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ABSTRACT
The generation of Digital Elevation Models (DEMs) is one photogrammetric process that has been successfully
automated. However, a common criticism surrounding DEM generation software currently available commercially, is
the lack of quality assessment procedures. This paper describes a new system called the Failure Warning Model
(FWM), which automatically detects low accuracy areas and presents the information in a graphical format that is easy
to assimilate.

The technique makes use of the strategy parameters embedded within many current digital photogrammetric systems.
Typically, these are a set of user definable parameters that control the search, acceptance and quality control procedures
used to derive final point elevations in the DEM. Detailed tests revealed that accurate points are insensitive to changes
to the strategy parameters and so the system identifies points that are sensitive to parameter change, which may
therefore be considered unreliable. As a further refinement, the algorithm considers the impact of local slope angles and
the internal classification of the height estimate.

The Failure Warning Model was developed within the ERDAS Imagine environment for the ERDAS OrthoMAX DEM
generation software. It was tested on a wide variety of imagery (scale: 1:70 to 1:45,000) representing a variety of land-
cover types and show that the approach is successful. More significantly, the method proved successful using other
digital photogrammetric systems, indicating the generality of the approach. The Failure Warning Model is described in
this paper and combined with results from extensive tests using both the OrthoMAX and Phodis TS software from Zeiss.

1 INTRODUCTION

With the advent of computers and their use in the photogrammetric industry, there has been a constant trend towards
full automation of the workflow. Developments in digital photogrammetry combined with the dynamic nature of both
the computer hardware and software industries, has strengthened this trend even further. As the level of automation
increases, the technology is becoming used by a wider and a more novice user base (Chandler, 1999). A common
criticism articulated in recent literature comments upon the lack of quality control procedures in modern digital
photogrammetry systems (DPS). Such technology allows an answer to be obtained easily (i.e. a digital elevation model
or DEM), but provides little help in assessing the quality of the output (Cooper, 1998). As Heipke (1999, p81) states:
"most of the ... algorithms have only little knowledge about when they work correctly and when they fail."  This issue
becomes increasingly relevant as the level of automation increases and as more non-photogrammetrists begin to use the
techniques. The research work presented in this paper partially answers this call, through the development of an
algorithm known as the "Failure Warning Model". This novel method allows unreliable points to be detected in an
automatically generated DEM.

2 AUTOMATED DEM EXTRACTION

A common feature of many digital systems is a set of parameters that allow the user a degree of control over the
automatic DEM generation process. These parameters are user-definable and control the acceptance and quality control
functions in the software. (e.g. different levels of interpolation can be used). The exact effect of these parameters upon
the derived DEMs will differ, but Zhang and Miller (1997) suggest that appropriate settings are functions of terrain
type, signal power, flying height, x and y parallax, and image noise level. In theory therefore, a correct set of parameters
will provide an accurate DEM, one which consists of successfully correlated points only and where unsuccessful point
matches have been rejected. Conversely, an incorrect parameter set will result in either the filtering of successful points,
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Parameter Value
Minimum Threshold 0.6
Noise Threshold 0.4
Maximum Parallax (x) 5
Minimum Template Size 7
Maximum Template Size 9
Minimum Precision 0.5
Rejection Factor 1.5
Skip Factor 2
Edge Factor 2.5
Start RRDS 4
End RRDS 0
y-Parallax Allowance 0
Resampling Bilinear
Post Processing On

Table 1. Strategy parameters used in in the
ERDAS Imagine OrthoMAX software

the inclusion of badly correlated points (known as false fixes) or will simply fail to find correlated points (Gooch et al.,
1999).

2.1 Erdas Imagine/OrthoMAX

One example of a DPS with provides a set of user-definable parameters is the ERDAS Imagine OrthoMAX software
(ERDAS, 1994) which uses an area correlation based algorithm with 14 strategy parameters. A full list of the strategy
parameters and their default values are shown in Table 1. From their individual names and descriptions in the user-
manual, it is not always obvious what the parameters mean, or
what effect each would have on the resulting DEM.  Smith and
Smith (1996, p523) state that the "...parameters are written in a
technical language and, even if the basic image matching
technique is understood, it does not always help in determining the
use of all the parameters, as many are obviously software
dependent." Loodts (1996) criticizes the use of "...uncontrollable"
or "magic" strategies..." in automatic DEM algorithms, but
provides no details upon how to specify and control the
parameters.  Other DPSs use different sets of parameters and
terminology. For example, the Match-T product has 28 parameters
(Smith and Smith, 1996) whilst the Phodis TS software from Carl
Zeiss uses just two. The correct choice of parameters should
accept all of the successfully correlated points and filter out the
unsuccessful and the wrong choice can have a detrimental effect
on the accuracy (Gooch and Chandler, 1998). The choice of
parameter settings can therefore be critical in generating as
accurate a DEM as possible.

