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ABSTRACT 

Various additional parameter sets are available for compensating systematic errors in bundle 
adjustment. However, the compensating powers of these models in the face of varying image 
densities and distributions have not hitherto been established. This paper compares the 
effectiveness of various additional parameter models in both photo-variant and photo-invariant 
bundle adjustment. 

1. INTRODUCTION 

The occurence of errors in our measurements is a natural phenomenon. The importance of 
their removal from the data, before making a decision based on these, has been emphasized for 
several centuries. In particular, the importance of identification and elimination of systematic 
errors in photogrammetric measurement has been stressed as a precondition for 
photogrammetry to perform reliably as a technique for high precision point determination. One 
major stumbling block to achieving this goal is the incomplete knowledge of systematic errors 
affecting the image coordinates. 

The sources of some of these systematic errors in classical photogrammetry have been 
identified to include: film deformation, lens distortion, atmospheric refraction and other 
anomalous distortions. Significant contributions in their mathematical modelling have been 
made, among others, by Saastamoinen (1972, 1973) and Schut (1969) on refraction, Brown 
(1966, 1968) and Washer (1963) on lens distortion, and Ziemann (1968, 1971a, 1971b) on 
film deformation. 

In the beginning, mathematical correction models were used for data refinement prior to 
entering a photogrammetric block adjustment. With systematic errors thought to have been 
adequately modelled and computationally accounted for, the disagreement in the results of 
theoretical and empirical studies among block adjustment procedures led to the hypothesis of 
existence of residual systematic image errors yet unaccounted for. This led to the concept of 
additional parameters in bundle adjustment as we know it today. 

Individual research results (e.g. Bauer and Mueller, 1972; Bauer, 1974; Moniwa, 1977; 
El-Hakim and Faig, 1977; El-Hakim, 1979; Ackermann, 1980) encouraged the International 
Society of Photogrammetry and Remote Sensing to create a working group under Commission 
III for the period 1980-1984 to "unify the approaches for the identification and elimination of 
systematic errors" (Kilpela, 1984). The report of the activities of the working group was 
outlined by Ackermann (1984) where it was noted that improvement in accuracy of bundle 
adjustment can be achieved through the use of additional parameters. Inspite of the accuracy 
improvement, there is still no definite pattern as to the "extent the method is effective or how 
the success depends on overlap, control, density of points or on the particular set of 
parameters" (Ackermann, 1984). The motivation for this paper was based on this comment, 
the objective of which is to compare the compensating powers of various additional parameter 
models in both photo-variant and photo-invariant bundle adjustment when varying image 
densities and control point patterns. 
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CLASSIFICATION OF ADDITIONAL PARAMETERS 

The basic mathematical model for a self-calibrating bundle adjustment is the extended form of 
the well-known collinearity equations given by: 

where: 

~x 
X - xo + ~x = c m ; y - Yo + 

~y 
=c--m 

~Nx = f(ro,<j>,k,Xe,Ye,Ze'Xs'Y s,Zs) 

~N y = g( ro,<j>,k,Xe, Y e,Ze,Xs, Y s,Zs) 

~D = h(ro,<j>,k,Xe,Ye,Ze'Xs'Y s,Zs) 

ro,<j>,k,Xe,Ye,Ze = exterior orientation elements 

Xs,Y s,Zs = object space coordinates 

c,xo,y 0 = basic interior orientation elements 

~x'~y = additional parameters 

x,y = photo coordinates. 

(1) 

Conceptually, ~x and ~ should consist of the sum of the mathematically modelled distortions. 
However, there are different schools of thought on the form of the structure of the additional 
parameter model, leading to as many as eighteen additional parameter sets available in the 
literature (see Table 1). 

Generally, additional parameter models can be seen as consisting of two major groups. The 
first group consists of those sets whose terms can be identified with the mathematical models 
already developed for the known distortions. The second group does not try to account for 
individual physical causes; rather it uses an expression such as general polynomial or harmonic 
function to model the combined effect of all possible systematic image errors in the functional 
model. Some parameter sets can be identified to be a combination of these two groups. A 
close look at all the additional parameter sets found in the literature produced the following 
classification (see Table 1): 

Class A: modelling known physical causes 
Class B: modelling effects by polynomial functions 
Class C: modelling effects by trigonometric and/or harmonic functions 
Class AB: combination of classes A and B 
Class BC: combination of classes Band C 
Class AC: combination of classes A and C 
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Table 1: A Collection of Additional Parameter Models 

