Development of a simple CT scanner for a cultural property
Prof. Mitsuyoshi Kureya
Gunma College of Technology
580 Toriba-Machi, Maebashi, Gunma 371
Japan
V.

1. Introduction

So far, the internal structure of wooden statue has been investigated by Analytical X-ray Photogrametry. But the tomography of the internal structures of wooden statues, especially the apparatus fore this purpose, is an untoched field (Refer to Fig.1)
Sometims medical CT scanners are used for the study of cultural property. But the above procedure has some difficulties, since the transpotation of an old wooden statue and setting of the statue on to $C T$ scanner is rather difficult.
Since it is difficult to move CT scanners from hospitals and they are expensive, a simple low-cost and portable CT scanner must be developed.

Fig.1-1 is the object : Wooden statue "JUNI-SHINZ0"
Fig.1-2 is the object with control points.
Fig.1-3 is an X-ray photograph.
Fig.1-4 is the measured result.

Fig.1-1.
Object. JUNI SHINZO

Fig.1-2.
Object with control-point.

Fig.1-3.
Object-photograph X-ray.

Fig.1-4. Result.

2. Basic theory of Tomogram

Although the basic theory of tomogram is well known, the outline of it and some important points shall be described as follows.

2-1. Absorption coefficient

Fig. 2-1

Fig. 2-2

Fig. 2-3
Fig.2-1, 2-2, 2-3.

X-ray which the intensity Io was radiated on the material which had the thickness of Δx and the absorption coefficient μ as shown in Fig.2-1.

$$
\begin{equation*}
I=I_{0} \mathrm{e}^{-\mu \Delta x} \tag{2-1}
\end{equation*}
$$

the equation $(2-1)$ is also written as

$$
\begin{equation*}
\mu \Delta x=\ln \frac{I_{0}}{I} \cdots \tag{2-2}
\end{equation*}
$$

Now the μ and Δx are described in the one dimensional discrete model as in Fig.2-2.

$$
\begin{equation*}
\ln \frac{I_{0}}{I}=\sum_{i=1}^{n} \mu_{i} \cdot \Delta x \tag{2-3}
\end{equation*}
$$

in the one dimensinal continuous model as in Fig. $2-3$, the equation is

$$
\begin{equation*}
\ln \frac{I_{0}}{I}=\int_{0}^{\ell} \mu(x) d x \tag{2-4}
\end{equation*}
$$

2-2. Projected data

As shown in Fig. 2-4, the object has the absorption coefficient of X-ray with the distribution described by $f(x, y)$ in the $X-Y$ coordinates. The $X-Y$ coordinates is inclined by the angle of θ.

Now the X-ray with the intensity of $I 0$ is radiated from the X ray tube paralell to Y-axis. the X-ray passes through the object $f(x, y)$ as it is decreased and its intensity is measured by the detector. If the intensity is I, the equation from the one dimensional continuous model is described as

$$
\begin{equation*}
\ln -\frac{I_{\theta}}{I}=\int_{-\infty}^{\infty} f(x, y) d Y \tag{2-5}
\end{equation*}
$$

Now the X-ray tube and the detector is moved in the direction of X-coordinate and the intensity of X-ray is measured by the detector. The rate of decrease $\ln \left(I_{0} / 1\right)$ is shown in Fig.2-4 (b) and is called projected data. The projected data is the function of X, the parallele-moved distance of X-Rray tube, and the angle θ, Thus, the projected data is described by $g(X, \theta)$. From the transformation of the $X-Y$ coordinates and x, y,

$$
\begin{align*}
& x=X \cos \theta-Y \sin \theta \\
& y=x \sin \theta+Y \cos \theta \tag{2-6}
\end{align*}
$$

the projected data $g(X, \theta)$ is described by the equation (2-5) as

$$
\begin{equation*}
g(X, \theta)=\int_{-\infty}^{\infty} f(X \cos \theta-Y \sin \theta, X \sin \theta+Y \cos \theta) d Y \tag{2-7}
\end{equation*}
$$

Fig. 2-4

Fig. 2-5
Fig.2-5.

Fig. 2-6

Fig.2-6.

2-3. Reconstraction method
The filtered back projection $F B P$ is used as reconstracion method. To have some understanding, the back projection method is described in $2-3-1$ and Fourier transformation is described for
the theoretical ground. In 2-3-3, the filtered back projection method is explained.

