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I. ABSTRACT 

Three dimensional deformation analysis by close range 
photogrammetry is usually done by applying the similari 
transformation to the definition of the common datum and by 
applying the sampling theory to the detection of unstable 
points. 
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II. INTRODUCTION 

In industrial field, close range photogrammetry has been 
applied to the deformation analysis of structure . The develop­
ment of on-line and real-time recording systems takes the 
advantages of application to close range photogrammetry 
in industry_ Within the aerospace and the automobile industry 
there is increasing usage of photogrammetry for the periodic 
inspection of tooling. Photogrammetry offers some significant 
advantages over the conventional gauging techniques ( Fraser 
(1986,1988), Borutta and Peipe (1986), Schewe (1987». 

Because the reliabili of deformation analysis means 
of close range photogrammetry depends on the accuracy of three 
dimensional coordinates of object points, the accuracy of three 
dimensional coordinates is very important. 

Current authors are studying to improve accuracy of three 
dimensional coordinates (El-Hakim and Faig (1980), Fraser 
(1984,1987), Forstner (1985), Julia (1986), Gruen (1985), 
Veress and Huang (1987») . 

In the analysis of deformation, the first step is to 
determine the common datum by the reference points be n 
each epochs. The second step is to identify significant 
deformation by statistical techniques. 
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But, the diagonal elements of the weight matrix W change 
accordi to the each point, if the reliability of stable 
points are different. 

IV. UNSTABLE POINTS DETECTION 
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For some time Bayesian in ence appr 
considered subjective because it required introduction 
information. In the last two decades, however, the use 
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Riesmeier (1984) a Koch (1984) indicated that the 
Bayesian inference approach was more advantageous than the 
inequality in the hypothesis testing. 

In Gauss - Markof model to estimate unknown parameters, 

AX = E ( L ), 
2 

E ( L ) = 0- I 

where, X is random vector, ~ is random variable. 
is given, the pr ility densi P ( X, (J- I L ) of X 
found by using the Bayes theorem. 

P ( X,O'IL) oc P X, (j' ) P ( L I X, cr ) 
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If L vector 
and (t- is 
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In equation ( 5 ), P ( X, (t-l L ) is a posteriori probability 



oportional to a iori i P (X,(j'-) 
obabili 
ivariate 

vectors of unknown 
ion. 

t( '" ~2 ( 
-t 

) ( 6 ) X I"V X A ) , n - 11 , 

If X vector multiply by random matrix H I HX has also 
mUltivariate t istribution. 

A , t2. H ( 
-l 

7 HX rv t( HX A ) I n - u ) 

-I 
rei det ( H ( A) * O. 

By means of the multivariate t-distribution,( 6 ) or ( 7 
I any statistical in rence concerned with the unknown 
parameters or linear transformations of the parame may be 

formed If the parameter space is restricted 
inequality constraints H X > W I the probabili associ 
with this restricted space is given by, 

P ( HX > W I L ) == fsp ( X I L ax B == { X : HX > W } 
( 8 ) 

The changed form of the eg. 
by inequality is , 

8 ) into the hypothesis testing 
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In eg. 7 ) I second term of ri 
distribution. Therefore it is identical wi 
testi of ling theory . 
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From eg. (9), carr ng out hypothesis testing by inequality 
gives , 
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The region Tr has to be chosen and this choice is arbitrary 
value depending on the allowable displacement of the stable 
points. 



v. EXPERIMENTS AND RESULTS 

( 1 ) acquisition 
order to examine three dimensional movements of the 

by phot , 12 fixed points were distributed to 
and 16 unstable points within the objects . 

Table 1 shows the simu ted displacement of each unstable 
points The displacements are occurred along the x-axis 
direction in Pt.1 I Pt.2 I Pt.3, and Pt.4, along y-axis 
dire ion in Pt 5 I .6 I .7 I and .8, along z-axis 
dire ion in .9, .10 f pt.11 I and Pt.12 f and along the 

ee dimensional directions in .13, Pt.14 I Pt.15 , and 
Pt.16 . 

The three dimensional coordinates of these points between 
epochs were computed by bundle adjustment with additional 
parame s, using photo coordinates obtained by convergent 
imaging configuration at imaging distance 2.5 m from objects. 

