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Abstract 

The effects on small format photogrammetry of radial and decentering 
distortion, variations in focal length and film unflatness are reviewed. 
The results of recent experiments with these parameters are described. 
The experiments have concentrated on the use of small non-metric cameras 
and the results are analysed to indicate the magnitude of errors which 
can be introduced to analytical and stereoscopic photogrammetry from 
these sources. 

1. LENS DISTORTIONS: FORMULAE 

The radial distortion, or, in a lens focussed at infinity can be 
represented by a polynomial series of odd powered terms 

(1) 

where K1 , K2 , K3 are the coefficients of radial distortion and r is the 
radial distance from the principal point. 

As a lens is focussed for objects at distances less than infinity from 
the camera, the radial distortion changes in a predictable fashion 
(Magill, 1955). If the parameters of radial distortion are known for 
two camera-to-object distances, say sl and s2' then the effective radial 
distortion parameters at any other object distance s' can be calculated. 
The formulation by Brown (1972) is well known in this regard and is 
reproduced here for completeness: 
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where Kl " K2 " ... represent the coefficients of radial distortion 
for the 3bject splane Sf and the known coefficients of radial distortion 
for the distances sl and s2 are K1s1 ' K2s1 ' ... and K1s2 ' K2s2 ' 
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The principal distance in all these formulae is c and as' is given by 

s2 - s' sl - c 
as' 

s2 - sl s' - c (3) 

Radial distortion also varies for a particular focus setting within the 
"depth of field", that is, within that range of camera-to-object 
dis tances which provide an acceptably sharp focus. Suppose tha t the 
camera mentioned above is not focussed on an object at Sf, but rather on 
an object plane s. A further parameter y , must be evaluated as ss 

s - C Sf 

s' - c s (4) 

before the exact value of the radial distortion orss ' can be computed as 

orss ' = (5) 

Finally the effect on the x, y image coordinates can be expressed as 

Ox 

oy = Yor 
r ss' 

(6) 

Decentering distortion arises as a consequence of the elements in a lens 
system not being perfectly aligned. The centers of curvature of all the 
spherical surfaces may not be collinear with the optical axis. Conrady 
formulated this effect in 1919 for a system assumed to be at infinity 
focus and Brown (1966) modified it into the form well-known to 
photogtammetrists. In 1986 it was discovered (Fryer and Brown, 1986) 
that decentering distortion also varied in a predictable fashion wi th 
focussing; 

axs (1 - ~) [P1(r2 
+ 2(X-Xp)2) + 2P2(x-xp)(y-yp)] 

6y s (1 - ~) [P2(r2 
+ 2(y_yp)2) + 2Pl (x-xp)(y-yp)] (7) 

where the parameters PI and P2 are the values at infinity focus of the 
decentering distortion; ax, 6y are the components of decentering 
distortion at an image poin~ x, 1; r is the radial distance to the 
image point and c is the principal distance for a lens focussed on an 
object plane a distance s from the camera. 

Equation 7 is only rigorous for points on the plane of focus and the 
right hand side must be modified by the factor y , (equation 4) to 
calculate the decentering distortion of a point whi~R lies on an object 
plane a distance Sf from the lens. 
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It should be noted that whilst the formulae for radial distortion can 
vary very significantly wi th focussing, (and somewhat less wi thin the 
depth of field), the magnitudes of the corresponding variations one is 
likely to experience with decentering distortion are quite small, 
probably less than three micrometers. However, for a non-metric camera 
the total magni tude of the decentering distortion may well exceed 25 
micrometers at the edge of the image format and so its presence must be 
compensated for all serious work. As the distances from the camera to 
the object points will usually not be known a priori, it will be 
necessary to iterate the equations after an initial triangulation. 

The formulae for radial and decentering distortions become much simpler 
in form if, 

(i) the camera is focussed at infinity, 

(ii) one of the distances (usually s2) at which the lens is calibrated 
is infinity. 

For a more thorough treatment of the derivation of lens distortions the 
reader is referred to Fryer and Brown (1986). 

2. THE ANALYTICAL PLUMBLINE TECHNIQUE 

The analytical plumbline method (Brown, 1971) was developed as a rapid 
practical way of computing lens distortions parameters at a range of 
magnifications from approximately 5X to 20X. The principle of this 
technique lies in the fact that straight lines in object space should 
project through a perfect lens as straight line images. Any variation 
from straightness is attributed to radial or decentering distortion, and 
a least squares adjustment is performed to determine the distortion 
parameters K1, K2, K3 , P1 and P2" 

The results of such a lens calibration can be contaminated in practise 
by uncorrected systematic errors in the comparator, by unflatness of the 
photographic surface or by uncompensated deformations of film. Such 
sources of error must be adequately controlled or corrected if 
non-linearity in measured images of plumblines is to be fully attributed 
to the lens. 

