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ABSTRACT

The purpose of the system MOSES is the automatic recognition of objects in aerial images. To direct the model based
structural image analysis, one has to evaluate each state of the analysis process. One We present in this article the procedures
used in MOSES to calculate a part of these valuations, the model fidelity, which is a measure for the goodness of match
between the chosen image primitives and the specific model. Metrics defined on a parametric representation of the primitives
are used to evaluate the model fidelity. The results of the image analysis process directed by these valuations are presented.

KURZFASSUNG

Das System MOSES dient der automatischen Erkennung von Objekten in Luftbildern. Zur Steuerung der modellbasierten,
strukturellen Bildanalyse sind Bewertungen des aktuellen Analysezustandes anzugeben. In diesem Artikel werden die in MOSES
verwendete Verfahren zur Berechnung eines Teils dieser Bewertungen, der Modelltreue, vorgestellt. Die Modelltreue ist ein MaB
fir die Uberemstlmmung zwischen den gewihlten Bildprimitiven und dem spezifischen Modell. Zu ihrer Berechnung werden
Metriken auf einer parametrischen Darstellung der Primitiven verwendet. Ergebnisse des Bildanalyse unter Verwendung der
vorgestellten Modelltreue werden erl3utert.

1 INTRODUCTION

Understanding of aerial images is one of the most challeng-
ing tasks in computer vision. Due to its complexity, a model
based analysis has been found to be mandatory since sev-
eral years, see e.g. (McKeown et al., 1985), (Nicolin and
Gabler, 1987),(Matsuyama and Hwang, 1990), (Sandakly and
Giraudon, 1994), (Stilla, 1995). In our system MOSES (Map
Oriented SEmantic image underStanding) (Quint and Sties,
1995) we too perform a structural, model based analysis. We
are interested in the recognition of objects in urban environ-
ment using large scale aerial images.

[scene description H specific model J

[ generic model ]

map domain

scene domain

image domain

2 MOSES (generaﬁve model J

One of the main characteristics of the system MOSES is that Figure 1: Architecture of the system MOSES

large scale topographical maps are used to automatically re-
fine the models used for image analysis. The architecture of
our system is shown in Fig. 1. The generative model contains
domain independent, common sense knowledge the system
designer has about the environment. The generic models in
the map domain and in the image domain are specializations
of the generative model and they reflect the particularities of
the representations of our environment in the map and image
respectively. The models contain both declarative knowledge,

2.1 Map analysis

In the first phase, the generic model in the map domain is
used to analyse the map, which is available as a list of di-
gitized contours. The procedure by which map analysis is
performed is similar to the one used in the image analysis
process and will be described in a following section. The
result of the map analysis is a description of the scene, as

which describes the structure of the objects, and procedural
knowledge, which contains the methods used during the map
and image analysis process. As a repository for the models
semantic networks (Findler, 1979) are used, as implemented
by the system ERNEST (Kummert et al., 1993).

The generative model and the generic models are that part
of the system which is build by the system developer. The
models and scene descriptions described in the sequel are
automatically build in analysis processes. Analysis takes place
in three phases.

far as it can be constructed out of the map data. This scene
description is also stored in a semantic network.

The nodes of the semantic network represent objects, parts
and subparts of the scene. They are described with attributes,
which in this case mainly contain the geometric properties of
the scene objects. Links between the nodes represent rela-
tions between the corresponding objects or parts. Two typical
relations are the part-of relation, which describes the struc-
ture of the scene objects and the specialization relation, along
which properties of objects are inherited.
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Figure 2: Detail of the part-of hierarchy of the specific model

2.2 Model building

In the second phase, the scene description obtained after the
map analysis is combined with the generic model in the image
domain and the specific model in the image domain is built.
A detail of this specific model representing building 0235 and
its parts as far as they are given in the map, is shown in Fig. 2.

For each node (instance) in the scene description we create a
new node (concept) in the specific model. This new concept
is a specialization of the corresponding concept in the generic
model in the image domain and thus inherits its declarative
and procedural knowledge. The values of the attributes in
the scene description after map analysis are stored after a
transformation as restrictions for the corresponding attributes
of the newly created concepts. They serve as initial estimates
for the calculation of the attribute values out of the image
data.

The relations between the instances in the scene description
are transfered accordingly into relations between the new con-
cepts. Whilst the generic model in the image domain de-
scribes in a general form the representation of an arbitrary
scene in an aerial image, the specific model in the image do-
main describes in a detailed manner that part of the world,
which is subject to the current analysis. The grade of detail
depends of course from the contents of the map.

