaches for the identification and elimination of systematic errors" (Kilpela, 1984). The report of the activities of the working group was outlined by Ackermann (1984) where it was noted that improvement in accuracy of bundle adjustment can be achieved through the use of additional parameters. Inspite of the accuracy improvement, there is still no definite pattern as to the "extent the method is effective or how the success depends on overlap, control, density of points or on the particular set of parameters" (Ackermann, 1984). The motivation for this paper was based on this comment, the objective of which is to compare the compensating powers of various additional parameter models in both photo-variant and photo-invariant bundle adjustment when varying image densities and control point patterns.

2. CLASSIFICATION OF ADDITIONAL PARAMETERS

The basic mathematical model for a self-calibrating bundle adjustment is the extended form of the well-known collinearity equations given by:

$$
\begin{equation*}
x-x_{0}+\Delta_{x}=c \frac{\Delta N_{x}}{\Delta D} ; y-y_{0}+\Delta_{y}=c \frac{\Delta N_{y}}{\Delta D} \tag{1}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \Delta \mathrm{N}_{\mathrm{X}}=\mathrm{f}\left(\omega, \phi, \mathrm{k}, \mathrm{X}_{\mathrm{e}}, \mathrm{Y}_{\mathrm{e}}, \mathrm{Z}_{\mathrm{e}}, \mathrm{X}_{\mathrm{S}}, \mathrm{Y}_{\mathrm{S}}, \mathrm{Z}_{\mathrm{S}}\right) \\
& \Delta \mathrm{N}_{\mathrm{y}}=\mathrm{g}\left(\omega, \phi, \mathrm{k}, \mathrm{X}_{\mathrm{e}}, \mathrm{Y}_{\mathrm{e}}, \mathrm{Z}_{\mathrm{e}}, \mathrm{X}_{\mathrm{S}}, \mathrm{Y}_{\mathrm{S}}, \mathrm{Z}_{\mathrm{S}}\right) \\
& \Delta \mathrm{D}=\mathrm{h}\left(\omega, \phi, \mathrm{k}, \mathrm{X}_{\mathrm{e}}, \mathrm{Y}_{\mathrm{e}}, \mathrm{Z}_{\mathrm{e}}, \mathrm{X}_{\mathrm{S}}, \mathrm{Y}_{\mathrm{s}}, \mathrm{Z}_{\mathrm{S}}\right) \\
& \omega, \phi, \mathrm{k}, \mathrm{X}_{\mathrm{e}}, \mathrm{Y}_{\mathrm{e}}, \mathrm{Z}_{\mathrm{e}}=\text { exterior orientation elements } \\
& \mathrm{X}_{\mathrm{S}}, \mathrm{Y}_{\mathrm{S}}, \mathrm{Z}_{\mathrm{S}}=\text { object space coordinates } \\
& \mathrm{c}, \mathrm{x}_{\mathrm{O}}, \mathrm{Y}_{\mathrm{O}}=\text { basic interior orientation elements } \\
& \Delta_{\mathrm{X}}, \Delta_{\mathrm{y}}=\text { additional parameters } \\
& \mathrm{x}, \mathrm{y}=\text { photo coordinates. }
\end{aligned}
$$

Conceptually, Δ_{x} and Δ_{y} should consist of the sum of the mathematically modelled distortions. However, there are different schools of thought on the form of the structure of the additional parameter model, leading to as many as eighteen additional parameter sets available in the literature (see Table 1).

Generally, additional parameter models can be seen as consisting of two major groups. The first group consists of those sets whose terms can be identified with the mathematical models already developed for the known distortions. The second group does not try to account for individual physical causes; rather it uses an expression such as general polynomial or harmonic function to model the combined effect of all possible systematic image errors in the functional model. Some parameter sets can be identified to be a combination of these two groups. A close look at all the additional parameter sets found in the literature produced the following classification (see Table 1):

Class A: modelling known physical causes
Class B: modelling effects by polynomial functions
Class C: modelling effects by trigonometric and/or harmonic functions
Class $A B$: combination of classes A and B
Class BC: combination of classes B and C
Class AC: combination of classes A and C

