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ABSTRACT 

Robust estimation methods are now making in-roads into the 
adjustment of geodetic and photogrammetric data, especially 
for the simultaneous detection and elimination of blunders 
in such data. The procedure requires the use of the standard 
deviation of the residuals in order to make the resulting 
estimators scale invariant. For situations where the 
covariance matrix of the residuals cannot be computed 
economically, this paper investigates the best robust scale 
estimator that could be used to scale the residuals in a 
robustified bundle adjustment. 

1. INTRODUCTION 

Robust estimation methods have promising applications in 
the adjustment of geodetic and photogrammetric data, 
especially for the detection and elimination of blunders in 
such data. Although statisticians have been applying robust 
statistics for more than three decades now, the surveying 
community is gradually embracing the advantages of robust 
estimation methods for its data processing activities. The 
Danish Geodetic Institute is probably the first to apply 
this new concept to geodetic data (cf. Krarup et al., 1980). 
Thereafter, research efforts have been directed towards its 
application in blunder detection in indepedent model 
triangulation (Klein and Forstner, 1984), single photo 
resection (Veress and Youcai, 1987; Chong, 1987), relative 
and absolute orientation of stereo models (Kubik et al., 
1986; 1987), accuracy problems in GPS navigation data 
(Mertikas, 1987) and deformation surveys (Caspary and 
Borutta, 1987). Using the concept of Huber's distributional 
robustness (Huber, 1977), Faig and Owolabi (1988) 
demonstrated the advantages of robust estimation methods 
over data snooping technique in a simultaneous blunder 
removal and estimation process for a bundle block 
adjustment. 
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In robust regression with M-estimation methods, a 
specified objective function of the residuals is optimized, 
or equivalently a set of equations derived from the partial 
derivatives of the objective function is solved for the 
unknowns. In order to make the resulting estimators scale 
invariant, the residuals are scaled with their respective 
standard deviations. Assuming a parametric-type model, the 
standard deviations of the residuals are obtained as the 
square root of the diagonal elements of the covariance 
matrix: 
A A2 A2 -1 T 
C = rr Q = ~ (P - AN A ), where P is the weight matrix 

v 0 v 0 A2 T T 
of the observations, ~= V PV/df, N = A PA, A is the 

o 
design matrix and df is the degrees of freedom. 
Reasonable estimates of these values could be elusive if the 
data set is contaminated with outlying observations. It 
then becomes imperative to replace ~v by some appro~~imate 
values. However, various robust scale estimators are 
available for this purpose. The objective of this paper is 
to investigate the most efficient robust scaling scheme for 
a bundle block adjustment which has capability for using 
robust estimation methods in carrying out in one step, the 
simultaneous detection and elimination of blunders in the 
photogrammetric data processing for the estimation of the 
desir parameters. 

2. ROBUST ESTIMATION METHODS 

The poor performance of least squares estimators in the 
presence of outliers or of minor deviations from the 
assumptions of the error distribution, led statisticia~s to 
search for an alternative method to least squares as ertrly 
as the 1950s. The historical development of robust 
estimation methods abounds in statistical literature ( see, 

r example, Tukey, 1960; Huber, 1972). Studies were 
initially concentrated on the location case, culminating in 
the famous Princeton Robustness Study (Andrews et al., 
1972). The satisfactory result obtained for robust 
estimation of location parameters encouraged the natural 
generalization of the technique to the more complicated 
regression case and to other more structured data such as 
surveying data. 

Thus, robust estimation procedures can conceptually be 
grouped into two major parts: (i) robust estimation of 
location parameters and (ii) robust regression. The first 
part has direct applications for repeated single variable 
measurements and can readily be used at the input stage of a 
bundle adjustment software to eliminate simple blunders such 



as those due to misidentification of points. On the other 
hand, robust regression has direct application at the 
adjustment stage and is the method considered in this paper. 

Huber (1964) classifies robust estimation methods into 
three categories: (i) M-estimation methods, which are 
related to the maximum likelihood estimation method, (ii) L
estimation methods, which are linear combinations of the 
ordered statistics and (iii) R-estimation methods which are 
based on ranks or scores of the observed data. Extensive 
studies of these methods in the location problem have shown 
that the M-estimation is easier, more flexible and has 
better statistical properties than L- and R-estimation 
methods. Moreover, only the M-estimation method has a clear 
and flexible generalization to the regression case. Hence, 
it is the only method considered in this study. 

