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ABSTRACT 
 
Irregularly distributed data may be interpreted as a sample drawn from an underlying spatial process whose properties 
can be assumed to be known or unknown, depending on the particular situation. In case of a relatively smooth process, 
one of the various Kriging methods could be employed to derive gridded point data with comparable accuracy provided 
that no outliers are present. Otherwise, they have to be eliminated beforehand or, at least, their influence must be 
reduced to the level of random uncertainty. 

Measures of reliability to describe the potential for identifying outliers in suspicious sample points and to quantify the 
effect of any undetected outliers –  well-known for the Gauss-Markov Model –  will be introduced for the case of a 
spatial process where the sampled data are supposedly correlated, at least in the spatial sense. In this study, we shall 
consider Simple as well as Ordinary Kriging which is essentially identical to “ least-squares collocation”  with (known, 
resp. unknown) constant trend.  

 

1 INTRODUCTION: A REVIEW OF THE GAUSS-MARKOV MODEL 

Originally for the use in geodetic networks, W. Baarda (1968) had introduced a testing procedure for outliers that is 
now known as “ data snooping” . Shortly afterwards, a theory of reliability was developed by W. Baarda (1976) which 
found a number of applications both in geodesy and photogrammetry. We only refer to the work by H. Pelzer (1980), S. 
F. El-Hakim (1982), and W. Förstner (1983; 1985); for an overview consult, e.g., K. R. Koch (1988, chapter 44) or B. 
Schaffrin (1988). 

The original theory was based on a Gauss-Markov Model 
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where y  is the n×1 vector of observational increments; 

ξ is the m×1 vector of (unknown) parameter increments; 

A  is the n×m matrix of coefficients with rkA=:q≤min{m,n}; 

e  is the n×1 vector of (unknown) random observation errors; 

Q:=P-1  is the n×n  positive-definite cofactor matrix; 

2
0σ  is the (unknown) variance component. 

The weighted LEast-Squares Solution (LESS) can be taken from the normal equations 

cN =ξ̂        for  ],,[:],[ yAPAcN T=                                                 (2) 

but may not be unique unless q=m. The general “ solution space”  may thus be represented as  

−−− =∈ NeiNNNNcN  .. , |{ξ̂  is g-inverse of N},                           (3) 

along with the dispersion matrices 
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In any case, the residual vector 
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will be unique with the dispersion matrix 
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and so will be the variance component estimate 
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Now let us assume that an outlier has occurred in the j-th observation. So, the “ true”  model should instead have been  
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with T0] , ... 0, 1, 0, , ... ,0[:=jη  as j-th unit vector, and  

         )( jδ  as (unknown) size of the outlier. 

Consequently, the normal equations should have read 
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with the modified “ solution space”  
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and the estimated size of the outlier 
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which turns out to be uniformly unbiased as long as  

.0~ ≠je
T
j PPQ ηη                                                                            (12) 

Note that e~  represents the residual vectors (5) from the un-modified Gauss-Markov Model (1) which can be 

interpreted as a combination of model (8) with the constraint 0)( =jδ . 

In most early applications, the observational weight matrix was assumed to be diagonal, namely 

P:=Diag(p1, … , pn),                                                                             (13) 

which leads to the particularly appealing formula 
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with the “ redundancy number”  
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The name obviously refers to the fact that  

rqnPQtrrr en :)( ... ~1 =−==++                                                       (16) 

yields the total redundancy of the model. Moreover, in this special case we have 
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which now is the j-th diagonal element of a symmetric idempotent matrix. For such matrices we know that all diagonal 
elements lie between the maximum eigenvalue 1 and the minimum eigenvalue 0, thus 
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10 ≤≤ jr     for all } , ... ,1{ nj ∈ .                                                         (18) 

Note that this property is lost in the case of correlated observations as was pointed out by J. Wang/Y. Chen (1994) and 
B. Schaffrin (1997). But then we loose the simple relation (14) between the estimated outlier size and the corresponding 
(un-modified) residual any way, and we have to return to formula (11). 