2-3-1. Back projection

The back projection described here is the simplest reconstruction method to gain the distribution of the absorption coefficient from the projected data. The projected data g_{1}, g_{2}, g_{3} obtained as in Fig. 2-5 are simply projected back together to conceive a reconstructed image . Although the basic theory of the method is intuitively cleare, it is also speculated that the image is blurred. Thus, the back projection method is not used in CT.
The image $b(x, y)$ obtained by back projection is;

$$
\begin{equation*}
b(x, y)=\int_{0}^{\pi} g(x, \theta) d \theta \tag{2-8}
\end{equation*}
$$

2-3-2. Fourier transformtation

The distribution of the absorption coefficient can be obtained from the projected data by this Fourier transformation. The tow dimensional Fourier transformation $F(\geqslant)$) of the distribution of the absorption coefficient is
$F(\xi, \eta)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \exp \quad\{-j 2 \pi(\eta x+\eta y)\} d x d y-$
If $F(\xi, \eta)^{-\infty}$ is obtained by some way from the projected data, the required distribution $f(x, y)$ of the absorption coefficient is as follows.
$F(\xi, \eta)$ expressed by orthogonal coordinates is transformed into polar coordinates as in Fig.2-7.

Fig. 2-7

Fig.2-7.
Fig.2-8.
The transformation equation is;

$$
\begin{align*}
& =\mathrm{f} \cos \theta \tag{2-10}\\
& \eta=\mathrm{f} \sin \theta
\end{align*}
$$

Therefore, $F(\xi, \eta)$ is;

$$
F(f \cdot \cos \theta, f \cdot \sin \theta)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \exp \{-J 2 \pi f(x \cdot \cos
$$

$$
\begin{equation*}
-y \cdot \sin \theta)\} \quad d x d y \tag{2-11}
\end{equation*}
$$

From the equation (2-6),

$$
\begin{aligned}
& F(\mathrm{f} \cdot \cos \theta, \mathrm{f} \cdot \sin \theta)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathrm{f}(X \cdot \cos \theta-Y \cdot \sin \theta, X \cdot \sin \theta \\
& \quad+Y \cdot \cos \theta) \cdot \exp (-\mathrm{j} 2 \pi \mathrm{fX}) \mathrm{dXdY}=\int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} \mathrm{f}(X \cdot \cos \theta-\right.
\end{aligned}
$$

Y.sin $\theta, X \cdot \sin \theta+Y \cdot \cos \theta) d Y \quad J \exp (-j 2 \pi f \cdot X) d X$

The integral in the brackets is noticed to be the same as the definition of the projected data (2-7).
Thus,

$$
\begin{equation*}
F(f \cdot \cos \theta, f \cdot \sin \theta)=\int_{-\infty}^{\infty} g(X, \theta) \exp (-j 2 \pi f x) d X \tag{2-12}
\end{equation*}
$$

Therrfore, $F(f \cdot \cos \theta, f \cdot \sin \theta)$ which is the two dimensional Fourier transformation of the distribution of the absorption coefficient, $f(x, y)$, can be obtained by the Fourier transforma tion of the projected data $g(X, \theta)$.

The distribution of the absorption coefficient $f(x, y)$ is as follows.

$$
\mathrm{f}(\mathrm{x}, \mathrm{y})=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathrm{F}(\xi, \eta) \exp (\mathrm{j} 2 \pi(\xi \mathrm{x}+\eta \mathrm{y})) \mathrm{d} \xi \mathrm{~d} \eta
$$

The above methode is summarized in Fig. 2-8. Suppose Fig.2-8 (a) is the distribution of the absorption coefficient $f(x, y)$. Fig.2-8 (c) is $f(x, y)$ after the two dimensional Fourier transformation. In Fig. 2-8 (a), the tow $x-y$ coordinate systems

Filter function

Corrected
projection data $q(X, \theta)$

F78.2-9
Fig.2-9.

Fig. 2-10
Fig.2-10.
with one of them angled at θ against the other is thought and X-ray is radiated parallel to the Y-coordinate. The projected data obtained thus is $g(X, \theta)$ in Fig.2-8(b). $g(X, \theta)$ after Fourier transformation is the cross section of $F(\xi, \eta)$ at the angle θ in Fig. 2-8(c). Since the angle θ varies from 0 to $\pi, F(\xi, \eta)$ is obtained completely from the projected data $g(X, \theta)$ and by the two dimensional Fourier inverse transformation, the distribution of the absorption coefficient $f(x, y$) is obtained.