2.3

Prior to the model based image analysis primitives are ex-
tracted from the image data. We work with large scale color
aerial images, which after digitization have a pixel size of 30
c¢m x 30 cm on the ground. Line segments and regions serve
as primitives. The line segments are extracted with a gradi-
ent based procedure (Quint and Bihr, 1994). The regions
are gained by segmenting the aerial image using a Bayesian
homogeneity predicate (Quint and Landes, 1996).

Image primitives

The regions and the line segments are combined in an at-
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tributed undirected graph. The nodes of the graph are at-
tributed with the regions. Nodes corresponding to neigh-
bouring regions are connected with links. A link between two
nodes is attributed with the line segment(s) which compose
the border between the corresponding regions. This feature
graph is the database on which the model based image anal-
ysis operates.

2.4

In the third phase, the specific model in the image domain
is used to perform the actual image analysis. The aim of
this phase is to verify in the image the objects found after
the map analysis and to detect and describe other objects
of the scene which are not represented in the map. For the
later, the context gained through the verification of the map
objects will be helpful.

Image analysis

The strategy followed in the analysis process is a general,
problem independent strategy provided by the shell ERNEST.
The analysis starts by creating a modified concept for the goal
concept (expansion step). A modified concept is a preliminary
result and it reflects constraints for the concept that have
been determinated out of the context of the current analysis
state.

Following top-down the hierarchy in the semantic network,
stepwise the concepts on lower hierarchical levels are ex-
panded until a concept on the lowest level is reached. Since
this concept does not depend from other concepts, its corre-
spondence with a primitive in the database can be established
and its attributes can be calculated. This is called instantia-
tion.

Analysis now moves bottom-up to the concept at the next
higher hierarchical level. If instances have been found for all
parts of this concept, the concept itself can be instantiated.
Otherwise the analysis continues with the next not yet instan-
tiated concept on a lower level. After an instantiation, the
acquired knowledge is propagated bottom-up and top-down
to impose constraints and restrict the search space. Thus, in
the analysis process top-down and bottom-up processing al-
ternate. As well, expansion and instantiation alternate during
the analysis.

Generally, while performing an instantiation it is possible
to establish several correspondences between a concept and
primitives in the data base. However, only one of these cor-
respondences leads to the correct interpretation. Since it
usually is not possible to ultimately decide at the lower levels
which correspondence is correct, all possible correspondences
have to be accounted for.

Thus, the image analysis is a search process, which can be
graphically represented by a tree. Each node of the tree repre-
sents a state of the analysis process. If in a given state several
correspondences are possible, the search tree is splitted: for
each hypothesis a new node as successor of the current node
is created.

The analysis process continues with that leaf node of the
search tree which is considered to be the best according to a
problem dependent evaluation. It is know that the problem
of finding an optimal path in a search tree can be solved by
the A"-algorithm (Nilsson, 1982). lts application is possible
if one can evaluate the path from the root node to the current
node and if one can give an estimate for the valuation of the
path from the current node to the (not yet known) terminal
node containing the solution.
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Figure 3: Parameters used to describe a line segment

3 VALUATIONS

The functions which evaluate the states of the analysis are
very important since they are not only responsible for the
efficiency of the search, but they are also decisive for the
success or failure of the analysis. We relate the valuation
of the search path to the valuation of the analysis goal in
the given state of the analysis. The valuation of the goal
is calculated considering the valuations of the instances and
modified concepts already created and the estimates for the
valuations of the instances and modified concepts which will
be created in the path from the current node to the solution
node.

When an instantiation is performed, implicitly a hypothesis
of match is established between the concept under instanti-
ation and the chosen primitives from the database. Since we
can not ultimately decide at the moment the instantiation
is performed, if it is the correct one, we are working under
uncertainty and we have to quantify our uncertainty. At the
level of each concept in the semantic network we have a di-
chotomous frame of discernment with the events: the chosen
primitives

e match
e do not match

to the concept (i.e. model).

The valuations computed for the instances and modified con-
cepts in each state of the analysis are measures of our sub-
jective belief in these hypotheses. They take values between
0 and 1 and we interpret them as basic belief masses in the
framework of the Dempster-Shafer theory of evidence (Shafer,
1976). The higher a valuation is, the stronger is our subjec-
tive belief in the corresponding hypothesis. Using the meth-
ods described in (Quint, 1995), the different valuations are
combined and propagated in the hierarchy of the semantic
network to result in the valuation of the analysis goal.