Table 1: A Collection of Additional Parameter Models

Name	Class	\# of Parameters	References/Remarks
ANO	-	-	No additional Parameters
BRO	AB	18	Brown (1976), Set A of WG III/3
EBN	B	12	Ebner (1976), Set B of WG III/3
ELF	C	20	El-Hakim and Faig (1977), Set C of
			WG III/3
ELZ	C	14	Ziemann and El-Hakim (1985)
GRA	B	12	Grun (1978), Set F of WG III/3
GRB	B	7	Grun (1978). Set D of WG III/3
GRC	B	10	Grun (1978), Set E of WG III/3
GRD	B	14	Grun (1978), Set G of WF III/3
GRE	B	44	Grun (1978), Set H of WG III/3
JAC	BC	20	Jacobsen (1982), Set J of WG III/3
KIL	AB	7	Kilpela (1980)
KOJ	BC	9	Juhl et al. (1982)
KOL	BC	9	Kolbl (1975)
MAU	B	14	Kupfer and Mauelshagen (1982)
MOA	A	7	Moniwa (1977)
MOB	C	11	Moniwa (1981)
MUR	A	9	Murai et al. (1984)
SCH	B	14	Schut (1979)

3. GENERALIZED MATHEMATICAL MODEL FOR BUNDLE SOLUTION

Using the concept of partitioning of parameters, equation (1) forms the core of a mathematical model for a generalized bundle solution. The generalized mathematical model is composed of the following submodels:

Equation (2a) models the extended collinearity equations (1) where l_{p} is a vector of observed photo coordinates, x^{i} is a vector of interior orientation elements including additional parameters, x^{e} is a vector of exterior orientation elements and x^{5} is a vector of object space coordinates.

Equation (2b) models all the non-photogrammetric observations that are expressible in terms of either x^{e} or x^{5} or both including possible nuisance parameters, x^{n}, in such observations. Equations ($2 \mathrm{c}-2 \mathrm{f}$) represent possible admission of observations on the unknown parameters with their respective weight matrices P .

Equations (2) have been developed into an algorithm and a software in which each additional parameter set shown in Table 1 is coded as a subroutine. Thus, any desired additional parameter set can be activated in the adjustment through a variable in the input data.

4. INVESTIGATED DATASETS

In order to get a clear picture of how an individual additional parameter set behaves with varying image point densities and control point patterns, and also to determine the behavioural pattern when used in photo-variant and photo-invariant modes, seventeen datasets were created from three different blocks of photographs.

The first block of photographs was simulated with photo-invariant systematic image errors using the procedure and software described in Woolnough (1973). Regular points of 11×11 per photograph were used, giving rise to high density image points. A high density control point pattern was also selected. The high density image points were reduced by fifty percent to give medium and low density image points respectively. The high density control point pattern was also reduced by fifty percent and seventy five percent to give rise to medium density and sparse control point patterns respectively. The following datasets, comprising of different combinations of image points and control point patterns, were generated from this block.

1. DSA1 - High density image points with high density control point pattern.
2. DSA2 - High density image points with medium density control point pattern.
3. DSA3 - High density image points with sparse control point pattern.
4. DSB1 - Medium density image points with high density control point pattern.
5. DSB2 - Medium density image points with medium density control point pattern.
6. DSB3 - Medium density image points with sparse control point pattern.
7. DSC1 - Low density image points with high density control point pattern.
8. DSC2 - Low density image points with medium density control point pattern.
9. DSC3-Low density image points with sparse control point pattern.

The second block of photographs used is the Edmundston block described in El-Hakim et al. (1979). As in the first block, the original observations and control point patterns were designated as high density and were then decimated to give the following datasets:

1. DSD1 - High density image points with high density control point pattern.
2. DSD2 - High density image points with sparse control point pattern.
3. DSE1 - Low density image points with high density control point pattern.
4. DSE2 - Low density image points with sparse control point pattern.

Finally, the third block of photographs was simulated with photo-variant systematic image errors and was decimated to give the following datasets:

1. DSF1 - High density image points with high density control point pattern.
2. DSF2 - High density image points with sparse control point pattern.
3. DSG1 - Low density image points with high density control point pattern.
4. DSG2 - Low density image points with sparse control point pattern.

The above notations with prefix 'DS' and the name identifier in column 1 of Table 1 are utilised in the preparation of the tables and figures to follow.

5. ANALYSIS OF RESULTS AND CONCLUSIONS

The additional parameters were given zero weight in this study, thereby treating them as free unknowns. Correlation coefficients greater than 0.7 were printed. Most parameter sets have a few pairs of unknowns registering correlation coefficients greater than 0.7 , but this did not make the solution unstable.

Table 2 shows the RMSE values computed from check points for dataset DSA1 along with the performance ranks for the different parameter sets. This is depicted pictorially in Figures 1a and 1 b for plan and height respectively. It can be seen that accuracy improvement was
achieved by using additional parameters to compensate for the systematic image errors. However, the degree of improvement in planimetry varies from one percent when parameter set GRA was used to eighty nine percent when parameter set KOL was used, while the degree of improvement in elevation varies from ten percent when parameter set GRA was used to eighty one percent when parameter set ELZ was used. Similar results were obtained from datasets DSA1, DSA2 and DSA3 which have the same image point density but different control point patterns (see Tables 3 and 4; Figures 2 and 3). As expected, the RMSE increases with decrease in density of control points. A close look at the pictorial representation of datasets DSA1, DSA2 and DSA3 shows an emerging pattern. Class B parameter sets performed very poorly in all three cases.

