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ABSTRACT

Tree species proportions of forest stands were estimated using data measured by Toposys laser scanner. Employed
estimation method was multilayer perceptron neural network with error back-propagation training algorithm.
Measurements were divided into 2*2 m2 squares and then those measurement which were higher than determined DTM
were used to compute features. The purpose of extracted features were to determine and characterize the vertical
distribution of measurements within squares. Four different featuresets were computed in order to test and compare
different strategies to extract features. The estimation errors for those stands selected for training were really small but
the estimation errors for other stands were considerably worse. When stands were classified according to dominant tree
species, classification error for stands selected for training were nonexistent or small, but the classification errors for
other stands were larger. Bad results may be due to small number of stand (79), but it also indicates that only
3D-coordinates are not enough to estimate stand tree species proportions. The alternatives to get better results are either
classify single trees and compute tree species proportions from these or use also intensity information by using aerial
images or laser which can measure intensity.

1. INTRODUCTION

Forest assessment deals with the methods of obtaining information on forest resources: estimation of growing stock,
growth and health of the forest. That information is a basis for decisions of the forest industry, the official forest policy
and the forest owners. For countries such as Finland, where 30 % of exports is based on forestry products and the
percentage of the forest area (76 %) is the highest in the world, development of inventory methods are a necessity.

Typically, forests are operationally assessed with two scales: economic planning of forests at stand level (small-area
inventory) and monitoring of forest resources at the national level (large-area inventory). The forest stand is a
homogeneous forest area with respect to forest resources and treatments needed. Typical stand size, e.g. in Finland, is
between 0.5 and 5 hectares. Conventionally, forest inventory data has been collected primarily by means of field surveys,
which is both expensive and time-consuming. Important forest attributes, including stem volume per hectare and ratio
of tree species, are then assessed to these stands by measuring sample plots and individual trees, and by using personal
experience. Traditionally, the amount of forest cover and growing stock have been the most important parameters in
forest inventory (Nyyssönen, 1993). During the last decades, due to increasing environmental consciousness, the
importance of the information about tree species has increased because tree species have a great influence to biodiversity
(Wilson, 1992).

Tree species classification has been made very successfully using large-scale (1:5000 or larger) aerial images (Needham
et.al., 1987). The results with smaller scale images have been worse (Nyyssönen et.al., 1968, Gisnås, 1982). More recent
studies have included different instruments such as AVIRIS (Martin et al. 1998), digital orthophotography (Duhaime
et al., 1997), multispectral videography (Thomasson et al., 1994) or profiling radar (Törmä et.al, 1998). Due to the
different methodologies and regional characteristics, detailed comparison is extremely difficult.

This paper studies the problem of obtaining tree species information of forest stands using laser scanning. First, the
principle of laser scanning is introduced and the characteristics of study area and measurement campaign are discussed.
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Then the proposed methodology to extract information

Figure 1: The principle of laser scanning using pulse
ranging method (Katzenbeisser, 1998).

from laser measurements and estimate tree species
proportions of forest stands is presented. Finally, the
results are discussed and some conclusions made.

2. LASER SCANNING

Laser scanning is a active remote sensing technique,
which utilizes solid-state laser (Light Amplification by
Stimulated Emission of Radiation) working typically
within 500 - 1600 nm range as a radiation source. The
most common technique to measure distance is pulse
ranging where laser sends a short pulse of radiation and
receiver receives the reflected pulse from a target (figure
1). The time difference between the transmitted and
received pulse is used to determine the distance to target.
Another technique is to measure the phase difference
between the transmitted and received signal reflected
from a target. This method is applied with lasers that
continuously emit radiation and are called continuous
wave lasers (Wehr et.al., 1999). When the position and
attitude of the aircraft is known, then the measured
distances can be converted into 3D-coordinates.

Depending on target, transmitted pulse is reflected back once or several times. If a target is heterogeneous within height
direction like forest, some part of the pulse is reflected from tree top, stems and ground producing multiple echoes
(figure 2). Usually, only the first or last echo is recorded, but there are systems capable of recording both first and last

Figure 2: Example of 3D points measured by laser scanning.

echoes or even multiple echoes in regular intervals. Some systems record also intensity information, in other words how
the target has changed the pulse intensity and waveform. This can provide information for classification of the target
(Baltsavias, 1999a).

