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This paper presents an overview of the various classes of algorithms in use for matching 
points from one digital image of a stereo pair with the corresponding points in the second image 
of the pair. These techniques primarily use area-based measures, such as correlation between 
image patches, or edge-based methods that match linear features in images, but also include 
the use of feature extractors to match single points in images, as well as global optimization 
techniques that simultaneously match all points in the two images. This paper also describes 
an automatic system developed at SRI for stereo compilation; this system uses area-based cor
relation, but applies this basic technique in a variety of novel ways to develop a disparity model 
for a given stereo image pair. The techniques used are hierarchical in nature, and incorporate 
iterative refinement, as well as a best-first strategy, in the matching process. To illustrate these 
techniques, the results of this system on the Image Matching Test A data set recently distributed 
by ISPRS's Working Group III/4 are presented. 

Introd uction 

Automatic techniques for the production of three-dimensional (3-D) data via stereo conlpila
tion are receiving increased interest for a variety of applications, including cartography [Panton, 
1978], autonomous vehicle navigation [Hannah, 1980], and industrial automation [Nishihara and 
Poggio, 1983]. The first and most difficult step in recovering 3-D information frolll a pair of 
stereo images is that of matching points from one digital image of the pair with the correspond
ing points in the second image. Many computational algorithms have been used in attempts 
to solve this problem (see [Brady, 1982] or [Barnard and Fischler, 1982] for surveys of the 
field). These techniques primarily use area-based measures, such as correlation between image 
patches, or edge-based methods that match linear features in images, but also include the use 
of feature extractors to match single points in images, as well as global optimization techniques 
that simultaneously match all points .in the two images. 

Area matching techniques are the oldest and simplest of the stereo matching algorithms. 
Each image point to be matched is in fact the center of a small window of points' in the first 
or reference image, and this window is statistically compared with similarly sized windows of 
points in the second or target image of the stereo pair. The measure of match is either a 
difference metric that is minimized, such as RMS difference, or more commonly a correlation 
measure that is maximized, such as mean- and variance-normalized cross-correlation [Hannah, 
1974]. Since comparison of a given reference window to every possible target window is com
putationally expensive, various heuristics have been developed to limit the area that lllust be 
searched. In addition to the well-known epipolar constraint, these techniques have included 
extrapolation from already computed neighboring disparities [Panton, 1978], the use of image 
hierarchies [Moravec, 1980], and successive iterations of correlation and interpolation [Quam, 
1984]. Correlation works well most of the time, but encounters difficulties when the two images 
are taken from very different viewpoints, of a scene that does not contain adequate visual tex
ture, or of a scene with many depth discontinuities. Even in these instances, and in the presence 
of image noise, correlation degrades gracefully-it usually continues to find the correct answer, 
but with reduced confidence measures. 

280 



Studies of human vision [Marr and Poggio, 1976] led to the development of edge-based meth
ods, in which linear features are first extracted from the images by an edge operator [Hueckel, 
1971; Hildreth, 1980], then matched using the epipolar constraint. Because the processing to 
extract edges throws away much of the information in the image, many heuristics have been 
developed to overcome the resulting match ambiguities. These include a priori modelling of the 
scene [Arnold, 1978], multiresolution coarse-to-fine strategies [Grimson, 1981], and longest-first 
prioritization of the order of edge matching [Baker, 1985]. Because edges are usually some
what sparse in the image, depths in areas between edges are filled in either by interpolation 
[Grimson, 1981] or by algorithms that match the image intensities between edges, via dynamic 
programming techniques [Baker and Binford, 1981; Ohta and Kanade, 1985]. Most edge match
ing algorithms rely on the relative sparsity of edges, and thus tend to be confounded by images 
with densely textured areas or moderate levels of image noise, which is precisely where area
based matching excels. For this reason, edge matching should be regarded as cOlnplimentary 
to, rather than as a competitor with, area-based matching. A simple experinlent in fusing these 
two techniques [Baker, 1985] showed vastly improved results over either technique used alone. 