2.1 ROBUST M-ESTIMATION METHODS 

The classical least squares method mInImIzes the 
weighted sum of squares of the residuals given by: 

I\.T I\. 

p(v) = v Pv = min ( 1 ) 

where, P is the weight matrix of the observations. 
The p function in equation (1) can be made more general by 
replacing the weighted sum of squares of the residuals by a 
less rapidly increasing function (Huber, 1977). 
The objective then boils down to minimizing 

p(v /~) or equivalently solving the system of equations 
i i 

1f< v /0' ) 8
f 

: 0 , j : 1, 2, ••. , u 
i i ax. 

J 

(4) 

in which the previous objective function p(v) = vPv for 
the least squares method is a subclass. To make the estimator 
scale invariant (see Huber, 1973; Hogg, 1979), )Vis set equal 
to d in equation (4) and the expression is divided by~, the 
stan~~7d deviation of v. 
The ~ functions and their associated tuning constants 
further divide the M-estimators into subclasses. Thus, there 
are Huber's M-estimator, Hampel's M-estimator, Andrews' M
estimator, etc. Also Huber's M-estimator with a tuning 
constant equal to infinity gives the usual least squares 
estimator. A collection of presently available ~ functions 
is given in Faig and Owolabi (1988). 

Quite apart from the pos~;bility of nonlinearity of the 
functional model f, most 1V functions are available in 
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nonlinear form, requiring that the solution of equation (4) 
be iterative in nature. Of the three approaches available to 
solve equation (4) (Holland and Welsch, 1977), the 
iteratively reweighted least squares method is the most 
favoured and widely used, because of its flexibility. 
Furthermore, it only requires computing a weight function as 
a function of the scaled residuals, that is, 
w(v/~v) =~(v/~v)/(v/~v) and then using an existing weighted 
least squares algorithm. 

2.2 SCALE ESTIMATORS FOR ROBUST REGRESSION 

Scale invariant properties for robust estimation of 
location parameters have been treated in Andrews et al. 
(1972) and Hogg (1979). Their generalization to robust 
regression is considered in this paper. 

In large data sets in which we are not certain that the 
data being processed is free of blunders, robust estimation 
technique is one of the alternatives available for data 
processing. In that case, the standard deviation of the 
residuals obtained from the appropriate estimated covariance 
matrix cannot be used for scaling the residuals because it 
is influenced too much by outliers. The immediate offending 
component is the a-posteriori variance of unit weight 
computed from the residuals which are themselves prone to 
inflation from outlying data. 

Consequently, the following alternatives are suggested 
and implemented in a robustified bundle adjustment software 
(ROBUD) • 

1\ 

(1) ~ = median v = Median Absolute Residual (MAR) 
V i i 

1\ 

cr = (2) median I v - median(v ) I 
V iii 

= Median Absolute Deviation (MAD) 
1\ 

(3 ) cr = MAD / 0.6745 
v 

1\ 2 1\ 2 1\ 

(4) (f = cr Q (f = MAR , Q = Cofactor Matrix of v 
v 0 v 0 v 

1\ 2 1\ 2 1\ 

(5 ) cr = (f Q (f = MAD 
v 0 v 0 

1\ 2 1\ 2 1\ 

(6 ) (f = 0- Q cr = MAD / 0 .. 6745 
v 0 v 0 
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(7 ) 
A 2 A 2 
0- = 0- Q 

v 0 v 

3.1 EXPERIMENT 

1\ 2 
() = 

o 

T 
v Pv / df , p 

3.. CASE STUDY 

ii 
f(v ) 

i 

Data for four photographs were generated using a 
fictitious photo data software (cf. Woolnough, 1973). An 
integrated and robustified bundle adjustment software was 
developed for this research. In order to test the 
variability in performance of the different weighting 
schemes in accurately detecting outliers, three different 
control point patterns were used, namely, high density 
control (pattern H), medium density control (pattern M) and 
sparse control (pattern S). 

Andrews' sine wave robust M-estimator and Huber's M
estimator were used in the experiment. A tuning constant of 
2.0 was used for the experiment in conformity with the 
conclusion arrived at in an earlier study reported in Faig 
and Owolabi (1988). 