Several studies on the effect of parameter settings on DEM
accuracy have been completed, including Smith (1997) who
carried out an extensive study of the parameters using two sets of aerial imagery. He isolated areas with different land-
cover types on the imagery and then systematically varied the parameters, with the aim of optimizing them with respect
to accuracy. The results indicated that the manipulation of the parameters could have a significant effect. For example,
in one residential area, changing the Minimum and Maximum Template sizes from the default values of seven and nine
pixels to five and 20 respectively, improved the mean error of the DEM from -0.218 m to -0.081 m.  Similarly,
changing the Maximum Parallax parameter from the default value of five to 10 in an area of open moorland improved
the mean error from -0.061 m to 0.006 m.  Overall, Smith (1997) reported that the software was well suited to smooth,
textured surfaces and that areas with sudden elevations changes reduced the accuracy. He suggests that the test results
could be applied to other data sets, but makes no recommendations upon how they could be applied to close-range type
applications such as medical and architectural imagery.

3 THE FAILURE WARNING MODEL

The Failure Warning Model originated from a series of extensive tests that were developed from the work of Smith
(1997). These tests will be described briefly in this section, and demonstrate the basic phenomena underlying the model.
Exhaustive tests were carried using Erdas OrthoMax to prove the validity of the approach, and are presented also. This
is followed by a series of tests carried out using the Carl-Zeiss Phodis software, which importantly demonstrate the
universality of the Failure Warning Model.

3.1 Origins of The Failure Warning Model

A series of tests were carried out by the authors on the strategy parameters used in the ERDAS Imagine OrthoMAX
software, using a variety of imagery with vastly different scales and image content than carried out in Smith's (1997)
study. The aim of these initial tests was to quantify the effect of varying the strategy parameters on the accuracy of the
DEM. The data sets used in the study included:

• 1:45,000 scale imagery of a dry riverbed in Spain captured using a Kodak DCS420 digital camera.
• 1:25,000 scale imagery of a mountain region of Antarctica scanned at 30 microns.
• 1:13,000 scale imagery of a rural and residential area scanned at 30 microns.
• 1:6,000 scale imagery covering a wide variety of land-cover types captured with a Zeiss RMK A metric

camera.

Michael Gooch



304 International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B4. Amsterdam 2000.

• 1:70 scale imagery of a simulated riverbed constructed in a laboratory. The imagery was captured using a
Kodak DCS460 digital camera.

A prerequisite for each data set was that check data was available, thus enabling the parameters to be optimized with
respect to accuracy. Optimization of the parameters was carried out using a "trial and error" approach because it was
found that two optimum parameter settings did not always combine in a positive manner. The process was thus time
consuming and certainly not practicable in a production environment.

Table 2 shows the effect upon accuracy (r.m.s.e.) after changing strategy parameters for five different DEMs. Area 1, 2,
3 and 4 were derived using the same set of imagery (1:13,000 scale photography) whilst Area 5 was generated using a
set of 1:6,000 scale imagery. These results are typical of all of the results encountered and demonstrate that
specification of the strategy parameters is critical and can have a significant effect on the accuracy of a DEM in certain
areas (areas 2, 3, 4, 5 in the example). The results of these tests showed no evident link with landcover type as
suggested by Smith (1997).

Area & Landcover type r.m.s.e. (m)
Para. set a

r.m.s.e. (m)
Para. set b

r.m.s.e. (m)
Para. set c

r.m.s.e. (m)
Para. set d

r.m.s.e. (m)
Para. set e

r.m.s.e. (m)
Para. set f

Area 1- Rural 3.466 3.354 3.327 3.242 3.234 3.568

Area 2- Rural 1.538 1.671 10.952 1.495 1.527 1.793

Area 3- Residential 2.542 3.738 2.529 2.287 3.271 3.532

Area 4- Rural / Forest 3.590 9.845 1.912 3.339 3.12 2.267

Area 5- Urban 2.034 6.030 2.658 2.078 1.87 1.932

Table 2. Results of manual strategy parameter manipulation process.