Edge-based matching is probably the most-studied fonn of feature-based matching, but other 
types of features have also been used for matching. Most of these use a feature operator to select 
image points that have distinct intensity patterns (corners, centers of small circular areas, etc.), 
then match the feature vectors for these points, including not only intensities and feature shapes, 
but also such concepts as the "seldomness" of the features [Forstner, 1986]. Some algorithms 
find multiple likely matches for each point, then use a relaxation process to disambiguate the 
results [Barnard and Thompson, 1980]. An extension of feature matching is the detection and 
matching of regions within images [Price, 1984]. Feature detection, like edge detection, works 
well in clear, uncluttered images, but suffers when the images are noisy or highly textured. 

Most matching algorithms begin by matching individual points in isolation from their neigh
bors, which leads to errors that must later be detected and rectified using local consistency. A 
recent promising approach uses simple global optimization techniques that simultaneously match 
all points in the two images [Barnard, 1987]. The measure of match here is an energy function 
combining difference in pixel (picture element) intensities between the two images (image simi
larity) as well as local differences in disparity (scene continuity); the global energy is driven to 
a minumum at successive levels of the image hierarchies, to limit the search space. Results on 
aerial imagery are encouraging, although the system does not handle depth discontinuities well, 
and may be sensitive to image noise. 

In implementing our system, we chose to base it on area-based techniques, because of their 
robustness and wide range of applicability over image types. These attributes were again demon
strated by our results on ISPRS's test imagery. 

Description of SRI's Stereo System 

Over the past five years, SRI has integrated and improved existing pieces of stereo software 
into a baseline system for automated, area-based stereo compilation. The system operates in 
several passes over the data, during which it iteratively builds and refines its model of a portion 
of the 3-D world represented by a pair of images. 

The first step in our matching process is to select a set of well-scattered windows in one 
image, such that each window contains sufficient information to produce a reliable match. To 
accomplish this, a statistical operator is passed over the image; this is a product of the image 
variance and the minimum of ratios of directed differences (hence edge strength) over windows 
of the specified size [Hannah, 1980]. Local peaks in the output of this operator are recorded as 
the preferred places to attempt the matching process (Figure 1). The motivation behind this 
operator is that it penalizes windows with low information and windows whose only information 
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is contained in strongly linear edges, as both of these situations cause difficulties in obtaining 
the correct match via area-based correlation. The chosen windows are characterized by their 
center points, which are referred to as "interesting points" [Moravec, 1980]. To ensure that the 
selected windows are well-scattered in the image, the image is divided into a grid of subimages, 
and the relative ranks of the interesting points within their grid cell are recorded; this permits 
the most interesting points in each area to be matched first. 

Whether or not point (Xl, Yl) in the first image h is matched by point (X2' Y2) in the 
second image 12 is determined by computing the cross-correlation, normalized by both mean 
and variance, over windows surrounding the points [Hannah, 1974]. The Inatching point is taken 
to be the point in 12 with highest correlation, as located by one of several search algorithms. 

Our system employs several different matching algorithms. The underlying strategy is to 
begin with a few points that are most likely to be matchable (based on their "interest'; i.e. 
information content); these are matched by very global, but very conservative, search algorithms. 
Each successive algorithm operates on less promising points, but uses more information from 
matches made at previous levels to constrain the search to smaller and smaller portions of the 
epipolar line, until eventually all interesting points have been processed. All of our matching 
algorithms use image hierarchies to some extent. Pixels in each reduced image of the hierarchy 
are produced by convolving the parent image with a Gaussian, then sub-sampling [Burt, 1980]; 
images are almost always reduced in size by a factor of 2 at each step of the hierarchy (Figure 2). 

