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I. ABSTRACT

Three dimensional deformation analysis by c¢lose range
photogrammetry is usually done by applying the similarity
transformation to the definition of the common datum and by
applying the sampling theory to the detection of unstable
points.

In this paper, iterative reweighted similarity
transformation method 1is wused for a more accurate datum
definition . The Bayesian inference is used in the detection

of unstable points to get less sensitive and more realistic
results than those acguired by the sampling theory.

II. INTRODUCTION

In industrlal fleld , close range photogrammetry has been
applied to the deformation analysis of structure . The develop-
ment of on-line and real-time recording systems takes the
advantages of application to close range photogrammetry
in industry. Within the aerospace and the automobile industry
there is iIncreasing usage of photogrammetry for the periodic
inspection of tooling. Photogrammetry offers some significant
advantages over the conventional gauging techniques ( Fraser
(1986,1988), Borutta and Peipe (1986), Schewe (1987)).

Because the reliability of deformation analysis by means
of «close range photogrammetry depends on the accuracy of three
dimensional coordinates of object points, the accuracy of three
dimensional coordinates is very important.

Current authors are studying to improve accuracy of three
dimensional coordinates ( El-Hakim and Falg (1980), Fraser
(1984,1987), Forstner (1985), Julia (1986), Gruen (1985),
Veress and Huang (1987))

In the analysis of deformation, the first step 1s to
determine the common datum by the reference points between
each epochs. The second step is to 1identify the significant
deformation by statistical techniques.
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IIT. DATUM DEFINITION

A1l sets of object points are devided into sets of stable
points and wunstable points during all epochs. A coordinate
transformation 1is operated by the points assumed as stable
points to take same datum between epochs.

There exists datum defect between epochs because of
configuration defect, the possible existence of systematlc
errors or outlying observations in each epochs. Iterative
reweighted similarity transformation 1is used to define the
common datum.

X =5 % (1)
and

QR = S Q% 8" (2
with i

S§=(1-6(GWG)aW) (3)

In equation ( 3 ), W is a welight matrix, 1if all points have
same impotance in the definition of datum, then W = I.

But, the diagonal elements of the weight matrix W change
according to the each point, if the reliability of stable
points are different.

IV. UNSTABLE POINTS DETECTION

Bayesian inference method can be less sensitive and more
realistic than the sampling theory in the detection of
displaced points. This method which uses the central F -
distribution may be simply used in the detection of unstable
points.

For some time the Bayesian Iinference approach was
considered subjective because it required introduction of prior
information. In the last two decades, however, the use of vague
or noninformative priors has been shown to give results
equivalent to the sampling theory.

Riesmeier (1984) and Koch (1984) indicated that the
Bayesian inference approach was more advantageous than the
inequality in the hypothesis testing.

In the Gauss - Markof model to estimate unknown parameters,

AX =E (L), E (L) =01 (4 )
vhere, X 18 random vector, ¢® 1s random variable. 1f L vector
is given, the probability density P ( X, 0| L ) of X and ¢ Iis
found by using the Bayes theorem.

P ( X,0lL)e<P (X,06)P ( L|X,0) ( 5)

In equation ( 5 }, P ( X, 6 |L ) is a posteriori probability
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density proportional to a prlori probabllity density, P ( X, (0 )
and a posteriori probability density of the vectors of unknown
parameters has multivariate t-distribution.

X~ t(%,F(aai,n-u) ( 6 )

If X vector multiply by random matrix H , HX has also
multivariate t-distribution.

HX~ t( HX ,*H( 2 ) H", n - u ) (7))

where, det ( H (AT A 17 H') % 0.
By means of the multivariate t-distribution,( 6 )} or ( 7 )}
’ any statistical inference concerned with the unknown
parameters or linear transformations of the parameters may be
performed . If the parameter space is restricted by the

inequality constraints H X > W , the probability assoclated
with this restricted space is given by,

P( HX > WL ) = LP( X|L ) dax ’ B=4{X2:HX >W i 6 )

The changed form of the eq. ( 8 ) into the hypothesis testing
by inequality is ,

P(HX > W |L ) >1 -« ( 9
In eg. ( 7 ) , the second term of the right has central F-
distribution .  Therefore it is identical with the hypothesis
testing of the sampling theory .
P( HXeB IL ) = 1 - KX ( 10 )

where,

AT S T B Az
B={HX: (HX-HX) (H(A A) H ) (HX-HX)/(r{(*) ~ Fr,n-u;1-&}
(11 )

