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ABSTRACT: 
 
Laser scanning (LIDAR) is a recent technology that is receiving an increasing interest from professionals dealing with mapping 
applications. The interest in LIDAR is attributed to the rich geometric surface information provided by the data in the form of dense 
non-selective points. On the other hand, photogrammetric processing of stereo-images provides an accurate surface model 
represented by few points as well as a wealth of semantic information about the photographed objects. Considering the nature of 
photogrammetric and LIDAR data, it is clear that the two systems provide complementary information. However, the 
complementary information can only be fully utilized after successful alignment/absolute orientation of the photogrammetric and 
LIDAR models relative to a common reference frame. This paper deals with two alternative approaches for utilizing linear features 
derived from LIDAR data as control information for aligning the photogrammetric model relative to the LIDAR reference frame. 
The first approach incorporates LIDAR lines as control information directly in a photogrammetric triangulation. The second 
approach starts by generating a photogrammetric model through a photogrammetric triangulation using an arbitrary datum (no 
control information). LIDAR features are then used as control information for the absolute orientation of the photogrammetric 
model. A mathematical model is derived to utilize the LIDAR features for the absolute orientation of the photogrammetric model. 
These features can be extracted from range data using various methods. For example, planar patches can be extracted from 3-
dimensional LIDAR data through segmentation techniques. Then, neighbouring planar patches can be intersected to generate linear 
features corresponding to object space discontinuities. LIDAR data pre-processing for the purpose of feature extraction is not a 
trivial task. An alternative and simpler approach is to use recorded intensities by laser scanners to directly identify and extract linear 
features from the LIDAR data. The paper presents a quantitative analysis of the performance of the different approaches for 
extracting linear features from the LIDAR data. The analysis is based on the quality of fit of the final alignment between the LIDAR 
and photogrammetric models. 
 

1. INTRODUCTION 

Light Detection and Ranging (LIDAR) is a modern technology, 
which has received wide acceptance and popularity due to its 
usefulness in mapping applications. Since the introduction of 
LIDAR in the mapping industry, its applications in GIS and 
other areas have multiplied. On the other side, photogrammetry 
is a well established mapping and surface reconstruction 
technique. However, the continuous development of LIDAR 
systems in the aspects of reduced hardware size and increased 
resolution and density, made it an increasingly favoured option 
in a variety of applications especially where rapid and accurate 
data collection on physical surface is required (Schenk and 
Csathó, 2002).  

Photogrammetric data is characterized by high redundancy 
through observing desired features in multiple images, making 
it more suited for mapping heavily populated areas. Richness in 
semantic information and dense positional data along object 
space break lines add to its advantages. Nonetheless, 
photogrammetry has its own drawbacks; where there is almost 
no positional information along homogeneous surfaces and 
vertical accuracy is worse than the planimetric accuracy. A 
major obstacle in the way of automation in photogrammetry is 
the complicated and sometimes unreliable matching procedure 

especially when dealing with large scale imagery over urban 
areas. 

LIDAR, on the other hand, is a direct acquisition of positional 
information. Also it produces dense information along 
homogeneous surfaces, making it preferable in mapping Polar 
Regions. Still, LIDAR possesses few undesirable features that 
make it incapable of being a standalone reliable technology. 
LIDAR data has no redundancy and almost has no positional 
information along object space break-lines. Also, the 
planimetric accuracy is worse than the vertical, in addition to 
LIDAR data lacking semantic information. 

Both, photogrammetry and LIDAR, have unique characteristics 
that make them preferable in specific applications. One can 
observe that a negative aspect in one technology is contrasted 
by an opposite strength in the other. Hence, integrating the two 
systems would prove beneficial resulting in more understanding 
of information associated with physical surfaces (Baltsavias, 
1999). However, the complementary information can only be 
fully utilized after successful alignment/absolute orientation of 
the photogrammetric and LIDAR models relative to a common 
reference frame. (Postolov et al., 1999). 