The first matching algorithm, unconstrained hierarchical matching, assumes that nothing is 
known about the relative orientations of the images, other than that they cover approximately 
the same area, at about the same scale, with no major rotation between the images. Each 
specified point (usually the most interesting point in each grid cell) is matched using an unguided 
hierarchical matching technique [Moravec, 1980]. This technique begins with a point in the 
largest image (the 240x240 left image of each of the test sets) and numerically traces that point 
back through that image's hierarchy by repeatedly halving the coordinates of the point until it 
reaches an image that is approximately the size of the correlation window. It then uses a two
dimensional spiral search, followed by a hill-climbing search for the maxill1Ull1 of the correlation 
between the image windows [Quam, 1971]. This global ll1atch is then refined back down the 
image hierarchy; that is, the disparity at each level (suitably magnified to account for relative 
image scales) is used as a starting point for a hill-clhnbing search at the next level (Figure 2). 
The correlation window size remains constant at all levels of the hierarchy, so the match is 
effectively performed first over the entire image, then over increasingly local areas of the image. 
This technique permits the use of the overall image structure to set the context for a match; the 
gradually increasing detail in the imagery is then followed down through the hierarchy to the 
final match. 

In this matching technique, as in all the others we use, matches must pass fairly strict tests in 
order to be considered correct, and only the successful matches are recorded for further use. At 
any level in the hierarchy, matches with poor correlation (compan~d either against an absolute 
threshold or with respect to an autocorrelation-based threshold [Hannah, 1974]) are discarded, 
as are matches that fall outside of the image. Each match must also be confirmed by back
matching; that is, if we have found that point (Xl, Yl) in the first image h is best matched by 
(X2' Y2) in the second image 12, we then repeat the entire matching algorithm, starting with 
(X2,Y2) in 12 and searching for the point (x~,Y~) in 11 that best matches (X2,Y2)' If (Xt,Yl) 
and (x~, Y~) differ by more than one pixel, the match is discarded as being unreliable. Figure 3 
shows the result of applying this technique to the most interesting point in each grid cell. 

We next calculate a simplistic relative camera model from the set of point pairs produced 
by unconstrained hierarchical matching. This is accomplished by searching for five angles that 
describe the relative positions and orientations of two ideal pinhole call1eras [Hannah, 1974])
the azimuth and elevation of the second camera's focal point with respect to the first camera; and 



Figure 1: Results of interest operator on Test 1 (Car I). 

Figure 2: Example of unconstrained hierarchical matching. 



the pan, tilt, and roll of the second camera's axes with respect to those of the first. The object 
of the search is to minimize the error between (X2' Y2) in 12 and the epipolar line produced when 
(Xl, yt) in It is projected into space, then into 12 through the hypothesized pinhole cameras. 
The search proceeds by a linearization of the equations and their analytic derivatives [Gennery, 
1980]. Once a solution is found, the reliability of each matched point is assessed. Points that 
appear to contribute too much error to the solution are removed from the calculation, and the 
solution is redone. This process will reach a successful conclusion if a subset of points is found 
to converge to a consistent model, or it will report failure if too many points are rejected. 

The next technique to be applied is epipolar constrained hierarchical matching. Having 
determined the camera parameters, we now know the manner in which a point in the first image 
projects to a line in the second image-the epipolar constraint. This constraint allows us to 
cut the search from two dimensions (all around the point) to one dimension (back and forth 
along the epipolar line) at each level of the hierarchy. In all other respects, epipolar constrained 
hierarchical matching proceeds very much like unconstrained hierarchical lnatching, with the 
additional match-evaluation criteria that matches must lie within a specified distance of the 
epipolar line. This technique is used on any unmatched points among the two Inost interesting 
point for each grid cell. 

Once a good basis of reliable matches has been found, these nlatches can be used as "anchor" 
points for the anchored matching technique, which again uses the grid cells in the image. A 
given point will lie in some grid cell; the closest matched points should lie in that cell or in one 
of the eight neighboring cells. Under the assumption that the world is generally continuous, a 
point would be expected to have a disparity similar to that of its neighbors. Thus, the disparity 
for a point is expected to lie in the interval of the disparities of the well-matched points in the 
current and neighboring cells. This disparity interval is used along with the epipolar constraint 
to perform a very local search for the match to a point, perhaps proceeding one or two levels 
up the image hierarchy, to provide context for the match. All matches are required to pass the 
same tests discussed for the hierarchical matching algorithms described previously, including 
the back-matching test. Figure 4 shows all of the interesting points that were matched by these 
various techniques. 