2-3-3. Filtered back projection: FBP

The solution gained by the filtered back projection method is mathematically equivalent to that obtained by the above mentioned Fourier transformation. The distribution of the absorption coefficient $f(x, y)$ obtained by the Fourier transformation is following as mentioned before.

$$
f(x, y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(\xi, \eta) \exp \quad\{j 2 \pi(\xi x+\eta y)\} d \xi d \eta
$$

The above is expressed in the polar coordinates instead of the orthogonal coordinates.

$$
\begin{align*}
& f(x, y)=\int_{0}^{2 \pi} \int_{0}^{\infty} F(f \cdot \cos \theta, f \cdot \sin \theta) \exp \{j 2 \pi f(x \cdot \cos \theta \\
& \quad+y \cdot \sin \theta) f \cdot d f \cdot d \theta \\
& \quad=\int_{0}^{x}\left(\int_{-\infty}^{\infty} F(f \cdot \cos \theta \cdot f \cdot \sin \theta) \exp (j 2 \pi f x)|f| \cdot d f\right\} d \theta \tag{2-14}
\end{align*}
$$

Here, the integral in the brackets is the Furier invrersetransformation of the projected data in θ direction $g(X, \theta)$ after $g(X, \theta)$ is transformed by Fourier transformation $F(f \cos \theta, f \sin \theta)$ and the filter function $\| f \mid$ where f is the frequency is taken into consideration
The integral in the brackets is expressed by $q(X, \theta)$;

$$
\begin{equation*}
q(x, \theta)=\int_{-\infty}^{\infty} F(f \cos \theta, f \sin \theta)|f| \exp (J 2 \pi f x) d f \tag{2-15}
\end{equation*}
$$

$q(X, \theta)$ is called the corrected projection's data here.
Thus, the equation (2-14) is written as;

$$
\begin{equation*}
f(x, y)=\int_{0}^{\pi} q(x, \theta) d \theta \tag{2-16}
\end{equation*}
$$

The equation (2-16) is nothing but the back projection of the corrected projection's data $q(X, \theta)$.
The corrected projection's data is obtained by using the filter function $|f|$ on the projected data $g(X, \theta)$ in a certain frequency domain. And by back projection of the corrected projection's data $q(X, \theta)$, the distribution of the absorption coefficient $f(x, y)$ can be obtained. The process above is summarized in Fig. 2-9.
The corrected projection's data obtained by the process is back projected as in Fig. 2-10 to have the complete distribution of the absorption coefficient $f(x, y)$. The bluriwentioned in section 2-3-1 is corrected by the negative part of the cor-
rected projection's data to produce a perfect reconstructed image.

2-4. Fan beam and Prallel beam

The projedted data $g(X, \theta)$ explained in section $2-2$ is on the premise that it is obtained by parallel beam. However, fan beam as in Fig.2-12 is generally used in CT because the exposure time is short and the movable part is small in fan beam. Therefore, the projected data obtained by fan beaw wist be transformed into the projected data obtained by parallel beam.
When a certaine fan beam is transformed into a parallel beam, the resultant parallel beam must have the inclination

Ping. $2 \cdot 13$
Fig. 2-11, 2-12, 2-13.
certain detector. and the distance from the rotational center equal to those of the fan bean. The angle and the distance X from the rotational center required for the transformation are btained from the angle at the time of photographing and the position of the detector (Fig. 2 -12). The procedure is as follows.
D : the distance from the X -ray tube to the rotational center.

L: the distance from the X -ray tube to the detector.
x : the distance from the detector at the center to a

$$
\text { In Fig. 2-13, } \triangle A O C \text { and } \triangle A E D \text { are }
$$

$$
D: X=\sqrt{L^{2}+x^{2}}: x
$$

$$
\therefore \quad X=\frac{D \cdot x}{\sqrt{L^{2}+x^{2}}}
$$

Here, $\angle 0 A C=\theta-\beta$

$$
\sin (\theta-\beta)=\frac{x}{D}
$$

$$
\begin{equation*}
\therefore \theta=\beta+\sin ^{-1}\left(\frac{x}{D}\right) \tag{2-18}
\end{equation*}
$$

3. Outline and constitution of the system

Widely used CT scanners at present are mostly for medical pur-
poses and large in size. They are installed in hospitals and theire transportation is impossible. Furthermore, the arms and legs of a statue or the accessories of it are not removable unlike those of a man (Fig. 3-1). To economize cost, X-ray filmes are utilized in the experiment insted of the detector.
Fig. 3-2 shows that it is a three component-system.
(a) photographing.
(b) collecting data.
(c) information process.

3-1. Structure of the photographing instrument

The structure is shown in Fig.3-2 (a), and Lead (Pb) platescreen having a slit (about 1 mm in width) is shown in Fig.33. An object is placed on a turn table at the front of the Lead plate screen. The movable casette is set behind of the screen, and the casette is moved in vertical direction along the spindle as shown in Fig. 3-4. The turn table is set at the side of the Xray tube, so the object is placed between the X-ray tube and the slit (namely the X-ray film).

