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ABSTRACT

Interpolated daily and dekadal raingauge data were compared to dekadal satellite precipitation estimates. The objective
of this comparison was to investigate the accuracy of these datasets and determine their advantages and limitations for
parameterising a soil erosion model for sub-Saharan Africa. The raingauge network comprised of 500 GTS stations,
which were interpolated using block kriging and a combination of ordinary and indicator kriging. The satellite estimates
were derived from METEOSAT data using a methodology that incorporates cold cloud duration with models for
orographic and warm cloud precipitation. The validation rain-gauge data consisted of 1800 stations in South Africa for
the period of March 1996. The validation technique involved the interpolation of the South African network and its use
as ground-truth to estimate the errors between grids on a pixel-by-pixel basis. Error criteria computed at the gauged
pixels indicate that overall the three techniques perform similarly and provide good estimates for low rainfall but they
all severely underestimate the larger precipitation amounts. The soil erosion model was parameterised on a daily basis
using these different rainfall inputs, AVHRR NDVI to estimate vegetation cover, and other GIS data. The satellite data
provide erosion estimates that are spatially more extensive and of higher magnitudes than the interpolated data,
especially in those areas where the GTS network is extremely sparse. It is concluded that, in order to deal with the
problem of raingauge insufficiency in developing areas, a merging technique, which combines the raingauge estimates
with the satellite data, should be applied.

1 INTRODUCTION

Research on soil erosion by water has concentrated mainly on the runoff plot, the field and the catchment scale. The
erosion models have been developed, calibrated, validated and used at these scales. Relatively few studies have been done
at larger scales, i.e. the regional, continental and global. The problem with using and validating a model at such larger
scales is the vast amounts of data required. Satellite remote sensing data can help to meet these requirements and have
been used as input to such models in a GIS environment, where they can be manipulated and combined with ancillary
data (e.g. Symeonakis et al, 1999).

Precipitation, which is the primary input to overland flow and soil erosion models, shows a considerable spatial variation.
The variation is brought about by differences in the type and scale of development of precipitation producing processes,
and is also strongly influenced by local or regional factors, such as topography and wind direction at the time of
precipitation (Sumner, 1988). The problem is to try to describe the spatial variation and to make estimates of precipitation
in areas where there are no monitoring stations. Resources for collecting such basic information are limited particularly in
the developing world.

A quantitative evaluation of the amount and spatial distribution of precipitation is required for a number of large scale
applications in hydrology and many techniques have been proposed for mapping rainfall patterns and for evaluating the
mean areal rainfall by making proper use of existing data points. Methods for precipitation interpolation from ground-
based point data have ranged from techniques based on Thiessen polygons and simple trend surface analysis, inverse
distance weighting, multiquadratic surface fitting and Delauney triangulations through to more sophisticated statistical
methods (Baily and Gatrell, 1995). So far, most of the research has focussed on interpolating precipitation over small
areas and for small to regional scale applications (Barancourt and Creutin, 1992).
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Because of the very considerable spatial variation of precipitation amounts and intensity, particularly for severe
convectional storms, there is no guarantee that point rainfall values will in any way provide a reliable guide to the rainfall
of immediate surrounding areas. Areal averages derived from raingauge observations suffer from severe limitations due
to sampling but also because gauges tend to be distributed with a pronounced spatial bias toward populated areas and
against areas with high elevation and/or slope (Xie and Arkin, 1995). An answer to these limitations is likely to come
from satellite remote sensing, whose potential for estimating rainfall has been evident since its very earliest days.
Radiances observed in many different spectral regions were found to offer a physically plausible means of deriving
rainfall rates, and such applications developed quickly (Arkin and Ardanuy, 1989). However, the indirect nature of the
relationship of the observations to precipitation and the fact that they require calibration using gauge data has limited the
success of these remote sensing techniques.

The aim of this research is to produce precipitation estimates for the entire sub-Saharan Africa by interpolating raingauge
data, to compare them to satellite estimates of the area and to examine the applicability of the two different datasets to
modelling soil erosion over the continent.

2 METHODOLOGY

2.1 The Raingauge Data

The only readily available rainfall data for the African continent on a daily basis are those of the World Meteorological
Organisation (WMO), which consist of daily records from about 760 Global Telecommunications System (GTS) stations.
Around 463 of these GTS stations are within sub-Saharan Africa, and are the ones used for the estimation of interpolated
areal rainfall, described in the next section.