Name Class # of Parameters References/Remarks 

ANO No additional Parameters 
BRO AB 18 Brown (1976), Set A ofWG III/3 
EBN B 12 Ebner (1976), Set B ofWG Ill/3 
ELF C 20 El-Hakim and Faig (1977), Set C of 

WG III/3 
ELZ C 14 Ziemann and El-Hakim (1985) 
GRA B 12 Grun (1978), Set F of WG III/3 
GRB B 7 Grun (1978). SetD ofWG Ill/3 
GRC B 10 Grun (1978), SetE ofWG III/3 
GRD B 14 Grun (1978), Set G ofWF III/3 
GRE B 44 Grun (1978), Set H ofWG Ill/3 
JAC BC 20 Jacobsen (1982), Set J ofWG Ill/3 
KIL AB 7 Kilpela (1980) 
KOJ BC 9 Juhl et aL (1982) 
KOL BC 9 Kolbl (1975) 
MAU B 14 Kupfer and Mauelshagen (1982) 
MOA A 7 Moniwa (1977) 
MOB C 11 Moniwa (1981) 
MUR A 9 Murai et aL (1984) 
SCH B 14 Schut (1979) 

3. GENERALIZED MATHEMATICAL MODEL FOR BUNDLE SOLUTION 

Using the concept of partitioning of parameters, equation (1) forms the core of a mathematical 
model for a generalized bundle solution. The generalized mathematical model is composed of 
the following submodels: 

i e sen s ep = fp(x, x, x),Pp; eg = fg(x, x, x), P g (2a,b) 

1 ens 
ei = x, Pi; ee = x, Pe; en = x,Pn; e s = x, Ps (2c,d,e,f) 
x xx x x x x x 

Equation (2a) models tpe extended collinearity equations (1) where ep is a vector of observed 
photo coordinates, Xl is a vector of interior orientation elemenls including additional 
parameters, xe is a vector of exterior orientation elements and xS is a vector of object space 
coordinates. 

Equation (2b) models all the non-photogrammetric observations that are expressible in terms of 
either xe or xS or both including possible nuisance parameters, xn, in such observations. 
Equations (2c - 2f) represent possible admission of observations on the unknown parameters 
with their respective weight matrices P. 

Equations (2) have been developed into an algorithm and a software in which each additional 
parameter set shown in Table 1 is coded as a subroutine. Thus, any desired additional 
parameter set can be activated in the adjustment through a variable in the input data. 
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4. INVESTIGATED DATASETS 

In order to get a clear picture of how an individual additional parameter set behaves with 
varying image point densities and control point patterns, and also to determine the behavioural 
pattern when used in photo-variant and photo-invariant modes, seventeen datasets were created 
from three different blocks of photographs. 

The first block of photographs was simulated with photo-invariant systematic image errors 
using the procedure and software described in Woolnough (1973). Regular points of 11 x 11 
per photograph were used, giving rise to high density image points. A high density control 
point pattern was also selected. The high density image points were reduced by fifty percent to 
give medium and low density image points respectively. The high density control point pattern 
was also reduced by fifty percent and seventy five percent to give rise to medium density and 
sparse control point patterns respectively. The following datasets, comprising of different 
combinations of image points and control point patterns, were generated from this block. 

1. DSA1 - High density image points with high density control point pattern. 
2. DSA2 - High density image points with medium density control point pattern. 
3. DSA3.- High density image points with sparse control point pattern. 
4. DSB 1 - Medium density image points with high density control point pattern. 
5. DSB2 - Medium density image points with medium density control point pattern. 
6. DSB3 - Medium density image points with sparse control point pattern. 
7. DSC 1 - Low density image points with high density control point pattern. 
8. DSC2 - Low density image points with medium density control point pattern. 
9. DSC3 - Low density image points with sparse control point pattern. 

The second block of photographs used is the Edmundston block described in EI-Hakim et al. 
(1979). As in the first block, the original observations and control point patterns were 
designated as high density and were then decimated to give the following datasets: 

1. DSD1 - High density image points with high density control point pattern. 
2. DSD2 - High density image points with sparse control point pattern. 
3. DSE1 - Low density image points with high density control point pattern. 
4. DSE2 - Low density image points with sparse control point pattern. 