Similar tests were also carried out using four areas visible on a set of close-range images, (1:70 scale) representing a
simulated riverbed or flume and these tests produced a contradiction that was highly significant for this research project.
The results showed that in three of the four test areas, alterations to the strategy parameters had little or no effect on the
resulting r.m.s.e. of the DEM. However, for one of the test areas, every parameter change appeared to generate a
significant change in the r.m.s.e. It was decided to establish why this contradiction had occurred, by examining
residuals at individual checkpoints. This demonstrated that only very few of the points contained high residuals and that
these were located in just one small region of the check profile. The large variation in the overall r.m.s.e was therefore
attributable to varying height estimates at these limited locations only. This finding was then confirmed using the
previous data sets, by removing the checkpoints with large residuals from the r.m.s.e calculations, and this again
showed that the r.m.s.e was not only low (as expected) but also subject to minimal variation with parameter changes.
This demonstrates that the exact strategy parameter settings are not critical, for those points whose elevations have been
estimated accurately.

It was then thought that this important finding could be perhaps used to develop a tool that would automatically identify
low accuracy areas in an automatically generated DEM. The hope being that such a facility would allow the (novice)
user to perhaps manually edit/measure the low accuracy areas, instead of carrying out extensive checks over the entire
DEM.

3.2 Basis of The Failure Warning Model

The basic algorithm behind the Failure Warning Model (FWM) is comparatively simple. Initially, two DEMs of the
same area are generated using slightly different strategy parameter settings. The two DEMs are then subtracted from
one another and points that are assigned a value approximating to zero are clearly insensitive to changes in the strategy
parameters, and may therefore be considered reliable. As a further refinement, the algorithm then considers the impact
of local slope angles and the origin of the height estimate. In situations where the local slope angle is below a certain
threshold and the original height estimate has been interpolated from surrounding points, it is judged that the height
estimate, although interpolated, is likely to be accurate also. Points that have been interpolated but are in regions of
locally varying topography are judged to be unreliable. Points that have not been interpolated and failed the initial test
(i.e. all other points) are considered inaccurate. This three-way classification is then presented in a graphical way, by
overlaying the classification upon an orthophoto of the area.

To summarize, each point in the original DEM is given one of three classifications in the output (Figure 1):

• "0" (dark brown areas): areas where the software has interpolated the elevation in areas where slope angle is
varying rapidly- Unreliable points;

• Acceptable/OK/Unclassified (orthophoto visible): the evidence from the data suggests that the height estimate
of this point is as accurate as possible and is therefore reliable;
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• "256" (pink areas): the points with the lowest accuracy. These are the points that are susceptible to changes in
the strategy parameters.

The model was developed in the Spatial Modeler tool in ERDAS Imagine, which is a visual modeling environment that
allows generation and customization of algorithms to manipulate graphical data. The software allows for a wide variety
of inputs including raster, numeric, and vector files with output to a similar range of file types.

The inputs for the FWM are as follows:

• DEM generated with the default strategy parameters
• DEM generated with a different set of strategy parameters (four  parameters were changed in these tests)
• An orthophoto of the area.

The orthophoto then assists the user to check and edit the DEM. It is important to realize that the model does not alter
the original DEM in any way; it merely highlights the areas that are likely to contain the highest residuals.

3.3 Testing the Failure Warning Model

The development of automated methods within digital photogrammetry allows the technology to be used by a wide
range of new users, and hence a wide variety of potential applications. The FWM was therefore tested on a large
number of areas visible within diverse sets of imagery and these results show that the FWM has performed consistently
well. The tests were carried out by computing the residuals for each visible checkpoint. These residuals were then
combined to create a r.m.s.e. for each of the three classifications identified by the FWM. The purpose of this was to
determine if the points classified as "acceptable" did indeed have a lower r.m.s.e than the entire DEM. Conversely, if
the areas highlighted by the FWM as "unreliable" (0 or 256) had a higher r.m.s.e than the entire DEM, this would
indicate that the FWM was highlighting the correct points (i.e. those with the largest residuals). For brevity, the results
from the tests on eight areas of one of the sets of imagery (1:13,000) are presented in Table 3.
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Figure 1, Example output from the FWM (best seen in colour)
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FWM Category r.m.s.e (m)