Our system also can produce matched points on a regularly spaced grid, if desired. This 
matching algorithm also uses the anchored match technique, searching along specified portions 
of the epipolar line, to calculate matches for the user-specified grid of points in the first image. 
(Figure 5). However, holes can result if a grid point does not have suitable information for 
matching, and again, only matches that pass all the tests are recorded. This highlights a 
problem with matching a grid of points-not all areas of an image have information suitable for 
matching, and forcing a match at such areas can lead to poor results, so matching on a grid 
must be used with caution. 

Results on Image Matching Test A 

To test our system, we participated in ISPRS Working Group III/4's Test A on Image Match
ing. For each of the 12 image pairs, we attempted to perform Standard Task B-determination 
of the parallaxes at selected points-which is what our system does best; for a few of the images, 
we also attempted to determine the parallaxes at a grid of points. In most cases, the images. 
were run with the standard parameters for the system, which had been tuned to process a high
quality, 1024x1024 aerial image pair. Because of incompatibilities in format, we did not use the 
camera information given with each test image pair, or any other a priori information; we used 
the raw images, without transforming to normal images, or doing any other resampling. 

For the most part, the matching proceeded routinely, using the standard procedures and 
parameters. One parameter-a threshold that indirectly controls the number of interesting 
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Figure 3: Results of unconstrained hierarchical matching. 

Figure 4: Test 1 (Car I)-Parallaxes at selected points. 

Figure 5: Test 1 (Car I)-Parallaxes at a grid of points. 
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(Figure 6). We also attempted to match a grid of points, which produced 437 matches (Figure 7). 
Again, the interesting points are fairly well scattered throughout the image, providing a good 
base of matches for further processing, although there are a few blank spots. The grid of matches 
has more holes than previous example, but is still fairly complete. All of the matches appear 
to be reasonably correct. foreground post was found to be interesting, but those matches 
were at the disparity of background, correlations. 

On Test 3 (Olympia the produced 171 interesting points, of which it matched 139 
(Figure 8). Because of the sparse information in this image, we did not attempt to produce 
matches on a grid. Our system had considerable trouble with this image pair, because of the 
general lack of information other than the ambiguities caused by the many identical buttons. 
Performing unconstrained hierarchical matching on just the single most interesting point in each 
grid cell did not produce enough lnatches to fonll a calnera l1lodel, so we started over, asking 
for the four most points per cell to be attelnpted. Of the 25 matches produced this 
way, one was clearly wrong, which caused the camera lnodel solver to be unable to converge to 
a model, and hence it was unable to edit the point out. In this instance (the only time we did 
so for any test), we removed the offending point by hand, then tried the camera model solution 
again, with good results. (If our model solver included the RANSAC technique [Fischler and 
Bolles, 1980], we believe it could have proceeded without intervention.) To be consistent with 
the unconstrained matching, the epipolar hierarchical matching was also done for any as-yet 
unmatched points amongst the four most interesting points per cell, rather than the usual two 
most interesting points. Doing an anchored match with the norma:l parameters seemed to miss 
a lot of points, so we asked for a second pass of anchored matching, using all previous matches 
as anchors, doubling the number of in each dimension, and constraining the search 
to just the highest level of image hierarchy. This produced a fairly good base of matches, 
which appear to be reasonably correct. 

On Test 4 (South America), the produced 309 interesting points, of which it matched 
169 (Figure 9). We attempted to match a grid of points, but this resulted in more "holes" 
than "grid'; so we aborted the matched points are fairly well scattered throughout 
the image. Because of the poor quality, most correlations were fairly low, which 
accounted for most of points that the said could not be matched. The better matches 
that were retained appear to mostly correct, although some of the matches appear to be off 
by a little. to the of it is difficult to assess match correctness. 

On Test 5 (Bridge), the produced 219 points, of which it matched 180 
(Figure 10). on our difficulties with Test 3, we began by trying to match the 2 most 
interesting points in each cell instead of just the most interesting point per cell, as is 
usual. That worked quite well (i.e. the system probably would have worked correctly with its 
normal settings), and the system operated routinely from there. The Inatched points are fairly 



Figure 6: Test 2 (Quarry )-Parallaxes at selected points. 

Figure 7: Test 2 (Quarry)-Parallaxes at a grid of points. 