Finally, the third block of photographs was simulated with photo-variant systematic image 
errors and was decimated to give the following datasets: 

1. DSF1 - High density image points with high density control point pattern. 
2. DSF2 - High density image points with sparse contJ:ol point pattern. 
3. DSG 1 - Low density image points with high density control point pattern. 
4. DSG2 - Low density image points with sparse control point pattern. 

The above notations with prefix IDS' and the name identifier in column 1 of Table 1 are utilised 
in the preparation of the tables and figures to follow. 

5. ANALYSIS OF RESULTS AND CONCLUSIONS 

The additional parameters were given zero weight in this study, thereby treating them as free 
unknowns. Correlation coefficients greater than 0.7 were printed. Most parameter sets have a 
few pairs of unknowns registering correlation coefficients greater than 0.7, but this did not 
make the solution unstable. 

Table 2 shows the RMSE values computed from check points for dataset DSA 1 along with the 
performance ranks for the different parameter sets. This is depicted pictorially in Figures 1 a 
and 1 b for plan and height respectively. It can be seen that accuracy improvement was 
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achieved using additional parameters to compensate for the systematic image errors. 
However, degree of improvement in planimetry varies from one percent when parameter set 
GRA was used to eighty nine percent when parameter set KOL was used, while the degree of 
improvement in elevation varies from ten percent when parameter set GRA was used to eighty 
one percent when parameter set ELZ was used. Similar results were obtained from datasets 
DSA1, DSA2 and DSA3 which have the same image point density but different control point 
patterns (see Tables 3 and 4; Figures 2 and 3). As expected, the RMSE increases with 
decrease in density of control points. A close look at the pictorial representation of datasets 
DSAl, DSA2 and DSA3 shows an emerging pattern. Class B parameter sets performed very 
poorly in all three cases. ' 

Datasets DSB1, DSB2 and DSB3 and datasets DSC1, DSC2, DSC3 have corresponding 
control point patterns with datasets DSA 1, DSA2, DSA3 but differing image point densities. 
With the exception of parameter sets of the class B type, other parameter sets continue to show 
tremendous accuracy improvements relative to the case when no additional parameter set was 
used (see Tables 5·10 and Figures 4-9). In addition though, decrease in image point densities 
resulted in increased RMSE values for the corresponding paramater set. 

Tables 11 .. 14 show results for the real block. Although, accuracy improvements (6% to 29%) 
were achieved by using additional parameters, they were not as outstanding as those recorded 
for the simulated block. It is astonishing that in this block, decreased image point density 
having the same control point pattern with a higher image point density produced better results 
(compare Tables 11 and 13). It is suspected that the poor geometry of the block (60% overlap 
and 20% sidelap) might have contributed to this. 

Generally, the polynomial function type of parameter set still performs poorer than others in 
this block. It is important to mention' that parameter sets ORE and JAC which have an 
exceptionally high number of parameters (44 and 20 respectively) actually distorted the results 
in some cases (s~e 13a,b). 

The last group of data sets concerns the photo-variant solution for simulated data with 
close-range characteristics. The size of the scale of photography (1170) is too large to reflect 
any significant difference between the performances of individual parameter sets. 
Nevertheless, it can seen that class B type of parameter sets performed poorly when 
compared with the others (see Tables 16-19). 

Generally, it can be said that polynomial type functions per se should be avoided in 
self-calibrating bundle adjustment. Rather, they should be combined with either class A or 
class C type parameter sets for improved results. Parameter sets with trigonometric terms seem 
to have the best overall performance on the average. At the moment there is no parameter set 
that forms a combination of classes A and C. In other words, a parameter set that models 
known causes with the usual terms and models the effect of as yet undetermined anomalous 
distortions with trigonometric or harmonic functions. It is suggested that a parameter set which 
forms such a combination be developed and studied extensively to filter out insignificant 
parameters in order to avoid the danger of overparameterization. It is suspected that such a 
parameter set would have a consistent behaviour irrespective of the geometry of the block. 