If we look at the change of the corresponding residual, however, that is caused by the presence of an outlier according 
to (8), we obtain 
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from (5) after replacing y  by )( j
jy δη− . Apparently, this formula holds true even for non-diagonal P, thereby telling 

us that the total effect of the outlier on the corresponding residual is scaled by the factor jr . 

Therefore, when jr  becomes almost 1 (or even bigger) an outlier of the same size becomes more and more visible in 

the respective residual and, conversely, when jr  is too small (or even negative) the outlier may be hidden. A larger jr  

thus should increase the possibility for us to study the effect of an outlier on that particular observation. 

Unfortunately, this does not generally mean that it would become easier to detect this outlier whenever jr  is larger 

since, for the detection, we have to rely on the estimated outlier size rather than its true size. As a result, we can 
consider jr  as “ measure of reliability”  only in the uncorrelated case when relation (14) holds. In this case, namely, the 

non-centrality parameter for the alternative hypothesis, i.e. “ outlier in the j-th observation” ,  
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and this parameter has to surpass a certain threshold, depending on the error probability 0α  and the chosen power of 

the test 01 β− , in order to become separable from the null hypothesis, i.e. “ no outlier in the j-th observation” , 
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We take it from (21) that a larger jr  helps in this respect; thus, the redundancy numbers jr  may well serve as 

indicators for the “ inner reliability” . 

In the general case of correlated observations, however, we follow B. Schaffrin (1997) and apply the “ normalized 
reliability numbers”  instead which are defined as the ratio 
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These are true generalizations as, for diagonal p, we end up with the original jr  again. According to formula (11), jr  

scales the influence of je~  on the estimated size of the outlier )(ˆ jδ . 

In addition, let us define the “ outer reliability”  by the size of the effect that the maximum non-detectible outlier would 
have on the estimated parameters, measured in a properly weighted norm. In analogy to formula (10), we readily obtain 
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in general, and in the case of uncorrelated observations  
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independent of the chosen g-inverse −N . Here )(
0

jδ  denotes the maximum outlier that cannot be detected at the 0α -

level with power 01 β−  (where 0α  and 0β  are to be specified in advance). 

In the following, we shall generalize the above theory to also cover spatial processes which are stochastic in nature - 
unlike the vector ξ - and (spatially) correlated. 
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2 RELIABILITY MEASURES FOR SIMPLE KRIGING 

Here we begin with the definition of our model of a (stationary) spatial process at location Ss ∈  

),()( 00 sesX += µ               ),,0( ~ (s) 2
0 Xe σ                                           (26) 

with the process mean 0µ  assumed to be known. The process has been sampled at the locations is  ( i =1, … , n) with the 

result 
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where  y  is the n×1 observation vector, 

    X  is the n×1 (unknown) vector of random effects, 

     e   is the n×1 (unknown) vector of observational errors. 

Furthermore, )(0 se  denotes the random deviation of the process )(sX  from its mean, assumed to be uncorrelated with 

the vector e  everywhere. Thus we have, for [ ]T,1 ... ,1:=τ  as n×1 “ summation vector” , 
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Following N. A. C. Cressie (1993) or C. R. Rao/H. Toutenburg (1995), e.g., the Simple Kriging solution represents the 
Best inhomogeneously LInear Prediction (inhom BLIP) of X  and can be generated by weighted least-squares. The 
solution is obtained, in the sample points, as  
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0 µτσµτ ⋅−Σ+Σ+⋅= −− yPX XeX                                      (30) 

and can be shown to be (weakly) unbiased. Thus the mean square prediction error matrix can be computed via  
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Furthermore, the two residual vectors become 
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with their dispersion matrices 
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and the covariance matrix 
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A possible variance component estimate can be obtained through 
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but may not turn out to be unbiased. 
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Now, if we assume an outlier in the j-th sample point our modified model will either read 
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when the outlier is attributed to faulty observations, or 
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when the prior information (mean values) is considered faulty. 