2.2 Interpolation Of The GTS Rain-Gauge Data

Two different interpolation schemes were applied and compared: ordinary block kriging (BK), and a combination of
block kriging and indicator kriging, which we will refer to as the ‘combined kriging’ (CK) technique. Indicator kriging
(IK) has been proven to be a good estimator of the occurrence of precipitation (Barancourt et al, 1992).  It is a non-linear
form of ordinary kriging in which the original data are transformed from continuous to binary, with ones representing rain
occurrence and zeros the absence (I(r) = 0 for r = 0 and I(r) = 1 for r > 0). By applying BK to the GTS data in conjunction
with its indicator counterpart, a more efficient delineation of the dry areas was intended. The validation and comparison
of the different precipitation estimates was carried out for the period of March 1996. For that month, both interpolation
schemes were applied to the 3 dekadal datasets, produced by summing the daily sets on a dekadal basis to match the
temporal resolution of the satellite estimates.
The semi-variogram is a statistical way of quantifying the spatial variation of the data. The semi-variance is estimated by
the sample semi-variogram the value of which, for a station separation-distance  of h is the average squared difference in
the amount of rainfall between pairs of stations separated by h:

γ(h) = 1/(2n) ∑{p(xi) – p(xi + h)}2 (1)

The variograms were fairly well behaved following the same kind of shape (Figure 1):

• For relatively short distances the semi-
variances are low, increasing rapidly
with distance until approximately the
first 100km.

• A first sill is then reached and the semi-
variance becomes constant until about
the first 1000km. This can be attributed
to the fact that for distances that
contribute to this sill, the stations are
close enough to belong to a
homogenous rainfall regime.

• Between distances of 2000km and
3000km the semi-variances increase
rapidly again. This signifies the
decrease in spatial dependence between
stations separated by such distances.

• This ‘hump’ vanishes at distances
Figure 1: Experimental semi-variogram, 2nd dekad March 1996
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between stations of approximately 4500-5000km, where the semi-variances have about the same magnitude as the
variances of the first sill (i.e. first 1000km), and finally

• From distances of 6500km and over the semi-variances increase dramatically and continuously: a clear sign of a
complete lack of spatial dependence, something expected from a phenomenon such as precipitation.

Three different techniques of fitting spherical and exponential theoretical models to the experimental points were utilised,
in order to choose the most appropriate model (i.e. the one that minimises the error of the interpolation): (a) visual fit, (b)
fit by generalised least squares (GLS), and (c) fit by
maximum likelihood (ML). After applying all three
different fitting techniques, leave-one-out cross
validation was applied, in order to select the optimal
model. Leave-one-out cross validation works by leaving
each sample point in turn out of the dataset and
predicting its value from the rest of the data, using a
particular variogram model. This results in an observed
set of prediction errors between the predicted and true
values at each sample site. For each combination of
model type, range, sill and nugget, the following
summary statistics were estimated: the bias, RMSE,
normalised RMSE and the stabilised geometric mean cR
(Kitanidis, 1997). Ideally, for a perfect estimate, biasd =
0, biasr and RMSEnorm = 1, and RMSE and cR are
minimised. The optimal theoretical model paremeters
that were chosen for the interpolation were consistent in
the type (exponential for all three dekads), but the ranges
varyied from 100 to 180km, the sills from 100 to
950mm2 and the nuggets from 40 to 450mm2.

The next step was to apply ordinary kriging to the daily
and the dekadal GTS datasets using the model
parameters that the cross-validation procedure indicated
as most appropriate. A search radius of 1000km and a
minimum number of eight participating neighbouring
stations was used. Examples of the output of ordinary
kriging and the estimated kriging errors for the first
dekad of March 1996 are shown in figures 2a and 2b
respectively. For that dekad the vast majority of the
continent was dry or received relatively small amounts
of rainfall. More specifically, 33% of the 463 stations
reported zero precipitation and 53% less than 10mm.
The kriging RMS errors are lower for those areas
surrounding the locations of the GTS stations, but even
for those small areas, in most of the cases the kriging
errors represent a large relative uncertainty in the
estimation of precipitation (up to 50%). Areas which
receive significant amounts of daily rain, e.g.
Madagascar in figure 2a, which received 100 to 180mm
on the first dekad, are substantially more accurate with
errors of less than 10%. The total lack of stations in a
very large part of the continent (figure 2a), especially in
Angola, the Democratic Republic of Congo, Somalia and
Sudan, and the problem of missing observations, are the
main sources of the big errors in these areas (darker
tones of gray in figure 2b). Parts of Angola for example,
with an estimated amount of dekadal precipitation of 20-
50 mm, are producing errors of as high as 100% and the
tip of Somalia with an estimated amount of less than
10mm and an error of as high as 300%.