TAE!I..E 2 : RMSE FOR OSA1 

fUME XY(M) RANK l(M) fUNK -------------------------------ANO 1.7424 19 2.71192 U '''f 
BRO 0.2328 :2 0.5112 ,3 
UN 1.31$14 15 2.0684 liS 
ELF 0.5612 10 0.6801 e 
ELl 0.2527 6 O.n11 :I. 
(IRA 1.7232 18 2.5041 18 
ORE! 1.7226 17 2.4598 16 
(lRC 1.U73 16 2.4601 17 
(11'10 1.1307 12 1.7021 12 
ORE 0.5558 9 0.730:2 9 
JAC 0.2873 8 0.6647 6 
KII.. 0.2437 4 0.5S12S1 4 
KOJ 0.2510 S 1.0425 10 
1(01.. 0.1U3 1 O. SUS 2 
"'AU 1.1307 13 1.7027 13 
MOA 0.2626 7 0.6757 7 
MOB O. !H~47 11 1.4732 11 
MUll 0.2434 3 O. !S947 5 
self 1.1572 14 1.7118 14 

------------------------------- ! 

No~e: Ve~~10.1 axIs = RMSE value; Ho~lzon~al axIs = Model na~. 
Model names oan be lden~lfled wl~h oolumn 1 of ~he Table 
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TAILE 3 : RI"ISE FOR 0511.2 

NAI"IE XY(I'I) RANK Z(I'I) FUNIC 

-------------------------------ANO 2.2658 a 3.4296 a '''f 
BRO 0.2243 S 0.6189 4 
EBN 1.6610 15 2.2427 15 
ELF 0.6459 10 0.8112 9 
ELZ 0.2341 IS 0.553S 1 
GRA 1 .11763 17 2.4920 18 
GRI 1.11926 18 2.4601 17 
GRC 1.9422 16 2.4527 16 
GRD 1.0091 12 1.7682 12 
GRE 0.50g3 9 0.6724 6 
JAC o .U41 8 0.8437 10 
ICIL 0.2277 5 0.6065 2 
ICOJ o .14g8 1 0.7758 e 
KOL 0.2263 4 0.6130 3 
I'IAU 1.0091 13 1.7682 13 
Mall. 0.2667 7 0.7532 7 
I"IOB 0.9619 11 l.3776 11 
I"IUR 0.:2181 2 0.6361 5 
SCM 1.0429 14 1.8083 14 

------------------------------
Note: Vertlc~1 axl. = RMSE value; Hor1zontal axl. = Model name 

Model neme. can be ldentlfled with column 1 of the Table 

TABLE '" : RMSe: FOR PSAS 

NAI"IE xv (1'1) RANK Z(I'I) FUNK 

------------------------------- " ,3A: 
Sl: AT XY CHECK I'OIN'I'S V'OR DATASET DSA3 f'la. 3D: RIISl: AT Z CII'£CK POINTS V'OIl IlATASET Os.<.:! 

ANO 3.0080 19 3.6214 HI 
BRO 0.4621 6 1.1273 1 
EDN 1.7983 15 1.7307 11 
ELF 1.0229 10 1.:U50 9 
ELZ 0.3337 1 0.7101 1 
GRA 2.6932 16 2.7846 16 
ORB 2.7972 18 2.9100 119 
ORC ~!. 6941 17 2.8131 11 
GRD 1.2953 12 1.7319 12 
GRE 0.15287 8 0.8432 3 
JAC 0.50$0 7 1.0513 5 
ICIL o.un 2 O.91SCS 4 
KOJ 0.9437 9 1.4182 10 
ICOL 1.2110 11 1."'432 14 
1"1 AU 1.2953 13 1.7319 13 
1'1011. 0.3676 4 1.0653 6 
I'IOB 0.3602 3 0.7209 2 
I'IVR 0.4389 5 1.1$27 8 
SCH 1.3357 14 1.8048 15 

-------------------------------
Note: Vertical 8xls = RMSe value. Horizontal ax1s = Model name 

Model names can be IdentIfied with column 1 of the Table 

TABLE 5 : RMSe FOR PSll 

NAME XY(M) RANK Z(M) RANK 
-ANo--;:io56--ie--;:ii67---i;--

BRO 0.1106 6 0.5866 7 
EBN 1.2497 12 2.3152 15 
ELF 0.4039 8 0.5212 6 
ELl 0.1237 2 0.4557 2 
GRA 2.1577 19 2.9601 18 
ORB 2.1314 18 2.8733 16 
ORC 2.1214 17 2.8161 17 
ORO 1.3107 14 2.2407 12 
ORE 0.4197 "O ••• e8 • 
JAC 0.1101 1 0.2146 1 
KIL 0.1460 5 0.5015 5 
KOJ 0."80 10 1.eS6S 10 
KOL 0.2488 7 0.1847 8 
I'IAU 1.1107 13 2.2407 13 
1'10 A 0.111S S 0.4706 3 
M08 1.1'80 11 1.7432 11 
MUR 0.lsa6 4 0.48'1 4 
SCM 1.sa44 15 2.2825 14 