It is interesting to speculate that if the film in a non-metric camera 
consistently deforms in a particular pattern that the lens calibration 
parameters will partially compensate for that film deformation. 

Plumbline calibrations performed in the late 1960s typically had one 
sigma values of about two micrometers. Time taken to gather the data on 
a precise manually operated comparator was of the order of one day and 
the technique remained unchanged until the mid-1980s when the fully 
automatic computer controlled monocomparator Autoset-1 was developed by 
Geodetic Services Inc., Florida (Fraser, 1986). Fryer (1986a) describes 
in some detail the operation of Au toset-1 wi th images of plumblines. 
Fryer and Fraser (1986) further detailed the use of the technique for 
the calibration of the lenses of underwater cameras and underwater 
camera housings. 

The extrapolation of the plumbline technique from the imaging of near 
vertical string-lines in a laboratory to the photography at infini ty 
focus of man-made straight objects such as long glass panels in 
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mul ti-storey buildings has been reported (Fryer, 1987). Coupled wi th 
this ease of obtaining photography sui ted to an infini ty focus lens 
calibration, the analytical stereoplotter MPS-2 (Elfick, 1986) has a 
plumbline calibration program which allows a user to quickly measure and 
calculate the parameters of radial and decentering distortion prior to 
observation of other photography taken with the same lens system. This 
process is not fully automatic like Autoset-1, but nevertheless the lens 
calibration procedure can be completed for small formats in under one 
hour. 

3. IMPROVING THE ACCURACY AND PRECISION OF SMALL FORMAT 
PHOTOGRAMMETRY 

3.1 Radial Distortion 

The accuracy and precision of photogrammetric networks improves with the 
inclusion of a small selection of additional parameters to the process 
of the bundle adjustment. However, Fraser (1982) indicates that whilst 
the continued inclusion of addi tional parameters may improve internal 
consistency (precision), the absolute accuracy of the computed 
coordinates may deteriorate. The selection of the most suitable 
additional parameters is therefore very important. 
The parameter K1, the first term in the radial distortion equation, has 
been shown to nave a very considerable effect in reducing the size of 
plate residuals and improving the accuracy of photogrammetric 
adjustments. Karara and Abdel-Aziz (1974) used four different 
non-metric cameras to conduct a series of experiments concerning the 
addition of extra coefficients to the Direct Linear Transformation 
method of solution. The rms values of the residual plate errors 
decreased by a factor varying from two to seven times with the addition 
of K1 to the solution. 

Similarly, Murai et al (1984) evaluated the inclusion of differing 
numbers of additional parameters to the photography taken from a range 
of small format non-metric (Olympus, Nikon and Hasselblad) and metric 
(Wild P-32) cameras. The parameters K1 and K? of radial distortion 
again caused the most improvement to the rms of toe plate residuals. In 
fact, the precision of the non-metric cameras approached that of the 
metric camera with the addition of these parameters. 

Several tests conducted by this author using space resectionl 
intersection software and bundle adjustments have confirmed these 
resul ts, wi th the fac tor of improvement usually about two or three 
times. The size of the improvement will be related to the magnitude of 
the radial lens distortion. When the second and third parameters (K 
and K~) are added to the bundle adjustments, their degree of statistica! 
signilicance is only marginal al though on occasions the K2 term is 
useful. For large format aerial cameras the K2 and K3 terms usually 
improve the results significantly. 

3.2 Decentering Distortion 

Only a slight improvement in rms preC1Slon of plate residuals was noted 
by Karara and Abdel-Aziz (1974) when the parameters P1 and P2 were added 
to their solutions. Whilst this has generally oeen tne situation 
experienced by this author, the parameters P1 and P2 can be related to a 
physical phenomenon and do have a beneficial (and statistically 
significant) effect on computed object coordinates. Murai et al (1984) 
also drew these conclusions. 
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It is interesting to recount the experiences of Fryer and Fraser (1986) 
when they calibrated some non-metric underwater cameras lenses by both 
the plumbline technique and a bundle adj us tmen t of eigh t convergen t 
camera stations. The plumbline technique did not provide a value for x 
and y , the offsets from the intersection of the fiducial axes to th~ 
princPpal point, whereas the convergent geometry of the bundle 
adjustment did provide such values. A large discrepancy (3um compared 
to 37um) was noted for the decentering distortion profiles derived from 
the two methods. The values of P1 and P2 from the plumbline method were 
then held fixed in the bundle adjustment and the resulting values for x 
and y altered by up to O.3mm. p 

p 

The important result of these calculations was that the values for the 
coordinates of the object points did not change, proving that it matters 
little how one determines P1 and P2 as long as their correlation with xp 
and yp is acknowledged. 

