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ABSTRACT

Having an estimate of final yield early in the growing season can be a powerful management and economic
tool for the farming community. Therefore the possibility of using temporarily high resolution remote sensing
data in combination with daily meteorological data for crop yield prediction on a close to field scale has been
investigated for one of the main cropping areas in south−eastern Australia. The lack of rainfall in semi−arid to
semi−humid climate of this region is one of the major limiting factors to crop growth. The relation of different
parameters, such as the “Normalized Differential Vegetation Index” (NDVI), the date of the commencement of
the grainfilling stage (GF), the water−Stress Degree Days” index (SDD), as well as the growing season
rainfall, to yield of canola, wheat and cereals (wheat and barley) have been examined. Using information from
1995 to 1997, a crop yield estimation model on the basis of a multiple linear regression model has been
developed and evaluated. The following paper reports the results of a study carried out at the Commonwealth
Scientific and Industrial Research Organization (CSIRO), Aspendale, in collaboration with the Department of
Natural Resources & Environment (NRS), Melbourne, and the University of Munich.

1. USING REMOTELY SENSED DATA FOR CROP YIELD FORECASTING AS AN
AGRICULTURAL MANAGEMENT TOOL

For farmers in the eastern Wimmera (Victoria, Australia) it is important to estimate final yield early in the
growing season. Using their knowledge and experience about the local conditions they are able to estimate
yield to a certain extent. Having reliable predictions of yield on a close to paddock scale could support their
management and economic decisions. 
A basic parameter for crop yield, especially in semi−humid to semi−arid regions is growing season rainfall
(GSR). Therefore, the GSR is often used by farmers to estimate final yield. Also, remotely sensed data have
proved to be a good source of information for agricultural applications, in particular for yield estimation.
Amongst others, M. S. RASMUSSEN (1997) and S. MOULIN et al. (1998) give a good review over past and
present trends. 
One of the most common approaches is the use of vegetation indices, such as the Normalized Difference
Vegetation Index (NDVI) as a measure for plant growth and development. M.S. RASMUSSEN (1992)
examined the integral of NDVI from data of the Advanced Very High Resolution Radiometer (AVHRR) over
the phenological stages of reproduction of wheat for 4 km² areas. N.A. QUARMBY et al. (1993) also
investigated AVHRR−data and created 4 years time−series of NDVI. They point out the importance of the
grainfilling period of wheat for final yield. M.P. CABEZÓN and J.C. TAYLOR (1994) analyzed correlations
of multiple linear regressions using variant combinations of rainfall parameters and vegetation indices as
independent variables. R.C.G. SMITH et al. (1991) found, that in a mediteranean−type environment the
vegetation index − yield relationship does not explain yield variations significantly better than the rainfall −
yield relationship over the growing season. However, they also point out that a combination of such
information in a multiple linear regression model do improve the correlation significantly. 
Since S.D. JACKSON et al. (1977) it is known, that observations in the thermal band of the EM−spectrum can
be used as an indicator for the plants’ water−stress. They use the difference of observations of daily surface
temperature and air temperature for deriving the water−stress index “Stress Degree Days” (SDD). 
To better take into account the course of vegetation development, temporarily high resolution remote sensing
data have to be applied. Only frequent observations allow the examination of the crop’s response to changing
agrometeorological conditions. Such data can be obtained from the AVHRR−sensor onboard the polar orbiting
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satellites of the NOAA−series. The high temporal resolution, however is at the expense of the spatial
resolution. The AVHRR−sensor has a spatial resolution of 1.1 km in nadir at a temporal resolution of one
daytime overpass. One of the objectives of this research was to take advantage of the AVHRR’s high temporal
resolution at the largest possible scale. Another objective was to develop a method to predict crop yield, that
meets the requirements of the local farmers in the Eastern Wimmera.

2. DATABASE

2.1. The AVHRR−Data

A system summary of the AVHRR−sensor is given on the World Wide Web site of NOAA’s polar data user
guide (NOAA POD Guide). Observations by the NOAA−14 were used exclusively. 
Data for the growing seasons of the Eastern Wimmera (May
to December) from 1995 to 1997 were processed using
CSIRO standard routines for calibration navigation,
geometric correction and cloud masking (DILLEY, A.C.,
ELSUM, C.C. (1994), DILLEY, A.C., EDWARDS, M.
(1998)). The short−wave channels 1 and 2 (see table 1) were
used for calculating the NDVI,

NDVI = (Ch2 − Ch1) / (Ch2 + Ch1) (1).