Although the biases are reduced by systematic error 
correction, varience of the least square estimator of 
unknown parameters tend to increase. The application of least 

method should be considered carefully in applying self 
calibration. Therefore, in this study, biased estimator by 

nerali ri estimation was applied to ieve 7.3 pm 
root mean square error of real position by photo scale. 
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being used iterative reweighted similarity 

to define common datum. 
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Table 2, 3, 4 show the computed displacements in each point 
obtained by using the weight conditions Eld 12 :} min., ~Id('~ 
~ min., Lldl~ min., resQectively. RMSE equals to 0.216 mm when 
weight condition is Idl:l9 min., 0.160 mm when~ld(~ min., and 
0.125 mm when ~Idl =9 min .. The accuracy of weight condition Eldl 
~ min. is better than the other cases. In the common datum 

fintion, i ive reweighted similarity transformation 
ling weight condition ~d19 min. is less influenced on 
tematic error or outlying observations than the weight 
itions I d 12 =9- min., LI dl"b min., the accuracy of 

dis can be improved. 

( 3 ) Unstable points detection using Bayesian inference 

Bayesian inference which is not sensitive to geometric 
accuracy of object points was used in order to detect the 
unstable points. The displacement computed by the weight 
condition Lldl ~min~ was used in detecting the unstable points. 
In the detection of unstable points by the Bayesian inference, 
the tolerent displacements of the fixed points between epochs 
were regarded as twice the amount of position errors of 
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Table 5 Bhows error ell! ~ = 0.05 ) of obj poi 
the uns Ie points sian inference. 
Although Pt.1 to Pt.16 , some of these 

points were detected as fixed points under the cons ration of 
the magnitude of displacement and confidence region. In table 
5, Pt.1 and Pt.2 are unstable points of which displacement is 
0.3 mm and 0.4 mm, respective along the X-axis. are 

as t fixed points the ian inference met 
e d! exist wi error ellipsoid 

= 0.05). Thus Pt.1 .3nd.2 t<) })e consi as 
fixed points .. 

A 0, Pt.5 is r as fi di lacement 
is 0.3 mm along Y-axis. it is possible to 
detect more than 0.4 mm di nt al X-Y plane. 

Since Pt.9, Pt.10 Pt.11 of which displacements are 0.3 
mm, 0.4 mm, 0.5 mm, res al Z-axis, 
were as fixed points. De splacement along 
Z-axis was larger than in X-Y planes. ion of unstable 
points Bayesian in rence has a little difficulty in 
antici ng the allowable displacement at fixed poi 

Since the varience of coordinates in photogrammetry can be 
accurate obtained, ian i ence can be applied to 
the detection of unstab poin Comparing the Bayesian 
inference method and the c idence region method for unstable 
point tection, it was found that ian inference was less 
sensitive and t more realistic in uns e poi dete ion 
when carri out for ion ana is t 

VI. CONCLUSIONS 

Common datum definition and uns Ie point de ion are 
ana deformation analysis in the close range 
photogrammetry. In using iterative reweighted simi ity 

formation to define common datum, condition 2:ldl 
~ min.produced be r results than wei ition EldF ~ 
min.or Id(~ min .. This is e the i of systematic 
errors, outlying rvations and confi tlon defects is 
eff ive minimized when wei condition is done 
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Table 1 Simulated Displacement ( mm ) 

Pt dx dy dz ds 

1 0.300 0.000 0.000 0.300 
2 0.400 0.000 0.000 0.400 
3 0.500 0.000 0.000 0.500 
4 0.600 0.000 0.000 0.600 
5 0.000 0.300 0.000 0.300 
6 0.000 0.400 0.000 0.400 
7 0.000 0.500 0.000 0.500 
8 0.000 0.600 0.000 0.600 
9 0.000 0.000 0.300 0.300 

10 0.000 0.000 0.400 0 .. 400 
11 0.000 0.000 0.500 0.500 
12 0.000 0.000 0.600 0.600 
13 0.300 0.300 0.300 0.520 
14 0 .. 400 0.400 0.400 0 .. 693 
15 0.500 0.500 0.500 0.866 
16 0 .. 600 0.600 0.600 1.039 