Another interesting series of experiments was conducted by Fryer (1986b) 
with a 35-70mm zoom lens attached to a Canon AE-1 Program 35mm camera. 
The plumbline method was used to determine the radial and decentering 
distortion characteristics of the lens for a range of focussing 
distances and at different principal distances throughout the zoom 
range. The "wobble" of the moveable inner lens of the zoom combination 
as it tracked along the optical axis was discernable from changes in the 
parameters of decentering distortion. These results showed the 
advantages to be gained by using a zoom lens could easily be negated if 
a thorough lens calibration is not made. 

In summary, it is quite valid for non-metric small format photogrammetry 
to artificially hold x and y as zero, use the convenient plumbline 
technique to determine ~he par~meters K , Pl and P2 of lens distortion 
and then use the analytical methods of space resection/intersection or a 
full bundle adjustment to calculate the coordinates of object points. 

The projective equivalents of x , y with PI' P2 and the camera station 
location can be used to advanta§e iFt analytlcal stereoplotters designed 
to operate wi th small format photography which has been taken from a 
camera without fiducial marks. Providing the corners of the photograph 
are visible, their intersection can be assumed to be the principal 
point. A plumbline calibration will provide all the parameters needed 
to overcome lens distortions. Two of the three elements of inner 
orientation can be assumed (that is, x and y ), with a value for the 
principal distance the only remaining urlknown. p 

3.3 Principal Distance and Film Unflatness 

The convention used in this discussion is that the principal distance is 
the perpendicular distance from the perspective center of the lens 
system to the image plane. Focal length is that value of the principal 
distance which corresponds with infinity focus. The constant c has been 
used in the earlier equations to describe the principal distance at any 
specific focus setting. 

The principal distance for a non-metric camera can be determined in a 
number of ways but noting the manufacturer's printed value on the front 
of the lens must be the most unreliable! Over the last few years the 
author has tested more than twenty cameras and lenses and found 

198 



discrepancies up to 1.5mm in a metric camera of stated principal 
distance 99.60mm and up to 2.5mm for lenses in non-metric cameras. 

A relatively simple method for determining the principal distance for a 
camera/lens combination is to photograph from a known location a set of 
coordinated targets in a test field. A spread of 50 or more targets 
across the image format will usually provide a good estimate of the lens 
distortions as well as the principal distance. A bundle adjustment from 
four (or so) camera stations arranged with convergent geometry around an 
array of targets will provide a similar resul t. In this case the 
coordinates of the targets need not be known so the bundle adjustment 
technique has a distinct advantage regarding long-term maintenance over 
a coordinated test field. 

The advantages of making corrections for radial distortion to image 
coordinates before using space resection/intersection techniques are 
well illustrated by the results of Webb (1987). Webb photographed coal 
stockpiles on which several surveyed control marks were visible. He 
used a space resection program to solve for the camera station locations 
(X, Y, Z), the camera's orientation and the principal distance of a 
non-metric Canon AF35M camera equipped with a nominal 38mm lens. Table 
1 shows a selection of his results. 

The derived principal distances were more consistent when the first 
parameter of radial distortion was used to correct the image 
coordinates. Notice also the reduction in the rms values of the plate 
residuals, confirming the results of the other researchers noted above 
in Section 3.1. It would seem for these tests that the amount of film 
unflatness remained constant from one exposure to the next, unlike the 
large variabili ty in the resul ts of similar tests reported by Ethrog 
(1984). 

An important practical consideration in most applications of 
photogrammetry involves the amount of control which must be provided. 
The reality of most photogrammetric operations is that little more than 
a minimum number of control points are es tablished. A consequence of 
this is that for any individual photograph, the location of the control 
points will not form an optimum configuration. If the images of these 
control points are not corrected for lens distortion then a biassed 
solution for the principal 

TABLE 1 

Principal Distances Computed With and Without a Radial Distortion 
Correction Applied to Image Coordinates 

Principal Distances Principal Distances 
With Image Corrections Without Image Corrections 

Prine Dist. Plate rms Prine Dist. Plate rms 
(mm) x y (urn) (mm) x y (urn) 

38.035 10 9 38.087 18 12 
38.039 8 6 38.102 16 9 
38.042 10 7 38.114 16 11 
38.040 10 6 38.115 15 11 
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distance may result, completely confusing the issue of the size of the 
film unflatness. 

In another attempt to analyse the shape of the unflatness of the film in 
a 35mm camera, Donnelly (1987) conducted a number of experiments. He 
added a vacuum at tachmen t to the back of a Canon AE-1 Program camera 
and, with the camera held securely, took a series of exposures of a test 
grid with glass plates and colour transparency film with and without the 
vacuum applied. 