The majority of registration methodologies rely on point 
primitives for solving the registration problem between two 
datasets. Such methodologies are not applicable to LIDAR 



 

surfaces since they correspond to laser footprints instead of 
distinct points that could be identified in imagery (Baltsavias, 
1999). Conventionally, surface-to-surface registration and 
comparison have been achieved by interpolating both datasets 
into a uniform grid. The comparison is then reduced to 
estimating the necessary shifts by analyzing the elevations at 
corresponding grid posts (Ebner and Ohlhof, 1994; Kilian et al., 
1996). Several issues can arise with this approach. First, the 
interpolation to a grid will introduce errors especially when 
dealing with captured surfaces over urban areas. Moreover, 
minimizing the differences between surfaces along the z-
direction is only valid when dealing with horizontal planar 
surfaces (Habib and Schenk, 1999). Postolov et al. (1999) 
presented another approach, which works on the original 
scattered data without prior interpolation. However, the 
implementation procedure involves an interpolation of one 
surface at the location of conjugate points on the other surface. 
Additionally, the registration is based on minimizing the 
differences between the two surfaces along the z-direction. 
Schenk (1999) introduced an alternative approach, where 
distances between points of one surface along surface normals 
to locally interpolated patches of the other surface are 
minimized. Habib et al. (2001) implemented this methodology 
within a comprehensive automatic registration procedure. Such 
an approach is based on processing the photogrammetric data to 
produce object space planar patches. This might not be always 
possible since photogrammetric surfaces provide accurate 
information along object space discontinuities while supplying 
almost no information along homogeneous surfaces with 
uniform texture.  

This paper deals with alternative approaches for utilizing linear 
features derived from LIDAR data as control information for 
aligning the photogrammetric model relative to the LIDAR 
reference frame. The following section addresses the general 
methodology and mathematical models of the suggested 
approaches including the techniques adopted for extracting the 
registration primitives from photogrammetric and LIDAR data. 
The last two sections cover experimental results (using aerial 
datasets) as well as conclusions and recommendations for future 
work. 

2. METHODOLOGY 

In this paper, two approaches will be applied to incorporate 
LIDAR lines in aligning the photogrammetric model to the 
LIDAR reference frame. The first approach incorporates 
LIDAR lines as control information directly in a 
photogrammetric triangulation. The second approach starts by 
generating a photogrammetric model through a 
photogrammetric triangulation using an arbitrary datum (no 
control information). LIDAR features are then used as control 
for the absolute orientation of the photogrammetric model. 

2.1 Approach 1: Direct involvement of LIDAR lines in 
photogrammetric triangulation 

Conjugate linear features in the photogrammetric and LIDAR 
datasets should first be extracted and then incorporated in a 
photogrammetric triangulation in which LIDAR lines will act as 
the source of control to align the photogrammetric model. The 
following subsections describe the procedures adopted to 
extract straight line features in both datasets and how they are 
included in the overall alignment procedure. 

Photogrammetric straight-line features 

The methodology for producing 3-D straight line features from 
photogrammetric datasets depends on the representation scheme 
of such features in the object and image space. Prior research in 
this area concluded that representing object space straight lines 
using two points along the line is the most convenient 
representation from a photogrammetric point of view since it 
yields well-defined line segments (Habib et al., 2002). On the 
other hand, image space lines will be represented by a sequence 
of 2-D coordinates of intermediate points along the feature.  
This representation is attractive since it can handle image space 
linear features in the presence of distortions as they will cause 
deviations from straightness. 

In general, the manipulation of tie straight lines appearing in a 
group of overlapping images starts by identifying two points in 
one (Figure 1a) or two images (Figure 1b) along the line under 
consideration. These points will be used to define the 
corresponding object space line segment. One should note that 
these points need not be identifiable or even visible in other 
images. Intermediate points along the line are measured in all 
the overlapping images. Similar to the end points, the 
intermediate points need not be conjugate, Figure 1. 

 
Figure 1: End points defining the object line are either 

measured in one image (a) or two images (b). 
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through the collinearity equations. Only four equations will be 
written for each line. The incorporation of intermediate points 
into the adjustment procedure is achieved through a 
mathematical constraint. The underlying principle in this 
constraint is that the vector from the perspective centre to any 
intermediate image point along the line is contained within the 
plane defined by the perspective centre of that image and the 
two points defining the straight line in the object space, Figure 
2. This can be mathematically described through Equation 1.  