From eq. ( 9 ), carrying out hypothesis testing by inequality
gives ,

T -1 Al
P, (HXEA) = (1- [F(z,n-u)dF) ( [F(r,n-u)dr
T ¢
- jg(r,n-UMF) ; T < Ty
o (12 )
0 ;T > T
where, N . - fel A A
Tr = ( HX-W, ) (H(A A) H) (HX-W.)/(x(*)
Ty = ( HX-W )7 (H(A" AJ' HY' (HX-W )/ (c3*)

The region T, has to be chosen and this choice is arbitrary
value depending on the allowable displacement of the stable
points.
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V. EXPERIMENTS AND RESULTS

( 1 ) Data acqguisition
In order to examine the three dimensional movements of the
objects by photogrammetry , 12 fixed points were distributed to
the edges and 16 unstable points within the objects

Table 1 shows the simulated displacement of each unstable
points . The displacements are occurred along the x-axis
direction in Pt.1 , Pt.2 , Pt.3 , and Pt.4 , along y-axis
direction in Pt.5 , Pt.6 , Pt.7 , and Pt.8 , along =z-axis
direction in Pt.9 , Pt.10 , pt.1ll , and Pt.12 , and along the
three dimensional directions in Pt.13 , Pt.14 , Pt.15 , and
Pt.1l6

The three dimensional coordinates of these points between
epochs were computed by bundle adjustment with additional
parameters, using photo <coordinates obtained by convergent
imaging configuration at imaging distance 2.5 m from objects.

Although the biases are reduced by systematic error
correction, the wvarience of the least square estimator of
unknown parameters tend to increase. The application of least
square method should be considered carefully in applying self
calibration. Therefore, 1in this study, biased estimator by
generalized ridge estimation was applied to achieve 7.3 um
root mean square error of real position by photo scale.

( 2 ) Datum definition

P value in eq. (13) was applied to 2, 1.5, 1 as a weight
condition, when being used iterative reweighted similarity
transformation method to define common datun.

=|dI”  min. 1 <P <2 ( 13 )

Table 2, 3, 4 show the computed displacements in each point
obtained by using the welght conditions =Id/® % min., s1dar?
% min., 35ld|/= min., respectively RMSE equals to 0. 216 mm when
welght condition is EZIdkv min., 0.160 mm when 5|/dI® min., and
0.125 mm when >2ldl & min.. The accuracy of weight condition Xid|
% min. 18 Dbetter than the other cases. In the common datum
defintion, iterative rewelghted similarity transformation
appling weight condition 1dl% min. is less influenced on
systematic error or outlying observatlons than the welight
conditions ¥ldl*=> min., =ldl% min., and the accuracy of
displacement can be improved.

( 3 ) Unstable points detection using Bayesian inference

Bayesian inference which 1is not sensitive to geometric
accuracy of object points was wused in order to detect the
unstable points. The displacement computed by the welight
condition Zldl = min, was used in detecting the unstable points.
In the detection of unstable points by the Bayesian inference,
the tolerent displacements of the fixed points between epochs
vere regarded as twice the amount of position errors of
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3-D coordlnates. The 3-D coordinates posltion error, 0§ = 7.3
Mm by photo scale, was computed through the process of data
acquisition.

Table 5 shows error ellipsoid ( X = 0.05 ) of object points
and the unstable points detected by the Bayeslan inference.

Although Pt.l1 to Pt.16 had been displaced, some of these
points were detected as fixed points under the consideratlion of
the magnitude of displacement and confidence region. 1In table
5, Pt.l1 and Pt.2 are unstable points of which displacement is
0.3 mm and 0.4 mm, respectively, along the X-axis. They are
regarded as the fixed points by the Bayesian inference method
and these displacements exist within the error ellipsoid
(o = 0.05 ). Thus Pt.l1 and Pt.2 have to be considered as
fixed points.

Also, Pt.5 is regarded as fixed point although displacement
is 0.3 mm along the Y-axis. Consequently, it is possible to
detect more than 0.4 mm displacemment along X-Y plane.