Table 2 The displacement computed by weight condition 
I dl2,~ min. mm 

computed displacements 
Pt. discrepancy 

dx dz ds 

1 0.093 0.009 0.008 0.094 0.206 
2 0.516 0.190 0.290 0.622 0.222 
3 0.634 0.123 0.296 0.710 0.210 
4 0.411 0.097 0.012 0.422 0.178 
5 0.120 0.010 0.252 0.279 0.021 
6 0.137 0.253 0.164 0.331 0.069 
7 0.166 0.322 0.127 0.384 0.116 
8 0.178 0.376 0 .. 028 0.417 0 .. 183 
9 0.013 0.070 0.070 0.099 0.201 

10 0.080 0.109 0.068 0.151 0.249 
11 0.115 0.098 0.248 0.290 0.210 
12 0.141 0.066 0.208 0.260 0.340 
13 0.232 0.040 0.189 0.301 0.219 
14 0.309 0.229 0.017 0.385 0.305 
15 0.422 0.480 0.129 0.652 0.218 
16 0.514 0.656 0.250 0.870 0 .. 170 

RMSE 

Table 3 The displacement computed by weight condition 
I d ".5 > . :: mln. mm 

computed displacements 
Pt. discrepancy 

dx dy dz ds 

1 0.165 0.261 0.023 0.310 0.010 
2 0 .. 294 0.012 0.092 0.308 0 .. 092 
3 0.375 0.031 0.194 0.423 0.077 
4 0.421 0.123 0.186 0.476 0.124 
5 0.121 0.016 0.233 0.263 0.037 
6 0 .. 121 0.245 0.073 0 .. 283 0.117 
7 0.167 0.285 0.010 0.331 0.169 
8 0.157 0.567 0.175 0.614 0.014 
9 0.033 0.115 0.103 0.158 0.142 

10 0.053 0.091 0.077 0.131 0.269 
11 0.097 0.100 0.322 0.351 0.149 
12 0.128 0.080 0.441 0.466 0.134 
13 0.225 0.014 0.234 0.325 0.195 
14 0.314 0.213 0.035 0.381 0.309 
15 0.449 0.496 0.172 0.691 0.179 
16 0.545 0.676 0.334 0.930 0.110 

RMSE 0.160 

1 



Table 4 The displacement computed by weight condition 
2:1 d I =9 min. mm 

computed displacements 
Pt. discrepancy 

dx dy dz ds 

1 0.217 0.263 0.021 0.341 0.041 
2 0.348 0.011 0.149 0.378 0.022 
3 0.449 0.031 0.289 0.535 0.035 
4 0.470 0.128 0.302 0.573 0.027 
5 0.079 0.019 0.238 0.252 0.048 
6 0.167 0.304 0.025 0.348 0.052 
7 0.126 0.359 0.094 0.391 0 .. 109 
8 0.098 0.563 0.301 0.646 0.046 
9 0.036 0.112 0.124 0 .. 171 0 .. 129 

10 0.013 0.090 0.090 0.128 0.272 
11 0.038 0.102 0.379 0.394 0.116 
12 0.074 0.084 0.641 0.651 0.051 
13 0.286 0.011 0.237 0.372 0.148 
14 0.362 0.210 0.069 0.424 0.266 
15 0 .. 518 0.497 0.230 0.754 0.116 
16 0.617 0.677 0.431 1.012 0.028 

RMSE 0.125 

Table 5. Unstable Points Detection 

Object error ellipsoid (D( = 0.05 Bayesian inference . 
Pt.No. Significant Deformation 

6''IPDJ( ( m m ) D:;in (mm) 0;. (mm) at 0( =0.05 

1 0.367 0.283 0.509 No 
2 0.360 0.378 0.510 No 
3 0.:342 0" :303 0,,512 YeB 
4 0.369 0.269 0 .. 500 Yes 
5 0.349 0.290 0.498 No 
6 0.336 0.270 0.481 Yes 
7 0.358 0.291 0.516 Yes 
8 0.353 0 .. 293 0 .. 509 Yes 
9 0.347 0.284 0.511 No 

10 0.345 0.288 0.522 No 
11 0.338 0.282 0.484 No 
12 0.352 0.291 0.509 Yes 
13 0.337 0.288 0.502 Yes 
14 0.342 0.284 0 .. 505 Yes 
15 0.351 0.288 0.504 Yes 
16 0.336 0 .. 287 0.515 Yes 
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