For atmospheric correction a maximum value
composite (MVC) technique was applied to the
NDVI time series (see e.g. B.N. HOLBEN
(1986)). For daily values, NDVI was
interpolated linearly between the cloud free
observations. Figure 1 shows the MVC of
NDVI of a 3*3 pixel subset (47 % of the area
was wheat) in 1997. It represents the typical
course of the NDVI−MVC of wheat in 1997.
This is also valid for the sudden decrease
around day of the year (DoY) 210, which was
due to drought. The size of single paddocks in
the Eastern Wimmera is usually in the order 1
km². 3*3 pixel subsets, thus guarantee that the
paddock of interest is covered by the
observation subset at the estimated geometrical
accuracy of one pixel (DILLEY, A.C., ELSUM, C.C. (1994)). In the AVHRR channels 4 and 5, thermal
infrared radiance emitted by the earth−atmosphere system is measured. The atmosphere’s influence was
removed using a split window technique (e.g. refer to A.J. PRATA 1994). As split window coefficients, those
determined empirically by A.J. PRATA (1994) for wheat paddocks in south−eastern Australia were applied.
Coefficients were available for “bare soil”, “maximum green vegetation cover” and “mature crop”. Within the
NDVI – MVC curvature, the bare soil signal corresponds to the low NDVI at the beginning of the growing
season, after sowing and before emergence; maximum cover corresponds to the maximum NDVI occurring
and mature crop corresponds to a NDVI value just before harvest, early in December. Y.H. KERR et al. (1992)
describe how to use the NDVI signature for deriving split window coefficients adapted to the changing states
of plant growth by calculating the fraction between two stages and re−calculating the coefficients using this
fraction. This idea was applied to the data of the Eastern Wimmera. Thus, a good approximation of daily land
surface temperatures was available. 

2.2. Meteorological Data

The weather data used, was made available by the Australian Bureau of Meteorology (BoM), situated in
Melbourne. Information applied was daily maximum, average and minimum temperatures from three stations
and daily rainfall from seven stations within or close to the study area. To approximate the meteorological
conditions within the targets, spatial interpolation between the station was carried out. As there was no
significant spatial variation in temperature, nearest neighbor interpolation was sufficient. Rainfall, however,
had a very high spatial variability, so the data had to be interpolated using the inverse of the squared distance
as a weight.

Figure 1: NDVI − MVC time series for the 3*3 pixel target
ID 26 1997 47% wheat.
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Table 1: Spectral Bands of the NOAA−14
AVHRR (http://www.ncdc.noaa.gov).

   

Channel # Band width [µm] Spectrum
1 0.58−0.68 VIS red
2 0.73−1.10 NIR
3 3.55−3.93 MIR
4 10.3−11.3 TIR
5 11.5−12.5 TIR
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2.3. Yield Data

Yield data were obtained directly from the farmers by questionnaires. The farmers are able to derive such
information on paddock scale during harvest from the amount of crop they sell, transport or store. This data
can be regarded as accurate and reliable. 
Wheat, Barley and Canola are the main crops in the Eastern Wimmera. Due to the large size of the observation
targets (approx. 9 km²), several crop types can be found within one target and most of the times their
composition was only known to a certain extent. Therefore, areas to be included into the prediction model had
to show uniform behavior in space and time. This was tested by examining the variations in time and space
between smaller and larger subsets around the center pixel of the subset throughout the observation period.

3. MODEL DEVELOPMENT

3.1. Prediction Dates

The timing of the predictions is very important for the applicability of the prediction model as a management
tool. The farmers need reliable and timely forecasts to take management actions. The growing season of wheat
in the eastern Wimmera lasts from May to December; this means that predictions should be made available
throughout the growing season until the end of October, when there is the last opportunity to take economic
decisions (personal communication with the farmers). Predictions before September proved not to be reliable.
Thus, three prediction dates were tested: 10.September (DOY 253), just in time for taking additional
management actions, NDVI(max), at maximum green vegetation cover (usually between end of September
and Mid of October, ca. DOY 265 to 290) and 31.October (DOY 304), as the latest date for taking final
economic decisions (e.g. insurances). 