Typically, laser system is operated using helicopter or aeroplane as a measurement platform and measurement height
is less than 1000 metres. Laser scanning system includes following components (Baltsavias, 1999b):
* laser including transmitter and receiver, their optics, signal detector, amplifier, time counter;
* scanning system;
* positioning and navigation system including GPS-receiver and antennas, and INS attitude measurement system;
* computer system consisting of hardware and software to control the data acquisition.
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The high measurement rate of laser scanning produces lots of 3D-coordinates from a target. The sampling density
depends on the system and on the balance between flying speed, pulse rate, scan angle and flying height. The sampling
pattern is determined by the used scanning method of the instrument, and it also depends on the flying path and its
irregularities and topography of terrain. Depending on pulse rate, the sampling densities from 1000 m flying height
usually vary from 1 point per 20 m2 to 20 points per m2 (Ackermann, 1999).

The main application of laser scanning seems to be DTM generation, especially in forested areas. Due to high
measurement rate, it is useful in applications where high accuracy and dense sampling is required, e.g. DTM generation
and volume calculations for open mines or mapping of electrical transmission lines. Depending on used wavelength, laser
scanning can be used to make bathymetric maps up to 70 m. Within urban areas, laser scanning can be used to measure
buildings and other structures in order to generate 3D city models (Wehr et.al., 1999).

Laser scanning system used in this study was build by Toposys. It is pulse modulated laser with fiber optic line scanner.
The advantage of this kind of scanning system is that the transmitting and receiving optics are identical. An identical
fiber line array is mounted in the focal plane of the receiving and transmitting lenses. By means of two rotating mirrors,
each fiber in the transmitting and receiving path is scanned sequentially and synchronously. These mirrors relay the light
either from the central fiber to a fiber of the fiber array mounted in a circle around the central fiber or the other way
around from the array to the central fiber. Due to small aperture of the fibers, small moving mechanical parts are
required and high scanning speeds achieved. Fiber array has 128 fibers and scan angle 14 degrees, so the across-track
spacing of measurements is 0.4 - 1.9 m depending on flying height. Along track spacing of measurements is 0.06 - 0.13
m and these values lead to point density 5 - 25 points per m2. Instrument measures the first or last pulse without any
intensity information (Wehr et.al., 1999, Baltsavias, 1999b).

3. TEST AREA AND MEASUREMENTS

Tuusula test area is located in southern Finland, some 30 km north from Helsinki. The land-use of test area consists of
forested areas like deciduous, coniferous and mixed forests growing in peat covered or mineral soil and open areas like
forest clear-cuts, agricultural fields and lakes. There are 210 forest stands and stand wise forest inventory was made
during summer 1995 (Hyyppä, 1999). The measured forest parameters include stem volume, basal area, tree species
proportions (weighted by stem volume) and ground type. The main tree species are pine, spruce and birch, the proportion
of other deciduous trees is very small. The stands are rather small, the mean area was 2.4 ha varying from 0.2 ha to 14.0
ha. The stem volume is largest in spruce stands and smallest in birch stands. Likewise the most usual development class
of spruce stands are advanced thinning or mature stands, as birch stands are advanced saplings or young thinning stands.

The laser scanner campaign was carried out on 2-3 September 1998. TopoSys-1 laser scanner was installed in the local
aircraft provided by FM-kartta OY. Three DGPS receivers were employed to record the carrying platform position: one
on board the aircraft, and two ground reference GPS stations (the first as basic receiver, the second for backup). Three
flight lines using first pulse mode were flown from the altitude of 400 m resulting the swath width approximately 100
m. Also two flight lines using last pulse mode were flown from the altitude of 800 m, but this data was not used in this
study (Hyyppä, 2000).

Flight lines covered 79 forest stands (mean size 2.6 ha, varying 0.3 - 14.0 ha), 40 were pine dominated (mean size 3.3
ha, varying 0.4 - 14.0 ha), 19 spruce (mean size 2.3 ha, varying 0.8 - 6.1 ha) and 20 birch (mean size 1.4 ha, varying
0.3 - 5.3 ha). The soil of stands was mostly mineral soil, but there were some pine dominated stands with peat covered
soil. The most usual development classes of pine were young thinning or mature stand, spruce were mature stands and
birch were advanced saplings or young thinning stands.