-------------------------------

TAILE I : RMSE FOR DSS2 

NAI'IE XY(M) RANK Z(M) RANK 
-ANO--i:iii7--i;--4:ii9s---i;--

BRO 0.2020 5 0.6809 6 
EBN 1.193' 11 3.277' 12 
ELF 0.&782 9 0.9212 7 
ELZ 0.1274 1 0.5316 2 
GRA 3.232' 19 3.8397 18 
ORB 3.231' 17 3.8189 16 
ORC 3.2264 16 3.8359 17 
GRD 1.8358 12 3.3008 13 
GRE 0.6376 9 1.21532 9 
JAC 0.1'59 4 0.4400 1 
KIL 0.2150 6 0.6244 5 
KOJ 1.9175 15 2.1164 10 
KOL 0.2933 7 0.9220 e 
1"1 A V 1.8358 13 3.3008 14 
MOil. 0.1616 2 0.54615 3 
I"IOB 1.7880 10 2.4069 11 
MVR 0.1623 3 0.5529 4 
SCM 1.8480 14 3.3347 15 

I 

I 

.... I 

Note: Vertical ~xls = RMSE value; Horizontal 8xls Model name 
Model name. oan be Identified with column 1 of the Table 

1 



TABLE 1 : RMSE FOR OS83 

NAME XY(M) RANK I(M) RAHK 

AHO 
BRO 
EBH 
ELF 
ELI 
ORA 
ORB 
ORC 
ORO 
ORE 
JAC 
KIL 
KOJ 
KOL 
MAU 
MOA 
MOB 
MUR 
SCH 

3.0321 
0.2154 
2.5296 
1.1017 
0.4107 
2.8703 
2.9904 
2.8511 
2.2863 
0.7522 
0.2338 
0.2778 
0.5018 
0.3790 
2.2863 
0.2171 
1.7604 
0.1827 
2.2855 

a 
2 

15 
10 

7 
17 
18 
16 
13 

9 
4 
S 
8 
6 

14 
3 

11 
1 

12 

3.S/888 
0.3594 
3.9532 
1 .6611 
0.7131 
3.8041 
3.7732 
3.7932 
3.9196 
1.1394 
0.5498 
0.6121 
0.9067 
0.8611 
3.9200 
0.5954 
2.4589 
0.4197 
3.7978 

19 
1 

18 
10 

6 
15 
12 
13 
16 

S/ 
3 
5 
8 
7 

17 
4 

11 
2 

14 

nc. /Ill: IIUSE AT 1: Cll!)c!( POI)I7S roR OAT,t,S£1" DSB3 

Note: VeFtl081 axIs = RMSE value: HOFlzontai axis = Model nam. 
Model n8mes 08n be Identified with oolumn 1 of the Table-

TABLE 8 : RMSE FOR OSCl 

NAME XY(M) RANK l(M) RANK 

-------------------------------ANO 2.2438 19 3.2118 19 
BRO 0.1994 6 0.6474 7 
EBN 1.2828 15 2.1761 15 
ELF 0.2971 8 0.4393 2 
ELZ 0.1513 5 0.4971 5 
ORA 2.1022 18 2.8513 18 
ORB 2.0792 17 2.7689 17 
ORC 2.0620 16 2.751" 16 
ORO 1.2"97 12 2.1091 12 
ORE 0.3815 9 0.9635 9 
JAC 0.1271 1 0.3011 1 
KIL 0.1431 3 0.4901 3 

'''f 

KOJ 0.9177 10 1.6366 10 I ' 
KOL 0.2593 7 0.8096 8 
MAU 1.2"97 13 2.1091 13 
MOA 0.1"26 2 0.4943 " 
Moe 1.0860 11 1.7171 11 ~ 

:g~ ~:ij~~ 1: g:~i~~ 1: .~IQ"~ 
-------------------------------

nc. ')'g; fWSE AT Z CH!:(')( POI~TS roR DATASET 

Note: VeFtioal axIs = RMSE value; HOFlzontal axis = Mode' name 
Model names oan be Identified with oolumn 1 of the Tabl. 