3.2. Single Linear Regressions

The yield data’s correlation to four parameters was examined: Cumulated daily NDVI from May, 1st to the
prediction date (NDVI), the date of the commencement of the grainfilling stage (GF) as a measure for the
duration of the grainfilling, daily rainfall cumulated from May, 1st to the prediction date to indicate the
growing season rainfall (GSR) and the water stress index “stress degree days” (SDD), cumulated from July, 1st

to the prediction date. Figure 2 shows the linear regressions of those parameters with yield of wheat for 1995
through 1997. Cumulated NDVI (Fig. 2a), as an indicator for green vegetation growth, has a positive
correlation with crop yield. The offset of the regression line is due to the NDVI caused the by soil
background. The GF parameter (Fig. 2b) can be identified from the NDVI – MVC curvature (figure 1). The

Figure 2: Linear regressions of cumulated NDVI, GF, GSR and cumulated SDD for the growing
seasons 1995 to 1997 of wheat at the prediction date “NDVImax.
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maximum of the NDVI usually is not one sharp peak, but is situated within a more or less broad plateau of
high NDVI values (see figure 1). The plateau very well corresponds to the grainfilling stage of wheat, when
green leaf biomass is at a maximum (i.e. NDVI is at a maximum) and all the photosynthetical production is
used for filling up the ears (N.A. QUARMBY et al. (1993)). The GF parameter has a negative correlation with
yield. The earlier it starts, the longer it can last, and the more grain yield can be expected. The commencement
of the grainfilling stage was approximated by the first day, when the NDVI was greater than 0.5. GSR (Fig. 2c)
has a positive correlation with yield. The offset can be interpreted as the minimum rainfall necessary for yield
greater than 0 in the growing season, assuming a strict linear regression. The SDD water stress index is
calculated as the difference between surface temperature (here: from AVHRR measurements) and air
temperature (here: as measured at 3 pm). This index was first described by R.D. JACKSON et al. (1977).
Negative values correspond to a surface temperature lower than the air temperature due to the transpiration of
plants. When transpiration is reduced because of drought, the surface temperature increases and so does the
SDD. Positive values are interpreted as water stress. Figure 2d shows the negative correlation of SDD with
crop yield. The relationship in this case is not
very strong, but yet significant. It becomes
stronger with late prediction dates (not shown
here).
Table 2 shows the squared correlation
coefficients for all prediction dates examined
for wheat. All correlations were found to be
significant on a 95 % level. Nevertheless, none
of the regressions for themselves are reliable
enough to allow accurate and reliable yield
estimations. 

3.3. Multiple Linear Regressions with Crop Yield

A multiple linear regression model for yield for example of wheat using the parameters described above as
independent variables, can be formulated mathematically as:

Yieldwheat = b0 + b1*NDVI(t) + b2*GSR(t) + b3*GF + b4*SDD(t) (2),

where Yieldwheat is the vector of all measured wheat−yield data, NDVI, GSR, GF and SDD are the
corresponding vectors of the derived parameters, and t is the prediction date. This leads to a set of regression
coefficients {b0,b1,b2,b3,b4}, which then can be used for predicting crop yield on other wheat−paddocks. Table
3 shows the squared correlation coefficients for wheat using a multiple linear regression of yield to different
combinations of  independent variables and for the three prediction dates examined. 
One can see from table 3, that adding parameters generally improves correlation. Considering all examined
crops, certain parameter combinations can be identified, that deliver “optimum” results for the three prediction
dates examined. For “10. Sep.” that is {NDVI, GSR}, as the GF parameter is not available that early in the
growing season. For the other dates the
combinations are {NDVI, GSR, GF} for
“NDVImax”, and all of the parameters examined
for “31. Oct.”. The correlation figures for
canola and cereals (wheat and barley) all lie in
a similar range. However, the correlation
coefficient does not give information on the
actual quality of a prediction using the set of
derived regression coefficients {b0,b1,...,bn}.
The prediction model was then evaluated. 

Table 2: Squared Pearson correlation coefficients for
different parameters to yield of wheat at three prediction
dates using data from 1995 to 1997. GF generally appears
after September, 10th.