Since Pt.9, Pt.10 and Pt.1l1l of which displacements are 0.3
mm, 0.4 mm, and 0.5 mm, respectively, along the Z-axis, they
were detected as fixed points. Detectable displacement along
Z-axis was larger than in X-Y planes. The detection of unstable
points by Bayesian inference has a little difficulty in
anticipating the allowable displacement at fixed points.

Since the varience of coordinates in photogrammetry can be
accurately obtained, the Bayesian inference can be applied to
the detection of wunstable points. Comparing the Bayesian
inference method and the confidence region method for unstable
point detection, it was found that Bayesian inference was less
sensitive and the more realistic in unstable point detection
when carring out deformation analysis by photogrammetry.

VI. CONCLUSIONS

Common datum definition and unstable point detection are
analyzed through the deformation analysis in the close range
photogrammetry. In using iterative reweighted similarity
transformation to define common datum, weight condition >.ld|
= min.produged better results than weight condition >lar >
min.or 3Z1dl® min.. This is because the influence of systematic
errors, outlying observations and contiguration defects is
effectively minimized wvhen weight condition is done by the
Z3dl 3 min..

In detection of unstable points by photogrammetry, Bayesian
inference can be effectively applied because its results are
more realistic and less sensitive than those obtained by the
sampling theory.

References

Borutta, H. and Peipe, J., 1986, Deformation Analysis of Three-
Dimensional photogrammetric point Fields, Int. Arch. Photo.,
Vol.26, No.5, pp. 165-174.

El-Hakim,S.F. and Faig,W., 1980, The General Bundle Adjustment
Triangulation (GEBAT) system-theory and Appllications,
14th Congress of ISPRS, pp. 296-307.

V-259



Forstner,W.,1985, The Reliablity of Block Triangulation, P.E. &
R.S., Vel.51, No.6 ,pp.1137-1149.

Fraser, C.8., 1986, Network Design Considerations for Non-
topograpic Photogrammetry, P.E. & R.S., Vol.50, No.8, pp.

1115~ 1126.

Fraser, C.S8., 1984, Microwave Antenna Measurement, P.E. &
R.5., Vol. 52, No. 10, pp. 1627-1635.

Fraser, C.S5., 1987, Limiting FError Propagation 1in Network
Design , P.E. & R.S., Vol. 53, No. 5, pp. 487-493.

Fraser, C.S., 1988, Periodic Inspection of Industrial
Tooling by Photogrammetry, P.E. & R.S., Vol. 54, No.2, pp.
211-216.

Gruen, A.W., 1985, Algorithmic Aspects in on-~line
Triangulation, P.E. & R.S., Vol. 51, No. 4, pp. 419-436.

Julia, J.E., 1986, Development with the COBLO Block
Adjustment Program, Photo. Record.,12 (68), pp. 219-226.

Koch, K.R., 1984, Statistical Tests for Detecting Crustal
Movements Using Bayesian Inference, NOAA Technical Report
NOS NGS 29.

Riesmeier, K., 1984, Test Von Ungleichungshypothesen in linearen
Modellen mit Bayes-Verfahren, Deutsche Geodatische

Kommission, C. Munchen.

Schewe, H., 1987, Automatic Photogrammetric Car-Body Measurement,
Proceeding of the 41st photogrammetric week at Stuttgart
Universlity, pp 47-55. ~ ‘

Veress, S.A. and Huang, Y., 1987, A Method for Improving the
Efficlency of the Sequential Estimation Procedure in
Photogrammetry, P.E. & R.S., Vol. 53, No.6, pp. 613-616.

Table 1 Simulated Displacement ( mm )