We evaluate two aspects for our hypotheses of match: the
compatibility and the model fidelity. The compatibility evalu-
ates an analysis state considering the principles of perceptual
grouping. It is calculated based on geometric, topologic and
radiometric properties of the image primitives only. In this
category belong for example the goodness of fit of several
line segments extracted from the image data to form an edge
of an object, the goodness of fit of several edges to form a
polygon, the compatibility of the polarity of edges to form a
polygon etc.

The model fidelity measures the goodness of fit between the
image primitives and the specific model gained through the
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Figure 4: Neighbourhood function for the position of line
segments

analysis of the map. Portraying it in simplified terms, one
can say that the compatibility is a measure for the ability of
the chosen image primitives to form an object of the generic
model, whereas the model fidelity is a measure for the ability
to form exactly that object, which is predicted by the map.
We present in this article measures used for the evaluation of
the mode! fidelity.

4 MODEL FIDELITY

4.1 Model fidelity for line segments

At the level of line segments we define the model fidelity
with help of a distance function between the image primitives
and the contours stored in the specific model. The distance
function is part of a metric defined with help of a set of square
integrable functions on a parametric space for line segments.

We describe a line segment with help of the coordinates of
its starting point, its length and the angle between the line
and the positive z—axis (see Fig. 3). Thus, a line segment
s; is represented in the space S = (z,y,l,0) by the point
s = (xi,yi, i, 6:). The coordinates of a line segment are in
the domain (z,y) € R?, the length of a line is in I € Ry
and its angle is in § € (—%, Z]. The space (z,y,1,0) is the
Cartesian product of the enumerated domains and is different
from R™. For this reason we do not use the Euclidean distance
between two points in this space to calculate the distance
between two line segments, but use instead a metric defined
on an isomorphic space of functions.

We define an isomorphism by attaching each point s; in the
space S a function n;(z,y,,0) from the space of square inte-
grable functions £2(S). We call this function neighbourhood
function. As a distance between two line segments s; and s;
we now use the distance defined on the family of functions
ni. It is well known that a distance function defined with the
expression:

dij = [/ (ni(z,9,1,6) — nj(z,y,1,6)) dz dy dl df
s (1)

satisfies the necessary properties for a metric on £L2(S). If
we choose the functions n;(z,y,,6) such that their norm in
the induced metric is equal to 1, i.e.

/ (ni(z,y,1,6)) dedydide = 1, ()
5
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the expression (1) simplifies to:

1

2
dij = [2-—- 2/ ni(z,y,1,0)n;(z,y,1,0)dc dydldo| .
s @)

The distance d;; decreases when the integral in expression (3)
increases. |f the neighbourhood functions are positive func-
tions, the integral in expression (3) takes values between 0
and 1.

We have formulated our search problem using as valuations
of the nodes in the search tree merit functions and not cost
functions. The reason for this is pragmatic: it is more natural
to evaluate the goodness than the badness of a match. Thus,
we will not use the distance as given by expression (3) but
only the integral in expression (3) to define the model fidelity
m;j at the level of line segments:

m;; =/n;(.1:,y,l,9)nj(x, y,1,0)dzdydlds. (4)
s

This integral equals to the cosinus of the angle between the
two versors n; and n; in the vector space £2(S) and can
be thought of as a correlation measure between these two
Versors.

The neighbourhood functions are chosen regarding the
physics of the image formation process and some heuris-
tics motivated by experience. We construct the function
ni(z,y,1,0) as a product of three functions defined on R%, R

and (—%, §] respectively:

ni(z,y,1,0) = fi(z,y) g:(l) hi(6).

To define the function f;(z,y) we take advantage of the fact
that the parameters of the camera and the position of the air-
plane at the moment the aerial image was taken are known.
We can determinate the transformation between the image
coordinates and the coordinates in the specific model (map
coordinates) and transform the image primitives into the map
coordinate system. Assuming that the corresponding con-
tours are depicted in the map, there are several error sources
which are responsible for the fact that the line segments ex-
tracted from the image will not overlap with the map con-
tours. These are for example inaccuracies in:

e the extraction of line segments from the image,

the determination of the transformation parameters,
& the acquisition and digitization of the map data.

Subsuming all these effects, we can safely assume that the
position of the image primitives is normally distributed around
their "true” position as given by the specific model.