Adopting the glass plate photography as his "standard", he measured the 
differences in position of 250 targets on the unflattened and flattened 
film exposures. The rms values of the differences were 25um and 10um 
respectively. From the distribution pattern of the differences in image 
positions on the film relative to the glass, it was possible to derive 
the shape of the film surface. A set of diagrams similar to those 
published by Fraser (1982) were prepared. 

From these and some other photogrammetric tests on targets wi th known 
coordinates, it appears that O.3mm to O.8mm is the "usual" amount of 
unflatness in 35mm films. The value calculated for the principal 
distance was consistently smaller by this amount when the vacuum was not 
applied. It is believed that the unflatness effect in 70mm cameras (for 
example, Hasselblad) is much larger as the unsupported surface area of 
the image format is about three times larger than for 35mm cameras and 
the distances between restraining rollers or edge rails are up to twice 
as large. 

3.4 Stereophotogrammetry 

The effects of film unflatness and lens distortion have been 
acknowledged for decades by mapmakers using aerial cameras (for example, 
Ekelund, 1956). A text book on photogrammetry published in 1960 
(Hallert, 1960, p.50), describes in detail how a plane surface may be 
photographed stereoscopically and "from measurements of the deformations 
of the surface, the systematic errors which caused the deformations of 
the bundle of rays can be determined numerically". 

The systematic errors referred to were radial distortion -- caused not 
only by the lens but also by the combined effects of curvature of the 
earth and the refracting of light rays through the atmosphere. It would 
seem that many users of close-range photogrammetry are unaware of the 
subtle effect which radial distortion can have on a stereoscopic pair of 
photographs. It can be shown (Fryer and Mitchell, 1987) that if radial 
distortion is not corrected for by optical/mechanical means in an 
analogue stereoplotter or by computation in an analytical one then, 
after a relative and absolute orientation has been made, the datum of 
the stereomodel will be curved, either positively or negatively 
depending on the sign of K , near the centre. All the y-parallaxes will 
have been removed but sys\ematic amounts of x-parallaxes will remain, 
causing a flat object to appear curved. 

Close-range stereophotogrammetry is often used to obtain three 
dimensional information on small objects, such as archaeological 
artifacts, by users who are unaware of the systematic effects of 
uncorrected radial distortion. At close-range, lenses in non-metric 
cameras are more likely to display large amounts of radial distortion 
than when focussed at infinity. In analogue stereoplotters it is very 
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unlikely that any distortion plates would be available for correction of 
the photographic images. Even in analytical stereoplotters, most 
"non-expert" users of photogrammetry would be unaware of a need to 
correct for the amounts of radial distortion introduced by close-range 
focussing. Once a relative orientation wi th no residual y-parallaxes 
has been obtained, most users believe the difficult part is over and 
there can be no other corrections to apply. 

The magnitude of the errors in height (depth determination) caused by 
the uncorrected radial distortions can be significantly large. As an 
example, consider a point near the centre of a stereomodel (Figure 1) 
formed from two 70mm photographs taken with a 80mm lens focussed for a 
distance of 2.0 metres (scale 1:25). 

If the base separation of the camera positions was 500mm (base to height 
ratio 1:4) and the amount of lens distortion was 40 micrometers at a 
radial distance of 10mm (for example, see the distortion graph in Fryer 
and Fraser, 1986, p. 78), then for an obj ec t on the plane of focus and 
situated between the cameras, the systematic error in height could be as 
large as 16.0mm. 

This calculation was made using the usual formula for height differences 
with x-parallax and recognlslng the effect of uncorrected radial 
distortion in the centre of a stereomodel (Fryer and Mitchell, 1987). 
This resul t represen ts an accuracy of only 1: 125. This calcula tion 
assumes there are no check height control points near the centre of the 
stereomodel. If there was a check point, the magnitude of the error 
would be spread throughout the stereomodel and probably halved, i.e. the 
apparent accuracy would be increased to 1:250. 

Random errors of pointing, etc. would be present in the height 
determina tion, so the final accuracy may be approxima tely five to ten 
times larger than anticipated. If the object being measured was not on 
the plane of focus of the camera, then an extra amount of radial 
distortion would be present and the accuracy could degrade even further. 

base 500 

BOmm lens 

object 

Figure 1 
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4. Conclusions 

The formulae for lens distortions applicable to close range 
photogrammetry have been ou tlined. The very considerable effec t tha t 
radial lens distortion can have on the restitution of single and 
stereoscopic photography has been described. Recent experiments to 
detect the magnitude of film unflatness in 35mm cameras have been 
reported. 

Concern has been expressed that there will be a trend towards more use 
being made of lenses possessing large amounts of systematic errors which 
may be present, and uncompensated, in their analytical solutions or 
stereomodels. 
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