  

95−97
Date NDVI GF GSR SDD
10. Sep. 0.4204 n/a * 0.4639 0.37201
NDVI max 0.6325 0.4437 0.4875 0.217
31. Oct. 0.497 0.4437 0.3544 0.59556

Table 3: Squared correlation coefficients for different
combinations of independent variables to yield of wheat at
three prediction dates using a multiple linear regression.

 

95−97

Date NDVI NDVI,GSR
NDVI,GSR,

GF
NDVI,GSR,

GF,SDD
10. Sep. 0,420 0,558 n/a n/a
NDVI max 0,633 0,681 0,723 0,733
31. Oct. 0,497 0,720 0,720 0,737
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4. MODEL EVALUATION AND DISCUSSION OF THE RESULTS

Using the “optimum” parameter combination
for the prediction dates, the multiple
regression model was evaluated by removing
data−records from the database, calculating
regression coefficients with the remaining
records and using those coefficients for
modeling the yield of the removed records.
The residuals then can be analyzed
statistically. 

Table 4 summarizes the residual analysis
based on single data−records for the three crop
types examined. The sum of the residuals
squares, is a measure for the overall error
being made. Due to the various count of data
available for the different crop types, it can
only be used as a relative measure within one
crop type. Predictions at “NDVImax”delivered
the best results. This is due to the fact, that “NDVImax”is a variable date depending, for example, on sowing
date and crop development. The relative errors lie below (wheat and cereals) or around 20 % (canola).
Although the local farmers of the Eastern Wimmera confirm that these results are in the order of their
estimates based on knowledge and experience, it is difficult to compare both kinds of “predictions” with each
other. To get an idea of the crop yield they can expect, they also use the empirical equation 

Y= x * (GSR – E) / 1000, (3) 

where Y is yield, x is an empirical coefficient,
depending on the crop type, GSR is the
growing season rainfall and E is the
evaporation (personal communication with
local farmers). GSR and E values at the end of
the growing season are estimated at the
prediction dates, based on the conditions
before. Table 5 shows the results using this
approach with measured GSR and estimated E
for the years examined, assuming, that GSR is
known in advance, as is not in reality. One can
see, that using the multiple linear regression
model, the results of the predictions are better
in all cases. This does not proof the statistical
model to be superior to the farmers estimates,
but it shows, that the results are likely to be as
good as their estimates or better.

Table 6 shows the residual analysis for wheat at the “optimum” parameter combinations, examining whole
year’s data. As the database comprises three
years only (1995 to 1997), this test is not of
great statistical value, especially as the
agrometeorological conditions between the
years were quite different. Nevertheless, some
trends can be seen. The average yield of wheat
on the test paddocks was 3.9 t/ha in 1995, 3.5
t/ha in 1996 and 2.0 t/ha in 1997. In 1995 and
1997 yield was systematically overestimated
for all prediction dates, except “NDVImax. The
reason therefore can be found within the data:
In 1995 on the 10th of September as well as on
the 31st of October the differences in the values
of NDVI and rainfall compared to those of
1996 are quite significant, while the differences
in the yield values are not that high. 1996’s

Table 6: Results of the residual analysis for wheat at the
optimum”parameter combinations, examining whole
year’s data.

  

Wheat residual analysis, whole year’s data tons / ha
Pred. Date 1995 1996 1997
10. Sep. 1,91 0,89 1,13 avg.

48,93 25,24 57,07 % error
0,87 0,16 0,41 st.dev.
4,24 1,80 2,00 max.

NDVI max 0,48 0,66 0,98 avg.
12,30 18,72 49,49 % error
0,19 0,18 0,23 st.dev.
1,28 1,54 1,70 max.

31. Oct. 0,82 0,69 1,56 avg.
20,90 19,43 78,90 % error
0,41 0,15 0,19 st.dev.
2,14 1,36 2,04 max.

Table 5: Results of the residual analysis using the GSR
approximation (equation 3).

 

1995−1997 residual analysis; GSR approximation tons / ha
Pred. Date Canola Wheat Cereals
10. Sep. 0,43 0,63 0,58 avg.

30,20 19,76 19,53 % error
0,12 0,20 0,16 st.dev.
1,16 1,95 1,48 max.
5,23 17,77 19,86 sum res. sq.