For this reason we use as a neighbourhood function f;(z,y)
for the position of the line segments a Gaussian shaped func-
tion. However, since we do not want to evaluate differently
the situations when a short line segment lies in the middle
of its model line or closer to the endpoints, our function is
constant along the length of the line. We choose for the
neighbourhood function f;(z,y):

((a: —z;)sin6; — (y — yi) cos 91')2)

202

fi(z,y) = Ky exp (‘

for positions (z,y) between the endpoints of a line, i.e.
{(z,y) | (®—=z:) cos b;+(y—yi)sinb; > 0 A (z—x;) cos 6; +

(y — yi)sin8; < L;}, and fi(x,y) = 0 otherwise. The neigh-
bourhood functions fi(z,y) and f;(z,y) for the constellation
of line segments shown in Fig. 3 are displayed in Fig. 4. The
variance of the Gaussian is chosen equal to the residual mean
square error of the transformation.

For the part of the neighbourhood function, which depends
from the length of the line, we choose a function which "in-
side” the line is proportional to the square root of the length
and which is 0 "outside":

() = {K,ﬂ if 1 € [0,1]

0 otherwise.

As we will see later, this choice penalizes image primitives in
an amount proportional to the ratio of their length and the
length of the model contour.

The considerations regarding the uncertainty in the position
of line segments applies also for small deviations of the an-
gle. Thus, the neighbourhood function for the angle is cho-
sen following similar reflections. But because the domain of
definition of the angle is an interval and because we want
a stronger penalization of large deviations of the angle, we
use a trigonometric function instead of the Gaussian shaped
function:
hi(e) = Ko COS(G - 9;’).

The constants K.y, K; and Ky are calculated imposing nor-
malization for each of the partial neighbourhood: functions
and we can thus assure the fulfillment of condition (2).

With this choice of neighbourhood functions, the integral for
the model fidelity is separable into three terms: the position
fidelity, the length fidelity and the angle fidelity. The integral
over the product of the neighbourhood functions for the po-
sition, i.e. the position fidelity can generally not be expressed
in a closed form. However, if the angle between the two lines
is small or the parameter o is is in the same order of magni-
tude as the mean geometric distances between the two line
segments then a good approximation is given by:

| . - Vo
/nzfl(w, iz, y)dzdy = o X

( ( uy sin Ad - A ) : ( uzsin A - A ))
ef | ——— ——oo= | —erf | ————re

ov/2 + 2cos AG? o2 + 2cos AG? (5)
with Af = 0;—0; and A = —(z;—2;)sin ;- (y: —y; ) cos §;.
The coordinates u; and us are the coordinates of the start-
and of the endpoint of line I; in a coordinate system uOv
with its origin in the starting point of line I; and with the u-
axis parallel to the line I;. For a situation as shown in Fig. 3,
when after a parallel displacement the perpendicular distance

d between the two lines varies, the position fidelity varies in
function of d as shown in Fig. 5.

The integrals over the neighbourhood functions for the length
and the angle of the line segments can be expressed in closed
form and result to:

i Y
/ gi(D)g; (Ol = il bi)”
Ry l:l;
and

/2
/ hi(6)h; (6)d8 = cos(6; — 6;).
—n/2
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Figure 5: Position fidelity as a function of d (see also Fig. 3)

The length fidelity amounts thus to the ratio of the length of
the shorter line to the length of the longer line. The angle
fidelity is the cosinus of the angle difference of the two lines.
The total model fidelity for line segments is given by the
product of the three components.

Usually, due to noise influence the visible contour of an object
in the image is broken and thus several line segments will
form the contour. In this case, the contour is constructed
.step by step by adding line segments until the contour is
completed. The A*-algorithm requires an optimistic estimate
of the merit for future instantiations. To give an optimistic
estimate for the future instantiations in the case of a partially
estimated contour, we elongate the already instantiated line
segments in order to simulate a virtual best fit with the model.
The model fidelity for this "ideal” best fit is evaluated an
serves as an optimistic estimate for the model fidelity of future
instantiations.

4.2  Model fidelity for polygons

A different approach for the model fidelity is used at the hier-
archical level of polygons. Whilst at the level of line segments
the similarity in position and orientation between the selected
image primitives and the model contour has been evaluated,
we evaluate at the level of polygons the similarity between
the shape of the polygon created by the image primitives and
the shape of the model polygon.