TA8LE 9 : RMSE FOR DSC2 

NAME XY(M) RANK l(M) RANK 

ANO 
BRO 
EBN 
EI..F 
ELl 
(IRA 
ORB 
(lRC 
(lRO 
(lRE 
JAC 
I<IL. 
1<0.1 
1<01.. 
I'IAU 
1'10 A 
,..08 
I'IUR 
SCM 

3.2520 
0.3211 
1.8905 
0.4456 
0.2204 
3.2115 
3.1878 
3.2086 
1.80En 
0.5048 
0.2807 
0.U26 
2.0026 
0.3"58 
1.8081 
0.1137 
1.7206 
0.U3. 
1.8290 

19 
6 

1'" 
9 

'" 18 
16 
11' 
11 

9 
5 
1 

15 
1 

12 
2 

10 
3 

13 

4 .2165 
0.9352 
2.9735 
0.7785 
0.6973 
3.6863 
3.6115 
3.1101 
3.1"63 
1.4785 
0.1S"22 
0.1871 
2.210" 
1.0027 
S.HISI 
0.8"'20 
2.4114 
O.IS ..... 
3.2216 

19 
7 

12 
IS 
5 

11' 
16 
18 
15 • I 

1 
10 

8 
104 

2 
11 

4 
15 

nc. 811: fWSr: AT Z CHEC')( POI~TS roll OATASf;T =< 

------------------------------- ~ ______________ ~ ______________ __J~ ______________ ~ ________________ J 

Note: Ve~tl0.1 axis = RMSE value: Horizontal axis = Mode' name 
Model nameS oan be Ident1fled with column 1 of the Table 

TABLE 10: RMSE FOR OSC3 

NAME xv (1'1) RANI( Z(M) RANK 

-4NO--;:4222--i;--;:2i;;---ii-- .~ 
BRO 0.3078 5 0.4778 1 
EBN 2.5065 15 4.0190 14 
ELF 0.9049 9 1.66"7 9 
ELZ 0.3"71 7 0.7174 5 
ORA 2.8118 16 4.2291 17 
ORB 2.8S69 19 3.7627 12 
aRC 2.8166 17 4.2432 1e 
ORO 2.3128 12 4.1e81 15 
ORE ".15SS 19 S.75"6 19 