4. PREPROCESSING AND FEATURE EXTRACTION

4.1 Preprocessing

The transformation of measured distances to 3D-coordinates was made by Toposys. The whole dataset consisting of three
flight lines contained over 15 million points, so dataset was divided to smaller parts in order to speed up processing.
Data measured using first pulse mode was used in this study. There was slight translation between laser-measurements
and ground truth data, so ground truth was georeferenced to same coordinate system as laser measurements.
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4.2 Feature extraction

The purpose of feature extraction was to arrange and transform the measured 3D-coordinates so that different tree
species would be separable and estimation process possible. Measurements were divided into 2*2 m2 squares and then
those measurement which were higher than determined DTM were used to compute features. The purpose of features
were to determine and characterize the vertical distribution of measurements within square (or pixel). Four different
featuresets were computed in order to test and compare different strategies to extract features.

4.2.1 Generation of DTM: First task was to extract elevation model, in other words to determine the ground height.
This was done by dividing measurements into 2*2 m2 pixels and searching the lowest height. The size of pixel was large
in order to make certain that at least some of measurements would come from ground. Then gaps (shadow areas) were
filled if there were at least six pixels in the 8-neighborhood with measurements. The height of the gap was determined
by using the mean height of the neighbors. Finally, DTM was median filtered using 3*3 window in order to decrease
the effect of trees and erroneous measurements.

4.2.2 Featuresets: Features were computed for 2*2 m2 pixels corresponding to DTM pixels. Pixel was selected for
processing is it was thought to represent trees (difference between DTM and the highest height at least 1.5 m) and there
were enough measurements (8 or more). Measurement was taken into processing if it was at least as high as
corresponding DTM height and at the same time the height of DTM was subtracted from measurement. Four different
featuresets were computed, which tried to characterize the vertical distribution of measurements:

Featureset A
1. Height of the trees within pixel.
2. The mean height of the lowest quarter of heights within pixel.
3. The deviation of the lowest quarter of heights within pixel.
4. The mean height of the second lowest quarter of heights within pixel.
5. The deviation of the second lowest quarter of heights within pixel.
6. The mean height of the second highest quarter of heights within pixel.
7. The deviation of the second highest quarter of heights within pixel.
8. The mean height of the highest quarter of heights within pixel.
9. The deviation of the highest quarter of heights within pixel.

Featureset B
1. Height of the trees within pixel.
2. The mean height.
3. The deviation of the heights.
4. Height corresponding to lowest 25% heights divided by height of the trees.
5. Height corresponding to lowest 50% heights (median height) divided by height of the trees.
6. Height corresponding to lowest 75% heights divided by height of the trees.

Featureset C
1. Height of the trees within pixel.
2. Height corresponding to lowest 16% heights divided by height of the trees.
3. Height corresponding to lowest 34% heights divided by height of the trees.
4. Height corresponding to lowest 50% heights (median height) divided by height of the trees.
5. Height corresponding to lowest 66% heights divided by height of the trees.
6. Height corresponding to lowest 84% heights divided by height of the trees.

Featureset D
1. Height of the trees within pixel.
2. The mean height.
3. The deviation of the heights.
4. Number of heights within the lowest quarter divided by number of heights within pixel.
5. Number of heights within the second lowest quarter divided by number of heights within pixel.
6. Number of heights within the second highest quarter divided by number of heights within pixel.
7. Number of heights within the highest quarter divided by number of heights within pixel.
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5. ESTIMATION OF TREE SPECIES PROPORTIONS

The estimation of tree species proportions was performed using multilayer perceptron neural network (Widrow et.al.,
1995) with error backpropagation training algorithm (Werbos, 1995). During the training process, input patterns (i.e.
extracted features) and corresponding desired output patterns (i.e. tree species proportions) are presented to neural
network. The purpose of error backpropagation algorithm is to adjust the weights so that the squared error between
computed output patterns and desired output patterns is minimized. Computer software called Stuttgart Neural Network
Simulator (SNNS) was used in this study. The aim of the network is to perform nonlinear regression between extracted
features and corresponding tree species proportions. Network configurations (number of neurons in different layers) were
based on Kolmogorov’s theorem (Kurkova, 1995). The size of the network for featureset A was 9-19-3 neurons in
different layers, for featureset B and C 6-13-3 and featureset D 7-15-3.