Pt dx dy dz ds
1 0.300 0.000 0.000 0.300
2 0.400 0.000 0.000 0.400
3 0.500 0.000 0.000 0.500
4 0.600 0.000 0.000 0.600
5 0.000 0.300 0.000 0.300
6 0.000 0.400 0.000 0.400
7 0.000 0.500 0.000 0.500
8 0.000 0.600 0.000 0.600
9 0.000 0.000 0.300 0.300
10 0.000 0.000 0.400 0.400
11 0.000 0.000 - 0.500 0.500
12 0.000 0.000 0.600 0.600
13 0.300 0.300 0.300 0.520
14 0.400 0.400 0.400 0.693
15 0.500 0.500 0.500 0.866
16 0.600 0.600 0.600 1.039
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Table 2 The displacement computed by weight condition
21 di*=2 min. mm

computed displacements

Pt. discrepancy
dx dy dz ds
1 0.093 0.009 0.008 0.094 0.206
2 0.516 0.190 0.290 0.622 0.222
3 0.634 0.123 0.296 0.710 0.210
4 0.411 0.097 0.012 0.422 0.178
5 0.120 0.010 0.252 0.279 0.021
6 0.137 0.253 0.164 0.331 0.069
7 0.166 0.322 0.127 0.384 0.11¢6
8 0.178 0.376 0.028 0.417 0.183
9 0.013 0.070 0.070 0.099 0.201
10 0.080 0.109 0.068 0.151 0.249
11 0.115 0.098 0.248 0.290 0.210
12 0.141 0.066 0.208 0.260 0.340
13 0.232 0.040 0.189 0.301 0.219
14 0.309 0.229 0.017 0.385 0.305
15 0.422 0.480 0.129 0.652 0.218
16 0.514 0.656 0.250 0.870 0.170

.216

2]
=
n
=
o

Table 3 The displgcement computed by weight condition
= 1d 1= min, mm

computed displacements

Pt : discrepancy
dx dy dz ds
1 0.165 0.261 0.023 0.310 0.010
2 0.2594 0.012 0.092 0.308 0.092
3 0.375 0.031 0.194 0.423 0.077
4 0.421 0.123 0.186 0.476 0.124
5 0.121 0.016 0.233 0.263 0.037
6 0.121 0.245 0.073 0.283 0.117
7 0.167 0.285 0.010 0.331 0.169
8 0.157 0.567 0.175 0.614 0.014
9 0.033 0.115 0.103 0.158 0.142
10 0.053 0.091 0.077 0.131 0.269
11 0.097 0.100 0.322 0.351 0.149
12 0.128 0.080 0.441 0.466 0.134
13 0.225 0.014 0.234 0.325 0.195
14 0.314 0.213 0.035 0.381 0.309
15 0.449 0.496 0.172 0.691 0.179
16 0.545 0.676 0.334 0.930 0.110

b=y
=
W
e}
o

160
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Table 4 The displacement computed by welght condition

ssldl = min. mm
computed dlsplacements
Pt. discrepancy
dx dy dz ds

1 0.217 0.263 0.021 0.341 0.041

2 0.348 0.011 0.149 0.378 0.022

3 0.449 0.031 0.289 0.535 0.035

4 0.470 0.128 0.302 0.573 0.027

5 0.079 0.019 0.238 0.252 0.048

6 0.167 0.304 0.025 0.348 0.052

7 0.126 0.359 0.094 0.391 0.109

8 0.098 0.563 0.301 0.646 0.046

9 0.036 0.112 0.124 0.171 0.129

10 0.013 0.090 0.090 0.128 0.272

11 0.038 0.102 0.379 0.394 0.116

12 0.074 0.084 0.641 0.651 0.051

13 0.286 0.011 0.237 0.372 0.148

14 0.362 0.210 0.069 0.424 0.266

15 0.518 0.497 0.230 0.754 0.116

16 0.617 0.677 0.431 1.012 0.028

RMSE 0.125

Table 5. Unstable Points Detection
Object error ellipsoid ( X = 0.05 ) Bayesian inference
Pt.No. : Significant Deformation

Ox (mm) G (mm) (3 (mm) at o« =0.05
1 0.367 0.283 0.509 No
2 0.360 0.378 0.510 No
3 0.342 0,303 0,512 Yes
4 0.369 0.269 0.500 Yes
5 0.349 0.29%0 0.498 No
6 0.336 0.270 0.481 Yes
7 0.358 0.291 0.516 Yes
8 0.353 0.293 0.509 Yes
9 0.347 0.284 0.511 No
10 0.345 0.288 0.522 No
11 0.338 0.282 0.484 No
12 0.352 0.291 0.509 Yes
13 0.337 0.288 0.502 Yes
14 0.342 0.284 0.505 Yes
15 0.351 0.288 0.504 Yes
16 0.336 0.287 0.515 Yes

V-262