The study begins by runnig the program for all three 
types of control configurations, first with a 3 pm blunder 
imbedded in one coordinate of an image point and then using 
all seven weighting schemes to process the data in turn. 
Next, a 10 mm blunder was imbedded and the procedure was 
repeated allover again. The root mean square errors at 
check points for all the cases grouped according to control 
configurations are shown in Tables 1 to 6. Studies have 
shown that robust estimation methods are capable of 
reprodUCing imbedded or naturally-occuring blunders which 
are displayed in the residuals (Kubik and Merchant, 1986; 
Faig and Owolabi, 1988). Thus, the magnitude of the 
recovered blunder provided another means of evaluating the 
effectiveness of the weighting schemes in the data 
processing (see Tables 1 to 6) 
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3.2 DISCUSSION AND CONCLUSION 

Table 1 shows the root mean square values at the check 
points and the recovery of a 3pm imbedded blunder using 
control point pattern H. Clearly, all the scaling schemes 
seemed to give good recovery capability for the introduced 
blunder using both Andrews' and Huber's M-estimators. 
However, scaling schemes 3 and 7 produced the best results 
in accuracy among the methods considered. In particular, 
scaling scheme 3 has fewer iterations and consequently less 
computational time than the other methods. Scaling schemes 
4 and 5 produced the worst results among the methods 
studied. This trend remained the same when the blunder was 
increased to lOmm using the same control point pattern H 
(see Table 2). 

Tables 3 and 5, and Tables 4 and 6 have the same 
characteristics with Tables land 2 respectively, except for 
variation in control point patterns. It can be seen that 
scaling schemes 3 and 7 consistently provided the best 
results with variation in control point patterns. However, 
the blunder recovery ability of Andrews' M-estimator 
decreased with decrease in density of control points. On the 
other hand, Huber's M-estimation method did not show any 
deviations with variation in control point density. 

In conclusion therefore, only scaling schemes 3 and 7 
may be considered for photogrammetric bundle adjustment in 
the presence of outliers. Scaling scheme 7 provided better 
accuracy than scaling scheme 3 since it computes the entire 
variance-covariance matrix of the residuals. On the other 
hand, scaling scheme 3 provided less computational time and 
should be favoured for very large photogrammetric blocks 
where the computation of the covariance matrix of the 
residuals would not be economically feasible. 
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TAaLE 1 : RecOvery Of 3ul'll Imbedded 1'31 unCle r 
USing control Pattern H 

SCALING RMS XY(MM) RMS Z(MM) RECOVERED ITR TIME 
SCHEME aLUNDER(Mf"I) (SEC) 

A a Pi a A a A a A a 
----------------------------------------------------------------
1 MAR 4.1 4.1 10.0 10.0 3.2 3.0 12 III 6.4 4.111 
2 MAD 4.1 4.1 10.0 10.0 3.2 3.0 12 8 6.15 4.6 
3 MADI5 4.1 4.1 111.8 10.0 3.3 3.0 is 8 3.1 4.1 
4 Q",MAR 5.9 4.6 15.0 11.1 3.3 3.0 15 30 12.1 26.1 
5 Q",MAD 5.15 5.9 14.1 14.0 3.3 3.0 10 13 ILl 11.3 
15 Q.MAD6 4.1 4.1 10.0 10.1 3.2 3.0 e 8 7.1 7.2 
7 Q/VAR 4.1 4.1 g.g 10.2 3.0 3.0 6 8 5.3 7.0 
----------------------------------------------------------------

Note: A = Andrews' estimator; 
RMS Is In object unit 

B = Huber's estimator 
Blunder 15 In Image unlt 

TAaLE 2 : Recovery Of 10mm Imbedded alunder 
Usl ng Control Pattern H 

SCALING RMS XY(MM) RMS Z (MM) RECOVERED ITR TIME 
SCHEME aLUNDER(MM) (SEC) 

A a A a A a A a A a 
----------------------------------------------------------------
1 MAR 4.1 4.1 10.0 10.1 10.0 10.0 11 15 6.1 8.1 
2 MAD 4.1 4.1 IL9 10.1 10.0 10.0 10 15 5.7 8.1 
3 MAD6 4.1 4.1 9.8 10.0 10.0 10.0 6 14 3.15 7.5 
4 Q",MAR 15.1 4.5 17.0 11.2 10.0 10.0 13 18 6.1 10.1 
5 Q",MAD 5.5 6.0 115.1 14.5 10.0 10.0 14 18 6.3 10.3 
6 Q.MAD6 4.1 4.1 IL9 10.1 10.0 10.0 13 18 6.1 10.1 
7 Q/VAR 4.1 4.1 9.9 10.3 10.0 10.0 7 21 6.1 17.6 
----------------------------------------------------------------

TAaLE 3 : Recovery Of 3um Imbedded alunder 
Usl ng Control Pattern M 

SCALING RMS XY(MM) RMS Z(MM) RECOVERED ITR TIME 
SCHEME aLUNDER(Mf"I) (SEC) 