"0" 26.7

Acceptable/OK 6.2

"256" 34.1

Default overall DEM 22.5

Table 4 Failure Warning Model Results for
1:25,000 scale data set
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Figure 2 1:25,000 scale data set - check point distribution

The results presented in Table 3 show that the FWM has worked well using the imagery selected for these tests. The
points that are classified as "Acceptable" by the model consistently have a lower r.m.s.e than the overall model,
suggesting that many of the points with the larger residuals have been filtered out. In four of the six areas, the points
classified as "0" (points that the algorithm has interpolated over sudden elevation changes) had a higher r.m.s.e than the
acceptable points. This was the case for all of the areas classified as "256" (areas susceptible to changes in the strategy
parameters). The difference between the points classified as 256 and the rest of the points can be seen to be significant.

An excellent example of the successful usage of the FWM was provided by the 1:25,000 scale data set. This data set
provided a unique case study because it perhaps represents the worst case scenario for automated DEM generation
algorithms. The imagery is small scale and covers a mountain in Antarctica where there are large areas of clean snow

(little gray level variation in the image) and a large elevation range.
Both of these characteristics provide problems for area-based
correlation techniques such as the one employed in the OrthoMAX
algorithm. A quantitative analysis of the results can be seen in Table
4. The r.m.s.e. for the whole DEM generated using the default
strategy parameters was 22.5m, indicating that some areas of the
DEM contain significant errors. However, application of the Failure
Warning Model has resulted in isolation of a significant portion of
the points with the highest accuracy, as shown by the much better
accuracy of the points classified as "Acceptable". The r.m.s.e. value
of the points highlighted for editing is higher than that of the whole
DEM, providing further indication that the correct set of points have
been identified.

The distribution of the checkpoint
residual errors can be seen in
Figure 2. This graph illustrates the
number of points within each of
the ranges falling within each of
the Failure Warning Model
classifications. The results show
that the majority of checkpoint
residual errors fall in the range 0
to 5m for points classified as
Acceptable/OK by the model,
with a significant number in the
range 5 to 10m. Although, there
were still 107 points that had
check point residuals greater than
10m (maximum 37.7m) that were
classified as being OK by the
model.

Even more encouragingly, the
distribution of the points classified
as Acceptable/OK by the Failure
Warning Model approximates to
the normal distribution. This is
important because it suggests that the Failure Warning Model is working satisfactorily. If we assume that the Failure
Warning Model has isolated all gross errors and that systematic errors have been removed through proper calibration of
the photogrammetric process, then the only errors that should remain are random errors. Error theory states that such
random errors should possess the properties of the normal distribution. Examination of Figure 2 illustrates that the

                                                  Area / r.m.s.e. value (m)

FWM Category 1 2 3 4 5 6 7 8

"0" 3.91 2.76 1.90 0.39 1.00 2.89 1.94 1.99

Acceptable/OK 1.88 1.25 1.04 0.48 1.48 1.59 1.59 1.25

"256" 6.26 5.58 2.00 2.95 4.76 3.68 26.78 6.27

Default overall DEM 3.47 2.08 1.54 0.86 1.27 2.54 3.59 1.96

Table 3. Accuracy of classification using Failure Warning Model.
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residuals for the points classified as "OK" are indeed normally distributed, providing further evidence of the success of
the technique. However, the distribution of the other two groups is not ideal, as these groups include points that do have
low residuals. Ideally, the Failure Warning Model should classify all low-residual points as "Acceptable/OK". Despite
this, it can be seen that the model has highlighted the majority of points with high residuals, and the FWM has
successfully isolated points containing the highest residuals (140.0m in the points classified as 0 and 133.5m in the
points classified as 256).