The first case can be handled along similar lines as developed for the Gauss-Markov Model, leading to the modified 
solution 
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with the estimated size of the outlier 
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which, for a diagonal weight matrix P, reduces to  
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Here the “ reliability numbers”  jr  are defined by 
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and may serve to indicate the “ inner reliability” . In contrast, the “ outer reliability”  would be quantified by  
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in general, and in the case of uncorrelated observations by 
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where )(
0

jδ  again denotes the maximum non-detectible outlier for given 0α  and 01 β−  (as explained in section 1). 

For non-diagonal P,  in the above formulas jr  would have to be replaced by  
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In the second case, we obtain the modified solution 
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with the estimated size of the outlier 
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The “ normalized reliability numbers” , in analogy to B. Schaffrin (1997), thus become 
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to indicate “ inner reliability”  while the “ outer reliability”  is given by 
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with )(
0

kδ  denoting the maximum non-detectible outlier, now assumed to affect the mean value of the k-th sample 

point, i.e. )(
00)}({ k

ksXE δµ += , without being noticed. Note that, because of (33), we have the duality between )(ˆ kδ  

and kj
j

=− |ˆ )(δ  with (46) and (50) indicating where to locate the outlier easier when it occurred. 

3 RELIABILITY MEASURES FOR ORDINARY KRIGING 

In this section we shall derive similar formulas for a spatial process with constant, but unknown mean µ. The model 
underlying Ordinary Kriging, in compact form, reads 
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where the (known) value 0µ  has been replaced by the unknown µ . 

With reference to N. A. C. Cressie (1993), the Ordinary Kriging solution represents the Best homogeneously Linear 
(weakly) Unbiased Prediction (homBLUP) of X  and can be obtained from the new model (52) by weighted least-
squares, leading to the normal equations in dual system form 
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The mean square prediction error matrix results in  
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Furthermore, we obtain the two residual vectors as  
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and the covariance matrix 
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A possible, though not necessarily unbiased, estimate of the variance component would now be  
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In the following let us first assume an outlier in th j-th observation, leading to the modified model 
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The new reduced normal equations, after eliminating X , would then read 
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from which we obtain 
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In view of (68), an appropriate “ reliability number”  may be defined as 
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which is the percentage of the estimated outlier size found in the corresponding residual je
~~ , thereby measuring the 

“ inner reliability” . 

For the “ outer reliability”  we compute the weighted deviation 
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following (71), except that the estimated outlier size has been replaced by the maximum non-detectible outlier )(
0

jδ  for 

given 0α  and 01 β− ;  see section 1 for more details. Using (62), this formula can be further simplified to  
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with the obvious reductions in case of a diagonal weight matrix P. 

In the dual case of an outlier in the mean for the j-th point, i.e. µ≠)}({ jsXE , we start from the modified model 
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but arrive at a similar set of normal equations (after eliminating X  first) 
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from which we obtain the immediate correspondences 
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However, since we now inspect 0
~~e  rather than e

~~  to detect the outlier we have to use relation (61) to represent the 

estimated outlier size as 
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thus providing us with the “ normalized reliability numbers”  
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which indicate the percentage of the estimated outlier size as seen in the corresponding residual ke )
~~( 0 . 

It is now straight-forward to derive the effect of the maximum non-detectible outlier )(
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kδ  in the weighted norm along 

similar lines as before, leading to  
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4 CONCLUSIONS 

We have derived “ normalized reliability numbers”  for spatial processes that indicate the “ inner reliability” , i.e. the 
potential to detect outliers either by inspecting the observational residuals or the residuals for the process mean in the 
sample points. By a simple relation, measures for the “ outer reliability”  can also be gained from them. It appears that, 
generally speaking, outliers can be detected more easily in the context of Simple Kriging than from Ordinary Kriging. 
This “ loss in sensitivity”  needs to be studied in the future. 
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