A a A a A e A a A a 
----------------------------------------------------------------
1 MAR 5.5 4.5 11.5 10.2 3.4 3.0 19 31 lI.4 15.2 
2 MAD 5.4 4.5 11.5 10.1 3.4 3.0 a 31 9.6 15.4 
3 MAD6 4.1 4.1 8.8 ILl 3.2 3.0 5 7 3.2 4.2 
4 Q",MAR 4.4 4.3 8.6 10.0 2.1 3.0 31 31 25.6 25.7 
5 Q",MAD 4.3 4.2 11.4 9.8 2.1 3.0 31 31 26.4 26.2 
6 Q",MAD6 4.3 4.5 a.5 10.0 3.0 3.0 31 31 26.4 26.4 
7 Q/VAR 4.2 4.1 10.0 9.2 3.0 3.0 D 9 7.8 7.9 
----------------------------------------------------------------

Note: A = Andrews' est1mator; 
RMS is In object unit 
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TABLE 4 : Recovery of 101'111'11 Imbedded Blunder 
USing Control PI~tern M 

SCALING RMS XY(MM) RMS Z(MM) RECOVERED ITR TIME 
SCHEME BLUNDER(MM) (SEC) 

A B A B A B A B A B 
i----MAR---5~2---4~5--ii~i-io~4--io~o---io~o--2;--3i--ii~;--i5-i 
2 MAD 5.2 4.6 11.1 10.3 10.0 10.0 27 31 14.4 15'1 
3 MAD6 4.1 4.1 B.B 9.1 10.0 10.0 6 15 3 9 B'2 
4 Q.MAR 4.4 4.3 10.0 10.2 7.2 10.0 31 31 25:7 25'9 
5 Q.MAD 4.4 4.6 11.1 10.0 7.2 10.0 31 31 26 0 26'1 
6 Q.MAD6 4.9 4.4 11.0 10.0 7.1 10.0 30 31 25'B 26'2 
7 Q/VAR 3.9 4.1 B.3 9.0 10.0 9.B 6 21 5:3 17:9 
----------------------------------------------------------------

Note: A = Andrews' estimator; 
RMS is 1n object unit 

B = Huber's estlmetor 
Blunder 1s in Image unit 

TABLE 5 : Recovery of Sum Imbedded Blunder 
USI ns control Pattern S 

SCALING RMS XY(MM) RMS Z(MM) RECOVERED ITR TIME 
SCHEME BLUNDER(MM) (SEC) 

A B A B A B A B A B 
----------------------------------------------------------------
1 MAR 5.4 4.9 10.6 10.1 2.1 3.0 15 31 7.6 14.9 
2 MAD 5.4 4.9 10.6 9.D 2.1 3.0 15 31 7.4 15.2 
S MAD6 5.0 4.6 10.3 Iii. S 3.0 3.0 12 31 6.6 15.2 
4 QllrMAR 5.1 4.7 10.2 9.6 2.1 3.0 31 31 26.4 25.5 
5 Q$MAD 6.5 4.5 13.1 9.4 2.1 3.0 31 31 26.4 26.4 
6 Q,.MAD6 5.4 4.5 11.7 D.4 2.1 3.0 31 31 26.2 26.5 
7 Q/VAR 4.9 4.5 10.1 9.3 3.0 3.0 13 9 11.0 7.7 
----------------------------------------------------------------

TABLE 6 : ReCOvery of 101'111'11 Imbedded Blunder 
USing Control PI~tern S 

SCALING RMS XY(MM) RMS Z(MM) RECOVERED ITR 
SCHEME BLUNDER(MM) 

A B A B A 8 A B 

TIME 
(SEC) 

A B 

i----MAR---5~1---4~;--io~8-io~o---1~;---io~o--i5--3i---1~1--i5~i 
2 MAD 5.7 4.8 10.7 ~o.o 7.2 10.0 14 31 7.0 15.2 
3 MADEl 5.0 4.6 10.3 9.4 10.0 10.0 13 31 7.1 15.2 
4 Q*MAR 5.7 4.9 10.7 10.0 7.2 10.0 15 31 7.2 15.3 
5 Q*MAD 5.2 4.6 10.4 B.4 7.1 10.0 31 31 25.B 26.1 
6 Q*MAD6 5.5 4.8 10.8 9.0 7.2 10.0 81 31 26.1 26.1 
7 Q/VAR 4.2 4.8 B.4 9.4 10.0 8.9 6 21 5.8 17.9 
----------------------------------------------------------------

Note: A = Andrews' estimator; 
RMS Is In object unit 
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