Figure 8: Test 3 (Olympia I)-Parallaxes at selected points. 



Figure 9: Test 4 (South America)-Parallaxes at selected points. 

Figure 10: Test 5 (Bridge )-Parallaxes at selected points. 

Figure 11: Test 6 (Tree)-Parallaxes at selected points. 
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(Figure 12). The interesting points are fairly well scattered throughout the providing 
a good base of matches for further processing. Most of the matches appear to be reasonably 
correct, although there are a few questionable ones near the edges of the image. 

On Test 8 (Switzerland), the system produced 279 interesting points, of which it matched 196 
(Figure 13). The interesting points are fairly well throughout the The 
appear to be substantially correct, although they represent a mixture of tree tops and ground 
points, since our system is unable to distinguish the two. Many of the correlations 
are low, possibly because the two appear to have been recorded at significantly different 
times of day. 

On Test 9 (Car II), the system produced 271 interesting points, of which it matched 168, using 
the usual processing routine and parameters, despite wide range of disparities (Figure 14). 
The matched points are concentrated in a few clusters on high-intensity areas of the image. It 
is difficult to these images long enough check the results, but most of the matches appear 
to be approximately correct, with the possible exception of a few matches near the headlight. 

On Test 10 (Wall), the system produced 224 interesting points, of which it matched 194 
(Figure 15). The matched points are fairly well scattered throughout the image, avoiding blank 
spots and the very linear edges between faces. The matches appear to be reasonably correct, 
with a few possible problems near the edge of the image. 

On Test 11 (Olympia II), the system produced 197 interesting points (Figure 16). After the 
difficulty we had with Test 3 (Olympia I), we tried matching the 4 most interesting points in 
each cell. Of these 133 points, only 4 resulted in matches that our system thought were reliable, 
based on its local criteria, and none of these matches were actually correct. We therefore aban
doned processing on this image pair. We believe that the combination of repetitive structures, 
the rather different points of view, and the transparency of the dome caused our hierarchical 
matching techniques to fail. If we had elected to use the accompanying camera information, we 
might have been able to do some matching, although the transparency would undoubtedly have 
lead to numerous problems. 

On Test 12 (House), the system produced 119 interesting points, of which it matched 92 
(Figure 17). interesting points are poorly distributed throughout the ilnage, avoiding the 
featureless areas of the driveway, and roof, and the linear of the shadow. The 
matches appear to be reasonably correct, even in the difficult area where the back of house 
falls off to the ground. 

Summary 

In this paper, we have discussed the various classes of algorithms in use for matching points 
between the digital images of a stereo pair, including area-based measures such as correlation 



Figure 12: Test 7 (Island)-Parallaxes at selected points. 

Figure 13: Test 8 (Switzerland)-Parallaxes at selected points. 

Figure 14: Test 9 (Car H)-Parallaxes at selected points. 



Figure 15: Test 10 (Wall)-Parallaxes at selected points. 

Figure 16: Test 11 (Olympia H)-Unable to determine parallaxes. 

Figure 17: Test 12 (House)-Parallaxes at selected points. 
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between image patches, and edge-based methods that match linear features in images, as well as 
the use extractors to match points in images, and global optimization techniques 
that simultaneously all points in two We have described our automatic system 
for stereo compilation, correlation, which applies this basic technique in a 
variety of novel ways. Our techniques are hierarchical nature, and use iterative refinement, as 
well as a best-first strategy, in the matching process, as well as the constraint of backmatching 
to verify matches. Finally, we have illustrated our techniques by presenting some of our results 
on Matching Test A data set distributed by ISPRS's Working Group III/4. 

Overall, we are very pleased with the results of our on the test images. For 10 of 
the 12 we were able to handle the image without substantially altering the default 
parameters or processing sequence. Our only problems came on the images of the OIYlnpia 
dome; this is not surprising, since our algorithms were designed for use on highly textured 
natural terrain, not the bland faces of cultural objects. For the most part, our results appear to 
be reasonably correct, even in the face of large disparity ranges within small areas of the image. 
As of this writing, we have not received the results of the committee's detailed analysis, which 
should be most interesting. 
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