Datasets DSB1, DSB2 and DSB3 and datasets DSC1, DSC2, DSC3 have corresponding control point patterns with datasets DSA1, DSA2, DSA3 but differing image point densities. With the exception of parameter sets of the class B type, other parameter sets continue to show tremendous accuracy improvements relative to the case when no additional parameter set was used (see Tables 5-10 and Figures 4-9). In addition though, decrease in image point densities resulted in increased RMSE values for the corresponding paramater set.

Tables 11-14 show results for the real block. Although, accuracy improvements (6% to 29\%) were achieved by using additional parameters, they were not as outstanding as those recorded for the simulated block. It is astonishing that in this block, decreased image point density having the same control point pattern with a higher image point density produced better results (compare Tables 11 and 13). It is suspected that the poor geometry of the block (60% overlap and 20% sidelap) might have contributed to this.

Generally, the polynomial function type of parameter set still performs poorer than others in this block. It is important to mention that parameter sets GRE and JAC which have an exceptionally high number of parameters (44 and 20 respectively) actually distorted the results in some cases (see Figures 13a,b).

The last group of datasets concerns the photo-variant solution for simulated data with close-range characteristics. The size of the scale of photography (1/70) is too large to reflect any significant difference between the performances of individual parameter sets. Nevertheless, it can be seen that class B type of parameter sets performed poorly when compared with the others (see Tables 16-19).

Generally, it can be said that polynomial type functions per se should be avoided in self-calibrating bundle adjustment. Rather, they should be combined with either class A or class C type parameter sets for improved results. Parameter sets with trigonometric terms seem to have the best overall performance on the average. At the moment there is no parameter set that forms a combination of classes A and C. In other words, a parameter set that models known causes with the usual terms and models the effect of as yet undetermined anomalous distortions with trigonometric or harmonic functions. It is suggested that a parameter set which forms such a combination be developed and studied extensively to filter out insignificant parameters in order to avoid the danger of overparameterization. It is suspected that such a parameter set would have a consistent behaviour irrespective of the geometry of the block.

TABLE : RMSE FOR DSA3

Note: Vorici axis = RMSE volu; Horizontal axis = Model nome Modil nomes cen be identified with column 1 op tho Tabl

$$
\text { TABLE } 5 \text { : RNSE FOR DSE: }
$$

MAME	XY(M)	RANK	z(M)	RANK
ANO	2.1056	38	3.1367	19
BRO	0.1706	6	0.5865	7
EBM	1.2497	12	2.3152	15
ELF	0.4039	8	0.5212	6
ELZ	0.1237	2	0.8557	2
ara	2. 2577	19	2.8801	18
ORA	2.1314		2.8733	16
ORC	2.1214	17	2.8781	17
GRD	8.3107	84	2.2407	12
ORE	0.4197	8	0.8988	9
dAC	0.1107	d	0.2646	$\frac{1}{5}$
KJL	0.1480	5	0.5015	5
KOJ	0.9880	10	2.8383	0
KOL	0.2488	7	0.7847	8
MAU	1.3107	18	2.2407	3
MOA	0.1313	11	0.4706	
Mos	1.1880	13	1.7482	1
SCH	1.3844	15	2.2825	14

Not: Voricel axis = RMSE viu*: Horizontal mis modal name

Not: Vertical $=$ RMSE vise: Hopizontal axis = Model name Mod I nemes esn be identipiad with column 1 of the Toblo

Model nemes can be idontifiod with column 1 of the Toblo

Note: Vertical $x i s=$ RMSE valu; Horizontal mis $=$ Model nome Model names cen be identifiad with column 1 of the Table

TABLE 16: RNSE FOR DSFZ

Model names can be identifiad with column 1 of the Toble

TABLE 17: RMSE FOR DSGI

> Note: Vertical axis R RMSE velue: Horizontal axis = Model name Model nmes can be identipisd with column 1 of the Table

REFERENCES

Ackermann, F. (1980). "Block Adjustment with Additional Parameters," International Archives of Photogrammetry, Vol. XIV, part 3.

Ackermann, F. (1984). "Report on the Activities of Working Group III/1 During 1980-1984," International Archives of Photogrammetry and Remote Sensing, Vol. XXV, part 3.

Bauer, H. (1974). "Bundle Adjustment with Additional Parameters-Pracital Experience" BUL 6.