Kriging assigns zero values only by rounding or if the
entire set of neighbouring data points within the range is

Figure 2: (a) Ordinary kriging output (b) respective
kriging errors and (c) combined kriging output, 1st

dekad March 1996. Blue dots are wet stations and
red the dry ones.



Symeonakis, Elias

218                      International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Supplement B7. Amsterdam 2000.

also zero and thus spreads low rainfall values over dry areas. By applying combined kriging to the GTS data a more
efficient delineation of the dry areas is possible. The combined kriging scheme consisted of three individual stages:

(a)  the calculation of the indicator field (I(r) = 0 for r = 0, I(r) = 1 for r > 0) and the application of IK to the transformed
binary data.  The output of IK is valued between 0 and 1 and it equates to the probability of rainfall.

(b) the thresholding of the indicator kriging output to produce the rainfall occurrence field. The optimal thresholds were
selected using statistical scores, namely the hit rate (HR), the false alarm rate (FAR), the accuracy of the forecasts (ACC),
the probability of detection (POD) and the Kuipers skill score (KS). Ideally, for a perfect match between estimated and
observed occurrence / absence of rainfall, ACC, POD, HR and KS should be 1 and the FAR zero (Stanski et al, 1989).

(c) the multiplicative combination of the binary rain/no-rain masks with the interpolated rainfall images created by
block kriging. The CK output for the 1st dekad is shown in figure 2c, below the BK product (Figure 2a), where the effect
of kriging to produce some rainfall amount over areas covered only by ‘dry’ stations can be seen. CK masks out these
areas, shown in yellow in the figure 2c.

2.3 The FEWS Estimates

The alternative precipitation dataset used and compared to the interpolated GTS gauge data, was the satellite derived
estimates. Work on producing these is performed for the United States Agency for International Development (USAID),
Famine Early Warning System (FEWS) to assist in drought monitoring efforts for the African continent. The estimates -
from now on referred to as the FEWS estimates- are freely available on the Internet via the United States Geological
Survey (USGS) EROS Data Center, Climate Prediction Centre (CPC) which is a component of the National Centers for
Environmental Prediction (NCEP) (Herman et al., 1997). The production of the estimates is based on Meteosat 5 satellite
data, GTS rain gauge reports, model analyses of wind and relative humidity, and orography for the computation of
accumulated rainfall. Meteosat 5 thermal infrared (IR) data at 5km pixel resolution is accessed every 30 minutes and then
reformatted and converted to a geographical grid with a 0.1° spatial resolution. The spatial resolution of 0.1° was chosen
for the estimate computations to correspond with the absolute positioning error of the satellite of approximately 10km. A
preliminary estimate of accumulated precipitation is made based on the GOES Precipitation Index (GPI), an algorithm
developed by Arkin and Meisner (1987). The GPI uses the duration of cold cloud tops over a region for the determination
of accumulated precipitation by assigning 3mm of precipitation for each hour that cloud top temperatures are measured to
be less than 235°K. The GPI estimate is corrected using a bias field that is calculated by incorporating the GTS
observational data and fitting the biases to a grid using optimal interpolation, thus producing an estimate of convective
precipitation. For the regions over which precipitation is due to orographic lifting and the clouds are relatively warm (top
temperatures between 275°-235°K), the rainfall rate is estimated using a process which combines the relative humidity,
wind direction and the terrain slope. Therefore, the combined technique incorporates rainfall from both the convective
and stratiform cloud types producing a final estimate of total accumulated precipitation (Herman et al, 1997).

The FEWS estimate for the second dekad March 1996 is shown in figure 4b along with the interpolated one, derived from
the GTS data with
the combined
kriging method
(Figure 4a). The
different datasets
appear to have some
qualitative
similarities and
some differences. In
all three dekads, the
two datasets seem to
agree in both the
amount and the
spatial distribution
of rainfall over
certain areas, such
as Madagascar and
South Africa, and
generally over areas
where the gauge network is dense enough for kriging to produce reasonable results. The FEWS estimates of all the
dekads give higher rainfall rates than those produced by kriging. Especially in central Africa, over parts of the

Figure 3: (a) Interpolated GTS data using combined kriging and (b) FEWS estimate, 2nd

dekad March 1996
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Figure 4: Frequency distribution of precipitation measured
at the South African validation gauges

Frequency Distribution of Daily Rainfall
1800 South African stations
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Democratic Republic of Congo, and Angola, rainfall estimated by FEWS is very high (i.e. around 200mm/dekad) in
contrast to that estimated by kriging (i.e. around 60mm/dekad).