3-1-1. Screen and Slit
The size of X-ray screen made of Lead (Pb) is 1200×700 m.
on the screen plate, a slit (width 245 mm , gap-size of slit 1 momave mentioned) is found horizontally.
The X-ray radiated from the source penetrates the object, passes the slit to reach the X-ray film.Therefore, the X-ray absorbed by the object gives the spectrum on the film comparable to the level of absorption. When one narrow spectrum is recorded on the film, the rotation table

Fig. 3-1
Fig. 3-1
with the object rotates at the angle of 180%. n is designed to have values such as 64,128 , etc. calculated from $2^{6}=64$ or $2^{2}=128$. After the rotation, the film shifts on the screen plate 2 min to 5 min vertical direction. Here, X-ray is radiated on the object again. The series of process mentioned above is performed by remote control.

3-1-2. Data collecting system

This part is shown in Fig. 3-2 (b) and is composed of a lamp, a condenser lens, atransparent glass plate movable in X and Y directions, an iris and a photomultiplier. n numbers of the band spectrums photographed and developed previously are placed on a glass plate to transform the spectrum data into electrical signals for output. The glass plate first oves in X direction as far as the length of the spectrum, stops and goes back to the
starting point. The glass plate now moves in Y direction for the next spectrum to repeat the same process until it finishes the n th spectrum. Fig.3-5 shows the photopattern analizer and Fig.3-6 is the output from the photopattern analizer.

3-1-3. Information process

The electrical signals from the data collecting system \{refer to Fig. 3-2 (b), Fig. 3-5, Fig. 3-6 \} are amplified appropriately and sent to a computer to be stored in a floppy disk.
If the satellite computer and a main computer are on line, the calculation for the reconstruction of an image is immediately proceeded to display the image on the screen. If on line system is not established, the flopy disk with the data may be brought to the main computer for reconstruction. The algorithms of fast Fourier transform constitute the image reconstruction program \{refer to Fig.3-2 (c) \}

Fig.3-2.
3-2. Parts of the instrument
(1). X-ray source

Angle of exposure: 40°.
Rate of cooling off: more than $41 / m i n$. by water
Large focus: $1.5 \times 1.5 \mathrm{~mm}$. , 160 Kyp DC(maximum tube voltage.), $10 \mathrm{~mA}(t) \mathrm{be}$ current).
Small focus: $0.4 \times 0.4 \mathrm{~mm}$. , $4 \mathrm{~mA}(t u b e$ current).
(2). Film shifting instrument
and Turn table

The puls motor used: 2 phase, 1.8° step (refer to Fig. 3 - 3 , Fig.3-4)
(3).Film casette
FUJI EC casette $N 35.6 \times 43.2 \mathrm{~cm}$
(4). Photo-pattern analizer
OYO-DENKI KENKYUJO C0. Type : PPA-250.
(5). Computer
Main comouter : OKITAC 50 V 15.
Satellite computer : Personal computer if 800 Model 50.

Fig. 3-3.

Fig. 3-4.
4. Experimental example

4-1. Section of a piece of wood
A piece from a pine tree with the diameter of about 6 cm was placed on a turn table as an bject to collect its projected data by fan beam. Afterward, the piece was sawed and its section was photograhed. Fig.4-1 and Fig.4-2 show the reconstructed tomogram and the photograph of the sawed wood section respectively.

Fig. 3-5.
Fig. 3-6.

Fig. 4-1.

Fig.4-2.

4-2. Section of wooden SENJU KANNON (there is an iron pole inside of a wooden statue)

Fig. 4-3: 0bject (SENJU KANNON).
Fig. 4-4 : 0bject with some control points (Here , 8 control points are seen on the object).
Fig. 4-5 : X-ray photograph of the object.
Fig. 4-6 : X-ray tomogram reconstructed in this method, which is the tomogram in the case of about 30° rotated from the front of the object.
Various simulations were performed to test the program,however, they are omitted in this report to simply propose the development of a low cost and portable CT for the purpose of the inves tigation of cultural property.
5. Reference
(1) E. ORAN BRIGHAM " THE FAST FOURIER TRANSFORM"
(1974 by Prentice- Hall, Inc., Englewood Cliffs, N.J.)
(2) M.ONOE "IYO GAZO SHORI" (ASAKURA SHOTEN CO.)
(3) H.OZAKI and K.TANIGUCHI, H.OGAWA "GAZO SHORI" (KYORITSU SHUPAN Co.)

Fig. 4-3.

Fig.4-6.