NDVI max 0,45 0,61 0,57 avg.
31,52 19,08 19,36 % error
0,13 0,21 0,12 st.dev.
1,01 1,69 1,30 max.
5,53 17,21 18,06 sum res. sq.

31. Oct. 0,35 0,57 0,51 avg.
24,43 17,89 17,02 % error
0,08 0,21 0,14 st.dev.
0,81 2,36 1,85 max.
3,32 15,89 15,73 sum res. sq.

Table 4: Results of the residual analysis based on single
data−records, using the optimum”parameter combinations.

  

O ptim u m re s. a n a l.; sin gle  p a d do ck ton s / h a
P re d . Da te Ca no la W he a t Ce re a ls
10. S e p. 0,34 0,61 0,61 a vg .

23,62 19,09 20,69 % e rror
0,04 0,43 0,17 st.de v.
0,68 1,69 1,85 m a x .
2,66 16,59 21,66 su m  re s. sq .

NDV I m a x 0,30 0,52 0,45 a vg .
21,23 16,14 15,02 % e rror
0,04 0,37 0,09 st.de v.
0,52 1,26 1,22 m a x .
2,19 12,00 11,35 su m  re s. sq .

31. O ct. 0,21 0,54 0,48 a vg .
14,76 16,94 16,17 % e rror
0,05 0,17 0,10 st.de v.
0,83 1,74 1,71 m a x .
2,57 13,81 13,30 su m  re s. sq .
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data compared to 1997’s data shows both, a great difference in values and in yield. This might be due to non−
linearity effects, but non−linear regression could not be proved statistically for the whole database by testing
diverse kind of fits. Taking 1995’s data out of the database and modeling its yield using regression coefficients
derived from the remaining data−records, hence, must lead to an overestimation. The same is valid for the
modeling of 1997’s yield, while 1996 yield is slightly underestimated. This fact shows, that this model needs
testing with additional data from a longer observation period. For the prediction date “NDVImax the residual
analysis shows no systematical over− or underestimation throughout 1995 to 1997. Again, the reason for this is
the fact, that “NDVImax is not a fix prediction date, like the others. All that also underlines the importance of
the “GF” parameter, as it is a time variant measure as well. This is confirmed by the fact that the error being
made at the prediction date 10.Sep. without“GF”is much higher than the one made at “31.Oct.”. 

5. CONCLUSION
It was the aim of this study to test the applicability of the NOAA−AVHRR in combination with
meteorological for crop yield estimation in the Eastern Wimmera, South−Eastern Australia. 
It was shown, that the parameters NDVI, GSR, GF and SDD, correlate with grain yield of wheat, cereals
(wheat and barley) and canola. Three, for the farmers important prediction dates were examined, the 10th of
September, the date of the maximum NDVI value in the NDVI−MVC curvature and the 31st of October. Yield
estimates using the linear regressions of the single parameters are not accurate enough for the Farmers’
requirements. Therefore the parameters were included into multiple linear regressions as independent variables
to predict grain yield. This significantly increased correlations, and yield estimations at the prediction date
“NDVI max”could be made with an accuracy in the order of the farmers’ estimates, or better. It is obvious that
this model needs further examination. The inclusion of additional data and a longer observation period, where
more diverse agrometeorological conditions are taken into account, will probably improve the results. Also,
the quality of the data used certainly can be improved by an enhanced processing setup. Tests with 1998’s
data, however, made another major shortcoming of this model apparent. 1998 was affected by frosts late in the
growing season end of October and beginning of November (!), that is after the prediction dates. This results in
an overestimation of grain yield by 1 to 2 t/ha, as none of the effects caused by the frost days is reflected in the
independent variables. Bad weather conditions or diseases occurring after the predictions, therefore, are not
taken into account by this model. Due to the large subsets used, the environment of the observed paddocks has
to be uniform. If this is not the case, for example due to small water−bodies, no reliable predictions are
possible. If the remote sensing data can be derived from smaller subsets, also the accuracy of the method
described might increase. Further investigation is necessary, before the described model can become an useful
farming tool. If the results are at least confirmed, and an operational setup can be implemented, the method
has the potential to benefit the farming community in South Eastern Australia. The relatively simple and easily
accessible data used, might allow the model to be applied to other regions in the world with minor
modifications.
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