3.4 Effectiveness of Failure warning model in other digital photogrammetric systems

The FWM was also tested on the Phodis TS DPS from Carl Zeiss, in order to demonstrate the universality of the
approach. Clearly the technique would be of limited use if it could only be applied to one particular algorithm. The
Phodis TS system uses the TopoSURF algorithm, which uses a correlation procedure to generate a large number of
elevation points, from which a grid-type DEM is then derived. The Phodis TS software has two user definable strategy
parameters, the Terrain Type parameter (flat, hilly or mountainous) and the Smoothing Factor (low, medium or high).
The output from Phodis is an ASCII file containing the Cartesian co-ordinates of each point in the grid, followed by an
estimate of the accuracy for each point. This estimate is defined on a scale from one to seven, one being the most
accurate. This served as a basis for a comparison between the two packages and more importantly, to demonstrate the
universality of the FWM approach.

Three areas of the 1:13,000 scale imagery were used in the tests, two with a 5 m grid spacing (Areas 1 and 2) and the
other with a 10 m spacing. Area 1 covered mainly farmland with small, forested areas; Area 2 covered fields, trees, a
steep slope, and a large residential area; and Area 3 covered rural and residential areas. A DEM was generated for each
area with every combination of the two variable strategy parameters. Each DEM was then generated with the
OrthoMAX DEM generation software using identical grid spacing.

The output data from the Phodis software was imported into the Imagine environment for comparison with the ERDAS
data and testing of the FWM. The FWM had to be modified for the Phodis tests, since the software does not identify
which points were interpolated during the DEM creation procedure and so only classifications of 256 or
"Acceptable/OK" could be used. The input for each run of the FWM was therefore a DEM of the area generated using
the default strategy parameters, a DEM of the area generated with one or both of the parameters changed, and an
orthophoto of the area.

Area/r.m.s.e. (m)

Phodis 1 Phodis 2 Phodis 7 FWM Accept./OK FWM "256"

1.419m 3.618m 1.510m 1.301m 5.893m

Table 5. Phodis classification and FWM results model for Phodis data

Table 5 shows the average results for the three areas used to test the Phodis software. The results demonstrate that the
FWM has performed significantly better than the Phodis classification system. This is shown by the fact that the points
classified as unacceptable, (i.e., "256"), have a significantly higher r.m.s.e than the points classified as two or seven by
the Phodis software. Also, the points classified as "Acceptable/OK" by the FWM have a lower r.m.s.e than the points
classified as one by the Phodis software. Whilst the Phodis classification of two consistently had a higher r.m.s.e than
the points classified as one, the points classified as seven proved to be somewhat less robust.

4 DISCUSSION

The research work has highlighted the many disadvantages of manual parameter optimization. Whilst significant
improvements in the r.m.s.e. were achieved in some areas, this was only after extensive testing and regeneration of the
same model. The large number of strategy parameters used in OrthoMAX, and other terrain extraction algorithms,
means that testing every parameter combination is clearly impracticable. The tests have shown that although parameter
settings can be critical, there is a wide variation in results for different areas. It could be argued that this merely supports
the work of Zhang and Miller (1997) but it has been found that the relationship between area and accuracy is
insufficiently strong to associate optimum parameter settings with particular area types. More significantly, it has been
established that whilst parameter settings have a significant effect in certain areas, manipulation of the parameters has
minimal effect in areas well suited to the matching algorithm. Furthermore, an improvement in accuracy in these areas
is unlikely to be attained by manipulation of the strategy parameters.

The tests in this study were all carried out using imagery where checkpoint data was available. If checkpoint data is
unavailable, optimization of the parameters becomes extremely difficult, as every model must then be checked
manually. Even if check data is available, it was found that parameter optimization is difficult. This is a view shared by
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Butler et al., (1998) who demonstrated that improvements in internal results, such as matching success or the level of
interpolation, are not always accompanied by an improvement in the accuracy of the DEM.

The Failure Warning Model provides an alternative approach to parameter optimization. Instead of attempting the
lengthy process of optimization, the strategy parameters are used to identify areas where the software is likely to fail
and identify areas where residuals are likely to be highest. Such information can be used as a guide when the DEM is
checked, and is of value particularly to the novice user. Time spent during the editing phase is reduced to a minimum,
thus increasing the profitability of a project. The FWM approach has been tested on a wide range of image scales and it
therefore works in practice. It consistently highlights areas of DEMs with large residuals and results in unclassified
areas having a lower r.m.s.e than that of the whole DEM. The approach has been tested also on the Phodis TS DEM
generation software and proved to be successful, suggesting that the approach can be applied to other DPSs.