The corner points of the polygon in the image domain are
obtained as intersections of the chosen image primitives. In
the case where several image primitives form an edge of an
object, these primitives are replaced for the purpose of the
corner point calculation with a regression line. The error pro-
duced by the approximation with the regression line is taken
into account in the valuations of the compatibility. In the
case where no correspondence could be established between
an edge of an object and an image primitive we make a wild-
card assignment to the current edge. In this case the cor-
responding corner points are chosen to be the end point of
the image primitive assigned to the edge previous to and the
starting point of the image primitive assigned to the edge
after the wildcard-assigned edge. The wildcard assignments
however lead to a penalization in the model fidelity of the line
segments.

To not include position and orientation errors in our measure
we first transform the polygon in the image domain on the
model polygon. We take a similarity transformation between
the corresponding corner points of the two polygons and cal-
culate the transformation parameters such that the residual

mean square error is minimal. Since the scale of the image
and the map are known, we fix the scale parameter in the
similarity transformation to the known value.

The resulting minimal mean square error is a measure for
the similarity of the shapes of the two polygons. We gain
our subjective belief in the hypotheses of match between the
image polygon and the model polygon with help of a fuzzy
function:

patr) = e (-5 ©

where r is the residual mean square error after the transfor-
mation.

4.3 Model fidelity for objects

The resulting model fidelity for an object of the scene is cal-
culated by combining the model fidelities at the level of line
segments and polygons. The model fidelities are interpreted
as subjective beliefs in the corresponding hypotheses of match
and treated in the framework of the Dempster-Shafer theory
of evidence. With an extension (Quint, 1995) to approaches
found in the literature we propagate the model fidelities cal-
culated at a lower hierarchical level of the semantic network
upwards. Model fidelities at the same hierarchical level are
combined with Dempster's rule (Shafer, 1976).

The such computed model fidelity at the level of an object of
the scene is used to decide whether an object represented in
the map could have been verified in the image analysis pro-
cess. Besides this, the model fidelity for an object is further
propagated up to the goal concept of the analysis, which in
our case represents the scene. At this level it is combined with
the compatibility measures computed for the instances and
contributes to the valuation of an analysis state. However,
since we are not only interested in the verification of objects
represented in the map, the model fidelity contributes in a
smaller fraction to the valuation of the analysis state than
the compatibility.

5 RESULTS

We present the results for the verification of buildings in the
scene of Fig. 6. The line segments used in the image analysis
process are overlayed in black color in the Figure. There were
roughly 5000 line segments presented to the system. The
line segments which are found after the analysis to compose
the buildings of the scene are drawn in white color. For each
building its identifier is also displayed in the Figure. The
model fidelity for the recognized buildings is given in Table 1.

Excepting the house in the lower left corner of the image
(i-house0106) all the other buildings in the image have been
verified successfully. The main reason for the failure of the
verification was that the position error for this building with
respect to the specific modei was twice as big as the position
errors of the other buildings in the scene. In this experiment
the parameters o in expression (5) and o, in expression (6)
where chosen such, that an absolute position error of 2m in
the scene leads to a model fidelity of 0.5 (i.e. halif of maximal
value).

Those objects rejected by the verification process are marked
and passed to the following phase of the analysis, the classi-
fication phase, where these image structures are interpreted
regardless of a specific model gained from map analysis, but
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i_house0067 | 0.98 || i.house0106 | 0.36
i_house0145 | 0.97 || i-house0184 | 0.93
i-house0223 | 0.84 || i_house0290 | 0.88
i_house0343 | 0.98 || i-house0410 | 0.86
i_house0449 | 0.95 || i.house0530 | 0.87
i_house0569 | 0.90 || i.house0636 | 0.64
i-house0703 | 0.95 || i-house0742 | 0.94
i-house0809 | 0.88 || i-house0848 | 0.85
i_house0887 | 0.98 || i_block0940 | 0.79
i-block0979 | 0.90

Table 1: Model fidelity for the objects of the scene in Fig. 6

using the generic model and the context of the verified ob-
jects.

Visual inspection of the results of experiments has shown that
the measures defined for the model fidelity reflect the valu-
ations a human interpreter would qualitatively assign to the
given analysis state and that the presented measures can be
used successfully to guide the search in our image analysis
task. Several other factors also contribute to the success
of the analysis process, i.e. the compatibility measures com-
puted for the instances and modified concepts at the different
levels of the hierarchical model, although they are not in the
scope of this paper. We are currently extending our system
towards the recognition of composite objects like parking ar-
eas and allotments.
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