Training data was acquired by computing feature vectors from selected forest stands. The criteria for selection were large
size and that the proportion of the dominant tree species was more than 80%. There were 25 stands selected, which 10
were pine dominated stands, 8 spruce and 7 pine. Because of small number of stands and for the need for large training
data, 50 feature vectors taken randomly from each stand were averaged and this was repeated several times. In the end,
there were about 1000 vectors in the training data. The purpose of the methodology is that training data represents the
same statistical distribution as the mean values of forest stands, but they are at the same time statistically independent.
The mean values computed from forest stands were used as test data.

The different networks were trained using training data and the mean values of the forest stands were used as test data.
There were two sets of mean values, one was computed from stands selected for training and other independent set
included the mean values from the other stands. The training process was repeated several times for each network to
find suitable parameters. After training, the tree species proportions were estimated.

Estimated proportions were compared to ground truth and following descriptive values were computed: the mean of the
error (ME), the mean of the squared error (MSE), the mean of the maximum difference (MMD), the overall accuracy
of the main tree species classification and average accuracies for each tree species. The error for forest stand is defined
as follows:

where ei is the estimated tree species proportion of tree species i, ci is the correct tree species proportion of tree species

(1)E
3

i 1

ei ci ,

i and tree species are: i = 1 is pine, i = 2 is spruce and i = 3 is birch. The squared error for forest stand is defined as:

The maximum difference is defined as:

(2)SE
3

i 1

( ei ci )2.

The forest stands were also classified according to their dominant tree species and error matrix was computed. The

(3)MD MAX
3

i 1
ei ci .

overall accuracy is the probability of correct classification (Sotkas et.al., 1992):

(4)
OA

100
m

i 1

EMii

n
,
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where n is number of feature vectors used to compute error matrix, m is number of classes and EMii is diagonal element
of error matrix. The average accuracy of class i is the probability that pixel belonging to class i taken randomly from
reference data has also same class i as corresponding pixel in classified data and pixel taken randomly from classified
data belonging to class i has same class i as corresponding pixel in reference data:

(5)AAi

2 EMii

m

j 1

EMji

m

k 1

EMik

.

6. RESULTS

The best estimation results acquired with different featuresets are represented in table 1 (stands selected for training)
and table 2 (other stands). In each case, the estimation errors for those stands selected for training were really small but
the estimation errors for other stands were considerably worse. The featureset A performed best and featureset D worst,
but in each case the estimation errors for other stands were large. There was no correlation with stand characteristics
(development class, soil, etc.) and largest estimation errors, but it seems that this methodology works rather badly when
the tree species of stand are mixed. Errors are much smaller for those stands where there are one clearly dominant tree
species.

When stands were classified according to dominant tree species, classification error for stands selected for training were
nonexistent or small, but the classification errors for other stands were larger. Table 3 represents the overall and the
average accuracies for different tree species for other stands. The best classification accuracy 59.3% of other stands was
achieved with featuresets A and B, and the worst (48.1%) with featureset D. Tree species pine and spruce were classified
best, but also in this cases average accuracy was only 66% at its best.

7. CONCLUSIONS

The presented methodology to estimate the tree species proportions of forest stands do not seem to work well. The
estimation errors and dominant tree species classification errors were high for test data, especially when compared to
results acquired with profiling radar (Törmä et.al., 1998). This may be due to small number of stands (79), but also
indicates that only 3D-coordinates are not enough to estimate stand tree species proportions. The alternatives to get better
results are either to classify single trees and compute tree species proportions from these or to use also intensity
information by using aerial images or laser which can measure intensity.

ACKNOWLEDGEMENTS

Figure 2 was made by M.Sc. Ulla Pyysalo.

REFERENCES

Ackermann F., 1999. Airborne laser scanning - present status and future expectations. ISPRS Journal of Photogrammetry
and Remote Sensing, vol. 54, no. 2-3, pp. 64-67.

Baltsavias E.P., 1999a. A comparison between photogrammetry and laser scanning. ISPRS Journal of Photogrammetry
and Remote Sensing, vol. 54, no. 2-3, pp. 83-94.

Baltsavias E.P., 1999b. Airborne laser scanning: existing systems and firms and other resources. ISPRS Journal of
Photogrammetry and Remote Sensing, vol. 54, no. 2-3, pp. 164-198.

Törmä, Markus

International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B7. Amsterdam 2000. 1529



Duhaime, R.J., August, P.V., Wright, W.R., 1997. Automated Vegetation Mapping Using Digital Orthophotography.
Photogrammetric Engineering and Remote Sensing, vol. 63, no. 11, pp. 1295-1302.