A number of other methodologies for quality control procedures of DEMs have been presented over recent years in the
photogrammetric literature. Hannah (1981) suggested one approach that focused on a set of constraints on both the
allowable slope and the allowable change in slope in local areas. However, this approach is not appropriate for all data
sets because it relies on the assumption that sudden elevation changes in a DEM are indicative of potentially large
errors. This may perhaps be the case in areas of open flat land such as the open fields in the 1:13,000 scale data set or
the flume section of the 1:70 scale imagery used here, but it cannot be applied to residential, urban or forested areas. In
these areas, sudden elevation changes are a key feature of the terrain. The algorithm presented by Hannah (1981)
contains an error correction facility based upon a slope classification system, with points that fail being interpolated
from surrounding elevation data. The application of such a technique to an urban environment would result in
significant interpolation, the lowering of rooftops and the raising of street levels. It is interesting that this paper presents
results from a rural area and not urban imagery and in essence, the approach is similar to that adopted by the Rejection
Factor strategy parameter already embodied with the OrthoMAX software.

An alternative approach is that suggested by Li et al., (1996). This technique uses orthophoto matching to identify
residual parallax. Since orthophotos should contain no relief displacement, the presence of any parallax in the two
images should indicate an elevation error. An iterative approach is described which automatically corrects the DEM
until an allowable parallax threshold is reached and is usually convergent after two or three iterations. The results of
several tests on the technique are presented in Li et al., (1996), suggesting validity of the approach. Krupnik (1998)
comments on this approach and suggests that problems may arise in areas with repetitive or homogenous texture, since
most matching techniques fail in such areas. Instead, Krupnik (1998) proposes an a priori technique for the detection of
erroneous areas. This system identifies areas that are difficult or impossible to match and suggests using alternative
techniques (laser altimetry and radar interferometry are suggested) to obtain elevation estimates in areas where a
photogrammetric approach is unsuitable.

The approach offered by the Failure Warning Model differs significantly from the approaches cited. Instead of
attempting to correct and allow for problematic areas in a DEM, the areas are simply identified for interactive editing by
the user. It performs an a posteriori analysis of the data generated as opposed to an a priori analysis of the imagery (as
suggested by Krupnik, 1998). This is an important strength because this research has shown that it can be very difficult
to predict regions in which the DEM generation algorithm will fail, suggesting that an a priori technique will always be
difficult to implement. Until the unlikely situation arises when a "perfect" photogrammetric solution is developed,
interactive editing and checking of the output will always be required. This is a view shared by Autometric, the
developers of OrthoMAX, who suggest that it is an "inevitable fact that errors and blunders will occur in the automatic
collection process, as they do in all ... measurement processes" (Grafton, 1999). The Failure Warning Model therefore
offers the user much needed assistance for the editing and checking process, instead of trying to replace it.

Whilst there is an overlap between some of the technologies, for example the Failure Warning Model and the technique
described by Hannah (1981), there is also the potential for integration of systems. The technique described by Li et al.,
(1996) could easily be integrated with the Failure Warning Model such that an attempt is made to improve on the
quality of the DEM, as well as reporting on potentially erroneous areas for interactive editing.

5 CONCLUSION

This paper has highlighted some of the problems and issues surrounding optimization of strategy parameters used in the
automated generation of DEMs. It has shown that the parameter specification can be significant and that a manual
optimization approach is lengthy and subject to a degree of variability. The Failure Warning Model (FWM) system has
been described, which automatically identifies areas likely to contain inaccurate height estimates and results have been
presented which prove the efficacy of the method. The output from the FWM is presented in an easy to understand
graphical format, in the form of a classified monochrome orthophoto. Results can also be generated in color (Figure 1),
which eases the identification of failed areas in gray-scale imagery. The FWM represents a completely new approach to
identifying low accuracy areas of DEMs and makes full use of the actual DEM output from the DPS. By indicating the
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unreliable areas, the FWM also satisfies many of the concerns raised by others (e.g. Cooper, 1998; and Heipke, 1999)
that current DPSs rarely assess the quality of the output. As it is a software-based assessment process, the FWM could
easily be incorporated into an existing system, providing an internal and fully automated quality assessment procedure
that is transparent to the user. The approach has proved successful on different software packages and for both close-
range and aerial imagery of diverse subjects and scales.
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