KII.. 0.28S8 3 0.7183 4 
KOJ 0.6710 B 1.03B4 7 
KOL 0.3206 6 1.0311 6 

~~~ ~:~I~: l~ 6:;~:~ 1: ' 
Moe 1.8132 10 2.5459 10 
MUR 0.223' :2 0.4'29 2 

JAC 0.3021 4 1.2023 e L 
-~~~--~~~~~~--::--~~~:~~---:~-~ .--------------~----------------.~ 

Note: Vertloal axIs = RMSE v.lue; Horizontal axIs = Model name 
Model n.mes o~n be Identif1ed with oolumn 1 of the Table 
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TAB~E 11: RMSE FOR OSOl 

NAME XV<M) RAN~ 2:(1'1) AAN~ 

ANO 0.20U'! 
BRO O. Hi84 
E8N 0.1848 
ELF 0.1636 
ELZ 0.1633 
ORA 0.1846 
ORB 0.1779 
aRC 0.1997 
ORO 0.1765 
ORE 0 .1964 
HC 0.1802 
KIL 0.1439 
KOJ 0.17115 
KOL 0.1572 
MAU 0.1765 
MOA 0.1601'1 
MOB 0.1655 
MUA 0.1606 
SCH 0.1728 

a 0.2369 
8 0.1373 

16 0.2360 
6 0.1628 
5 0,1169 

15 0,20B4 
12 0.1737 
1B 0.2109 
10 0.lB89 
17 0.21611 
14 0.1460 

1 0.1139 
13 0.1242 

:2 0.01134 
11 0.1889 

4 0.1345 
7 0.1708 
3 0.1451 
II 0.1935 

19 
6 

18 
II 
3 

15 
11 
16 
12 
17 

B 
2 
4 
1 

13 
5 

10 
7 

14 

.~ ... 
... ... , 

rIG.lOA. RWS!: AT XY CllIlClt l'OlNTS l"OR OArASI:!' 0$01 

- - - -- - - - ---- --- - - - - - - - -- -- - - - - - L ________ -""""---- __ --- - ------------- ----------_." .. ----_. 

Note: Vertioal ax1s = RMSE value; Horizontal axis = Model name 
Model names oan be Identified ~lth oolumn 1 of the Table 

TABLE 12: RMSE FOR 0502 

NAME Xy(M) RANK I(M) RANI< 
-------------------------------

ANO 0.2893 19 0.3015 19 
ElAO o . 1725 7 0.2002 10 
EElN 0,18!H 14 0.2470 17 
ELF o . 16 55 6 0.1495 5 
ELI 0.1850 13 0.1755 7 
ORA 0.11139 16 0.2138 12 
ORB 0.2055 HI 0.1 SS4 B 
aRC 0.2013 17 0.22211 16 
ORO 0.1793 10 0.2161 13 
ORE 0.1911 lS 0.3010 18 
JAC 0.1727 B 0.2107 11 
KIL 0.1449 1 0.01'179 2 
KOJ 0.1814 12 0.1676 6 
KOL 0.1652 5 0.0954 1 
MAU 0.1793 11 0.2161 14 
MOil. 0.1556 4 0.1317 4 
MOB 0.1550 3 0.1926 II 
MUR 0.1529 2 0.1308 3 
SCM 0.1731 II 0.2168 15 

-------------------------------

'!!' 

... .... 

.... 

.. " 

." 

... ... 

Note: Vertioal axis = RMSE value; Horizontal axis = Model name 
Model nBmes oan be identIfIed with column 1 of the Table 

TABLE 13: RMSE FOR 05E1 

NAME XY(M) RANK 2:(1'1) RANK 

-4No--0:1801--19--0:3466---19-- l BRO 0.1098 2 0.1286 1 
ESN 0.1573 17 0.2627 18 
ELF 0.1224 6 0.1901 8 
ELl 0.1212 4 0.1433 2 
ORA 0.1447 14 0.2137 14 
ORB 0.1481 15 0.2272 15 
ORC 0.1522 16 0.2301 16 
ORO 0.1327 10 0.lD97 11 
ORE 0.1626 19 0.2409 17 
JAC 0.1265 9 0.2063 13 
KIL 0.1044 1 0.1836 5 
KOJ 0.1360 12 0.1731 4 
KOL 0.1243 7 0.1702 3 
MAU 0.1327 11 0.lD97 12 
MOA 0.1159 3 0.1888 7 
MOB 0.1426 13 0.1928 9 
MUR 0.1217 5 0.1936 10 
SCM 0.1288 D 0.1839 6 

Note: Vert10al axis RMSE value; Horizontal axis = Model nam~ 

TABLE 14: RMSE FOR OSE2 

NAME XY(M) RANK l(M) RANK 

-ANo--0:ilas--i;--o:2iis----1--
BAD 0.1541 6 0.2191 5 
EBN 0.1870 14 0.2804 15 
ELF 0.1341 3 0.2156 4 
ELl 0.1792 12 0.2738 13 
ORA 0.1791 11 0.2468 8 
ORB 0.1844 13 0.2811 16 
aRC 0.1966 17 0.2722 12 
ORO 0.1137 9 0.2581 9 
ORE 0.2901 19 0.3692 17 
JAC 0.1951 16 0.4623 19 
KIL 0.1081 1 0.1871 1 
KOJ 0.1929 15 0.3970 18 
KOL 0.1464 5 0.2718 11 
MAU 0.1737 10 0.2581 10 
MOA 0.1268 2 0.1906 2 
1'109 0.1647 7 0.2749 14 
MUR 0.1434 4 O.U57 3 
SCM 0.1682 8 0.2334 6 

Model names can be Identified with column 1 of the Table 