Gisnås A., 1982. Skogkartlegging ved fototyding i kartkonstruksjoninstrument. Rapport fra Norsk institutt for
skogforskning 14/82.

Hyyppä J., 1999. Personal communication with professor Juha Hyyppä, Finnish Geodetic Institute.

Hyyppä J., 2000. Personal communication with professor Juha Hyyppä, Finnish Geodetic Institute.

Kurkova, K, 1995. Kolmogorov’s Theorem. The Handbook of Brain Theory and Neural Networks, ed. M.A.Arbib, MIT
Press, pp. 501-502.

Katzenbeisser, R., 1998. Digital Elevation Models by Laser Scanning Principles and Results. Workshop on Laser-
Scanning. Lifelong Learning Institute DIPOLI, April 20, 1998, Espoo, Finland.

Martin, M.E., Newman, S.D., Aber, J.D., Congalton, R.G., 1998. Determining Forest Species Composition Using High
Spectral Resolution Remote Sensing Data. Remote Sensing of Environment, 65: 249-254.

Needham T., Smith J., 1987. Stem Count Accuracy and Species Determination in Loblolly Pine Plantations Using
35-mm Aerial Photography. Photogrammetric Engineering and Remote Sensing, vol. 53, no. 12, pp. 1675-1678.

Nyyssönen A., Poso S., Keil C., 1968. The Use of Aerial Photographs in the Estimation of Some Forest Characteristics.
Acta For. Fenn. 82:1-35

Nyyssönen A. (ed.), 1993. Proceeding of FAO/ECE Meeting of Experts on Global Forest Resources Assessment. The
Finnish Forest Research Institute. Research Papers 469.

SNNS. Stuttgart Neural Network Simulator. World Wide Web page
http://www-ra.informatik.uni-tuebingen.de/SNNS/, Institute for parallel and distributed high performance systems,
University of Stuttgart.

Sotkas, P., Laaksonen, J., Kuittinen, R., 1992. Satelliittikuvan tulkintatarkkuuden määrittäminen. Geodeettinen laitos,
tiedote 5.

Thomasson, J.A., Bennett, C.W., Jackson, B.D., Mailander, M.P., 1994. Differentiating Bottomland Tree Species with
Multispectral Videography. Photogrammetric Engineering and Remote Sensing, vol. 60, no. 1, pp. 55-59.

Törmä M., Hyyppä J., 1998. Estimation of Tree Species Proportions Using Ranging Scatterometer. Photogrammetric
Journal of Finland, vol. 16, no. 1, pp. 19-28.

Wehr A., Lohr U., 1999. Airborne laser scanning - an introduction and overview. ISPRS Journal of Photogrammetry
and Remote Sensing, vol. 54, no. 2-3, pp. 68-82.

Werbos, P.J., 1995. Backpropagation: Basics and New Development. The Handbook of Brain Theory and Neural
Networks, ed. M.A.Arbib, MIT Press, pp. 134-139.

Widrow, B., Lehr, M.A., 1995. Perceptrons, Adalines and Backpropagation. The Handbook of Brain Theory and Neural
Networks, ed. M.A.Arbib, MIT Press, pp. 719-724.

Wilson E., 1992. The Diversity of Life. Harvard University Press.

Törmä, Markus

International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B7. Amsterdam 2000.1530



Table 1: The best estimation results acquired with different featuresets, when the mean values of the features of those
forest stands used as training data were used for testing.

Featureset A Featureset B Featureset C Featureset D

Mean error 0.07 0.05 0.13 0.11

Mean squared error 0.01 0.00 0.07 0.05

Mean of maximum difference 0.04 0.03 0.09 0.06

Table 1: The best estimation results acquired with different featuresets, when the mean values of the features of other
forest stands were used for testing.

Featureset A Featureset B Featureset C Featureset D

Mean error 0.89 0.95 0.92 1.04

Mean squared error 0.52 0.59 0.59 0.68

Mean of maximum difference 0.44 0.47 0.46 0.52

Table 3: The overall accuracies (OA) and average accuracies of tree species classes of dominant tree species
classification for different featuresets. These results were acquired by using thse stands which were not used in training
as test data.

Featureset A Featureset B Featureset C Featureset D

OA 59.3% 59.3% 57.4% 48.1%

AA pine 64.2% 66.7% 66.7% 49.0%

AA spruce 64.5% 60.0% 56.3% 60.6%

AA birch 41.7% 41.7% 31.6% 30.8%
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