2.4 Comparison and Results

The different precipitation sets that were used for the comparison were the three dekadal interpolated GTS data and the
three dekadal FEWS satellite estimates for March 1996. The comparison was carried out using a validation set of gauges,
independent of those of the GTS network. It consisted of a very dense network of about 1800 stations in South Africa.
Due to the high density of the validation gauge network, in most of the cases, a number of stations fell within the same
0.1° by 0.1° pixel of the areal estimates and as Lebel et al. (1987) point out, it is often more useful for a hydrologist to
evaluate the error involved in areal rather than in point rainfall estimation. Therefore, areal ‘ground truth’ images were
created from the validation sets in order to calculate a number of statistical parameters on a pixel-by-pixel basis. The
daily South African data were summed to form the three dekads and interpolated using the combined technique of
ordinary and indicator kriging. The experimental variograms were produced using a lag distance of 5km.The theoretical
models were fitted to them visually. Cross validation was used to choose the appropriate models and CK was applied
using a minimum number of 20 neighbouring stations. Kriging errors were low for the wet areas in the east of the country
where for example, for precipitation amounts up to 140mm in the first dekad, RMSEs were less than 14mm or less than
10% of the estimated amount.

From the validation images, only those pixels that contained validation gauges were selected for the comparison of the
interpolated GTS and the FEWS data. These were 1624 pixels in total. The following statistical parameters were
estimated to measure the strength of the statistical relationship between the estimated values and the reference values: the
bias, the linear correlation coefficient r (where r measures the confluctuation between estimated and measured value, and
therefore it is not sensitive to a bias), the RMSE, the Nash Index or non-dimensional skill score i (where i is equal to 1 for
a perfect estimate and equal to 0 for the best constant estimate, Murphy, 1995, Obled et al, 1994), and the scaled RMSE
(the contribution of small observed precipitation values Pi to s-RMSE would be very large and therefore s-RMSE was
computed only for Pi larger than 10mm, which was chosen so that a sufficient number of observed values could be used
for the calculation of s-RMSE, Laurent et al, 1998).

Table 1 gives the error criteria for the three dekads of
March 1996. The best score in each column is depicted
in red. All techniques performed similarly. The most
significant dekad with respect to precipitation totals in
the validation area of South Africa is the first one since
there is a much larger number of stations that received
relatively high rainfall amounts (between 45 and
130mm per dekad and an average of 28.94mm per
dekad, Figure 4). In this dekad, CK scored better in
four of the five criteria and FEWS in the fifth. In the
second dekad (mean = 13.92mm), CK had the best
correlation coefficient,  RMSE and scaled RMSE and
FEWS the best bias and Nash index. Finally, in the 3rd,
least rainy dekad (mean = 7.07mm), FEWS scored the
highest correlation, the smallest bias and RMSE and
CK the best scaled RMSE and Nash index.

Table 1: Error criteria estimated at the South African gauged pixels for the three dekads of March 1996. ‘SAF valid’ is
the South African validation data and BK and CK are the block kriged and the combined kriged estimates, respectively.