Note: Vertloal axis = RMSE value; Horizontal axis = Model nam~ 
Model names oan be Identified with oolumn 1 of the Table 
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TABLE 1S: RMSE FOR DSFl 

NAME X,(MM) RANK 1. (MM) FlANK 
-------------------------------ANO 0.0490 19 0.3620 19 

8RC 0.0412 7 0.3090 9 
EBN 0.0425 11 0.3230 18 
ELF 0.0400 4 0.2900 5 
ELl 0.0429 lB 0.3120 15 
aRA 0.0412 e 0.3090 9 
aRB 0.0410 6 0.3130 16 
aRC 0,0412 9 0.3090 10 
aRO 0.0412 10 0.1090 11 
aRE 0.0394 3 0.3160 17 
JAC 0.0291 1 0.2100 2 
KIL 0.0412 11 0.3070 7 
KOJ 0.0389 2 0.2990 3 
KOL 0.0423 16 0.3040 6 
MAU 0.0412 12 0.3090 12 
MOA 0.0421 15 0.3110 14 
M09 0.0400 5 0.2890 4 
MUR 0.0412 13 0.1520 1 

-~:~--~~~~:~--:~--~~~~~~---:~-- I 

MG. '49: IUlSE AT Z CH!:CK POINTS roR IlATASl:T DSI'I 

Note: Vertioal axls = 
Mode I names oan 

RMSE value; Horizontal axis = Model name 
be IdentIfied with column 1 of the Table 

TABLE. 16: RMSE FOR DSF2 

NAME X,(MM) RANK l(MM) RANK 

-ANo--o:o52;--i;--a:i86o---i;--
BRO 0.0492 9 0.3540 9 
EBN 0.0505 11 0.3660 18 
ELF 0.0498 6 0.3300 2 
ELl 0.0509 19 0.3530 8 
ORA 0.0492 9 0.3540 10 
OR8 0.0492 10 0.3560 17 
aRC 0.0492 11 0.3540 11 
ORO 0.0492 12 0.3540 12 
ORE 0.0420 2 0.3300 3 
JAC 0.0284 1 0.2290 1 
KIL 0.0485 5 0.3490 7 
KOJ 0.0461 3 0.3310 4 
KOL 0.0478 4 0.3310 5 
MAU 0.0492 13 0.3540 13 
MOA 0.0499 16 0.3550 16 
MOB 0.0488 7 0.3320 6 
MUR 0.0492 14 0.3540 14 
SCH 0.0492 lS 0.3540 15 

-------------------------------

I"1G.I64: lUIS!: AT)(y CH!:Cl\ POINTS roll OATASf:l' PS1'2 
I'1G.H\9: lUIS!: AT Z CH!:c1( POINTS roR (lATAS:!:1 OSl'? 

~--------______ L_ ___________ ~ 

Note: Vertloal axIs = RMSE value; Horizontal axis; Model name 
Model names can be Identified with column 1 of the Table 

TABLE 11: RMSE FOR OSOl 

NAME XYCMM) RANK Z(MM) RANK 

-ANo--o:o47o--ie--o:i590---ii--
BRO 0.0403 7 0.2970 1 
E.BN 0.0412 16 0.3020 16 
ELF 0.0394 3 0.2620 3 
ELl 0.0432 17 0.2960 6 
ORA 0.0403 B 0.2970 8 
ORB 0.0401 6 0.3010 15 
aRC 0.0403 9 0.2970 t 
ORO 0.0403 10 0.2'70 10 
ORE 0.0387 2 0.3120 11 
JAC 0.0302 1 0.2120 1 
KIL 0.0403 11 0.2950 5 
KOJ 0.03ge 5 0.2600 2 
KOL 0.0492 19 0.3190 I. 
MAU 0.0403 12 0.2910 11 
MOA 0.0403 13 0.2970 12 
MOB 0.0394 4 0.2630 4 

~g: g:g:8: i: g:~:~g i: 
-------------------------------

Note: Vertioal axis = RMSE value; Horizontal axis; Model name 
Model names can be identified with oolumn 1 of the Table 

TABLE 19: RMSE FOR Dsa2 

NAME XY(MM) RANK Z(MM) RANK 
-ANO--O~0510··-17--o:ie2o---i9-- P'lG.P'A ~AT)(yDlI!CI( INTSF'ORDATAS!:TDSC2 

BRO 0.0414 6 0.3320 7 '3 
EBN 0.0483 16 0.3380 16 
ELF 0.0463 4 0.2910 4 
ELZ 0.0517 18 0.3390 11 
QRA 0.0414 7 0.3320 8 
aRB 0.0474 8 0.3340 15 
aRC 0.0474 9 0.3320 9 
ORO 0.0474 10 0.3320 10 
ORE 0.0411 2 0.2190 2 
JAC 0.0295 1 0.2070 1 
KIL 0.0474 11 0.3280 6 
KOJ 0.04$2 3 0.2900 3 
KOL 0.0545 19 0.3410 18 
MAU 0.0474 12 0.3320 11 
MOA 0.0474 13 0.3320 12 
MOB 0.0463 5 0.2920 5 
MUR 0.0474 14 0.3320 13 
SCH 0.0474 15 0.3320 14 

I"1C.179: RlISE AT Z DlEt:!< PIlWTS P'OR DATASET DSG~ 

Note: Vertloal axis = RMSE value; Horizontal axis; Model namE 
Model names oan be identified w1th oolumn 1 of the Table 
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