Bauer, H. and J. Mueller (1972). "Height Accuracy of Block and Bundle Adjustment with Additional Parameters," International Archives of Photogrammetry, Vol. XII.

Brown, D.C. (1966). "Decentering Distortion of Lens," Photogrammetric Engineering, Vol. 32, No. 3.

Brown, D.C. (1968). "Advanced Methods for the Calibration of Metric Cameras," Final Report, Contract DA-04-009-AC-1457X, U.S. Army Topographic Laboratory, Fort Belvoir, VA.

Brown, D.C. (1976). "The Bundle Adjustment-Progress and Prospects," International Archived of Photogrammetry, Vol. XIII.

Ebner, H. (1976). "Self-Calibrating Block Adjustment," International Archives of Photogrammetry, Vol. XIII.

El-Hakim, S.F. (1979). "Potentials and Limitations of Photogrammetry for Precision Surveying," Technical Report 63, Department of Surveying Engineering, University of New Brunswick.

El-Hakim, S.F. and W. Faig (1977). "Compensation of Systematic Image Errors Using Spherical Harmonics," Proceedings ASP Annual Meeting, Little Rock, Arkansas.

El-Hakim, S.F., H. Moniwa and W. Faig (1979). "Analytical and Semi-Analytical Photogrammetric Programs - Theory and User's Manual," Technical Report 64, Department of Surveying Engineering, University of New Brunswick.

Grun, A. (1978). "Experiences with the Self-calibrating Bundle Adjustment," Proceedings of ACSM-ASP Convention, Washington, D.C.

Grun, A. (1982). "The Accuracy Potential of Modern Bundle Block Adjustment in Aerial Photogrammetry," Photogrammetric Engineering and Remote Sensing, Vol. 48, No. 1.

Jacobsen, O. (1982). "Attempt at Obtaining the Best Possible Accuracy in Bundle Block Adjustment," Photogrammetria, Vol. 37.

Juhl, J. and O. Brande-Lavridsen (1982). "The AUC Self-Calibrating Block Adjustment Methods and its Results from Jamijarvi Test Field," Photogrammetria, Vol. 38.

Kilpela, E. (1980). "Compensation of Systematic Errors in Bundle Adjustment," International Archives of Photogrammetry, 23, Part B9.

Kilpela, E. (1984). "Report on the Activities of Commission III 1980-1984," International Archives of Photogrammetry and Remote Sensing, Vol. XXV, part 3.

Kolbl, O. (1975). "Tangential and Asymmetric Lens Distortion, Determined by Self-Calibration," Bildmessung und Luftbildwessen, 43.

Kupfer, G. and L. Mauelshagen (1982). "Correlations and Standard Errors in Bundle Block Adjustment with some Emphasis on Additional Parameters," Photogrammetria, Vol. 38.

Moniwa, H. (1977). "Analytical Photogrammetry System with Self Calibration and its Applications," Ph.D. Dissertation, Dept. of Surveying Engineering, University of New Brunswick.

Moniwa, H. (1981). "The Concept of Photo-variant Self-calibration and its Applications in Block Adjustment with Bundles," Photogrammetria, Vol. 36.

Murai, S., R. Matsuoka and T. Okuda (1984). "A Study on Analytical Calibration for Non-metric Camera and Accuracy of Three Dimensional Measurement," International Archives of Photogrammetry and Remote Sensing. Vol. XXV, part 5.

Saastamoinen, J. (1982). "Local Variations of Photogrammetric Refraction," ASP Proceedings of the Fall Convention, Part I.

Schut, G.H. (1969). "Photogrammetric Refraction," Photogrammetric Engineering, Vol. 35, No. 1.

Schut, G.H. (1979). "Selection of Additional Parameters for Bundle Adjustment," Photogrammetric Engineering, Vol. 35, No. 1.

Washer, F.E. (1963). "The Precise Evaluation of Lens Distortion," Photogrammetric Engineering and Remote Sensing, Vol. 45, No. 9.

Woolnough, D.F. (1973). "A Ficticious Data Generator for Analytical Aerial Triangulation," Technical Report 26, Department of Surveying Engineering, University of New Brunswick, Canada.

Ziemann, H. (1968). "Reseau Photography in Photogrammetry-A Review," AP-PR-39, National Research Council of Canada.

Ziemann, H. (1971a). "Sources of Image Deformation," Photogrammetric Engineering, Vol. 37, No. 12.

Ziemann, H. (1971b). "Image Deformation and Method for its Correction," The Canadian Surveyor, Vol. 25, No. 4.

Ziemann, H. and S.F. El-Hakim (1985). "System Calibration and Self-calibration Using Fully Controlled Small Blocks," Photogrammetria, (in print).