Mean (mm) Stdev (mm) cor coef bias RMSE (mm) s-RMSE Nash Index

SAF valid 28.94 26.46
BK 30.08 22.00 0.78 0.04 21.16 0.52 0.07

CK 29.41 22.72 0.79 0.02 21.16 0.50 0.13

1 DEKAD

FEWS 33.27 21.74 0.75 0.15 20.57 0.67 0.10
SAF valid 13.92 15.49

BK 12.06 12.66 0.76 -0.13 10.98 0.52 0.27
CK 11.74 12.91 0.77 -0.16 10.80 0.51 0.28

2 DEKAD

FEWS 13.48 14.70 0.74 -0.03 11.31 0.63 0.41
SAF valid 7.07 8.63

BK 8.69 5.83 0.45 0.23 10.24 0.51 -2.09
CK 8.49 6.05 0.46 0.20 10.24 0.50 -1.87

3 DEKAD

FEWS 7.79 7.99 0.55 0.10 8.54 0.59 -0.14
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In figure 5 measured precipitation is plotted against the dekadal estimated amounts for the three different estimates (BK,
CK, FEWS). The numbers of the participating pixels per
rainfall class are shown in red. All methods severely
underestimate the larger amounts of precipitation. BK and
CK perform similarly to FEWS only in the estimation of the
smaller amounts of precipitation where there is very little
difference between all techniques, but FEWS is better in the
higher amounts where kriging appears to be insensitive to
spatial rainfall variations. This can be explained by the
inability of the semi-variances to represent the high spatial
variability in the actual rainfall due to the insufficiency of
the GTS network (Symeonakis et al, 1999). In general, the
area selected for the validation is one where a significant
number of GTS stations exist (n = 80) and the kriging errors
are relatively low. In other parts of the continent however,
the GTS network is very sparse and the number of station
inadequate (e.g. in Angola, Sudan, etc) and as previously
mentioned the kriging errors are very high. Therefore, a
merging of the kriged with the satellite estimates appears as
the most reasonable solution.

2.5 Erosion Model Implementation

Using the two different rainfall datasets, dekadal erosion
was estimated for the three dekads of March 1996. The
erosion model used was the following (Drake et al., 1999a,
Drake et al, 1999b):

E = k s1.67 of2 e-0.07 vc (2)

where: E is erosion (mm/dekad), k the soil erodibility
coefficient, of is the overland flow (mm/dekad), s is slope
and vc the vegetation cover. For the estimation of the soil
erodibility coefficient, overland flow and the slope, see
Drake et al., (this volume). Vegetation cover was estimated
using the NDVI images available from the Africa Data
Dissemination Service (ADDS) on the Internet (http://
edcintl.cr.usgs.gov/ bin/ satform/ a=ndvi/ b=af). The NDVI
is derived from data collected by the National Oceanic and
Atmospheric Administration (NOAA) satellites, and
processed by the Global Inventory Monitoring and
Modelling Studies (GIMMS) at the National Aeronautics
and Space Administration (NASA). The spatial resolution of
the NDVI data is approximately 7.6km. The raw NDVI data
contained numerous blank areas where there was cloud
cover for the whole of the 10 day period. These areas were
filled with the average values for the preceding and
following dekads. Most of the images needed no ‘gap
filling’ or just one averaging step, but a few needed up to
three in order to become ‘cloud free’. Finally, a scaled
NDVI (N*) was used to estimate vegetation cover
(Choudhury et al., 1994), which is defined as:

N* = (NDVI – NDVIo) / (NDVIs – NDVIo) (3)

where NDVIs is the value of NDVI at 100% vegetation cover (N* = 1.0) and NDVIo is that value for bare soil (N* = 0).
The index N* has the advantage of being relatively insensitive to viewing angle, sensor drift, and uncertainties in
atmospheric correction.

Figure 6 shows erosion estimated with the two different rainfall inputs for the second dekad of March 1996. Erosion
estimated with the use of the satellite estimate (Figure 6b) is spatially more extensive than that estimated with the GTS
data (Figure 6a). This can be attributed to the fact that in those areas the GTS network is very sparse, especially in Zaire
and Angola. In most areas, the amounts of erosion estimated with the FEWS data are higher. This is expected, since
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rainfall is also higher: maximum rainfall for this specific dekad estimated by FEWS is 250mm, whereas with kriging it is
191mm. That leads to estimated maximum amounts of overland flow and erosion of 136mm/dekad and 147mm/dekad,
which are about three times higher than those estimated with the kriged images (53mm/dekad and 57mm/dekad,
respectively).

Figure6: Erosion for the 2nd dekad March 1996, estimated with (a) the GTS CK interpolation scheme and (b) FEWS

2.6 Conclusions

FEWS estimates are similar or slightly worse than the interpolated gauge data when the GTS network is dense and better
when it is sparse, especially in the estimation of the higher amounts of rainfall, which play an important role in soil
erosion. They are also a freely-available, ready-to-use product, involving no pre-processing. Hence, it is concluded that
they are an attractive datsaset to use for the operational modelling of processes such as erosion, and especially in the
developing areas, such as sub-Saharan Africa, where resources are scarce. The erosion model used is highly sensitive to
the precipitation input and ideally, a combination of the best aspects of both satellite and interpolation methods in a single
method should provide the solution to accurate precipitation estimation. Huffman et al. (1997) combine satellite and
ground-based techniques in the production of the global precipitation climatology project (GCCP) and Grimes et al.
(1999) merged METEOSAT estimates with kriged estimates obtained from rain-gauges, a process which yielded more
reliable results both for the mean areal rainfall and its spatial distribution. Therefore, the two techniques should not be
viewed as alternatives, since using each in isolation discards potentially useful information in the other.
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