 ( ) 0321 =•× VVV
rrr

 (1) 

In the above equation, 
1V
r  is the vector connecting the 

perspective centre to the first end point along the object space 
line, 

2V
r  is the vector connecting the perspective centre to the 

second end point along the object space line, and 
3V
r  is the 

vector connecting the perspective centre to an intermediate 
point along the corresponding image line. It should be noted 
that the three vectors should be represented relative to a 
common coordinate system (e.g., the ground coordinate 
system). The constraint in Equation 1 incorporates the image 
coordinates of the intermediate point, the Exterior Orientation 
Parameters (EOP), the Interior Orientation Parameters (IOP) 

 



 

including distortion parameters, as well as the ground 
coordinates of the points defining the object space line. Such a 
constraint does not introduce any new parameters and can be 
written for all intermediate points along the line in the imagery. 
The number of constraints is equal to the number of 
intermediate points measured along the image line.  

 
Figure 2: Perspective transformation between image and object 

space straight lines. 

As a special case of the above procedure, the treatment of 
control linear features (with known object coordinates of its end 
points) will be slightly different. The control line will provide 
the end points in the object space; hence, these end points need 
not be measured in any of the images and no collinearity 
equations will be written for any of the control lines. 
Subsequently, image space linear features are represented only 
by a group of intermediate points measured in all images. 

LIDAR straight-line features 

The growing acceptance of LIDAR as an efficient data 
acquisition system by researchers in the photogrammetric 
community led to a number of studies aiming at pre-processing 
LIDAR data. The purpose of such studies ranges from simple 
primitive detection and extraction to more complicated tasks 
such as segmentation and perceptual organization (Maas and 
Vosselman, 1999; Csathó et al., 1999; Lee and Schenk, 2001; 
Filin, 2002). 

In this paper, LIDAR straight line features will be used as a 
source of control for photogrammetric models. To extract such 
lines, suspected planar patches in a LIDAR dataset are 
manually identified with the help of corresponding optical 
imagery, Figure 3. The selected patches are then checked using 
a least squares adjustment to determine whether they are planar 
or not and to remove blunders. Finally, neighbouring planar 
patches with different orientation are intersected to determine 
the end points along object space discontinuities between the 
patches under consideration.  

In another approach to simplify the extraction process, intensity 
and range data recorded by the LIDAR system are utilized for 
direct measurement of linear features. Raw range and intensity 
data are first interpolated to a uniform grid using identical 
interpolation method and parameters. Linear features previously 
extracted from photogrammetry are then identified on the 
intensity image from which planimetric coordinates of line ends 
are measured while observing height readings from the range 
image, Figure 4. It is worth mentioning that the interpolation 

method and applied parameters have a visible effect on the 
accuracy of this approach.  

 

  
(a) (b) 

Figure 3: Manually identified planar patches within the LIDAR 
data (a) guided by the corresponding optical image (b).  

 
(a)                        (b) 

Figure 4: Manually measuring planimetric coordinates from 
intensity image (a) and height from range image (b). 

2.2 Approach 2: Using LIDAR lines in the absolute 
orientation of photogrammetric model 

This approach starts with generating a photogrammetric model 
through a photogrammetric triangulation using an arbitrary 
datum without knowledge of any control information. The 
datum is achieved through fixing 7 coordinates of three well-
distributed points in the bundle adjustment procedure. The next 
step is determining the elements of the absolute orientation 
parameters to align this photogrammetric model to the LIDAR 
reference frame using conjugate straight line segments. Both 
photogrammetric and LIDAR line segments are represented by 
their end points. These end points are not required to be 
conjugate. In this paper, a 3D similarity transformation is used, 
Equation 2. 
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Where S is the scale factor, (XT YT ZT)T is the translation vector 
between the origins of the photogrammetric and LIDAR 
coordinate systems, R is the 3D orthogonal rotation matrix, (Xa 
Ya Za)T are the point coordinates in one dataset, while (XA YA 
ZA)T are the point coordinates in the other.  

Referring to Figure 5, the two points describing the line 
segment from the photogrammetric model undergo a 3-D 
similarity transformation onto the line segment AB from the 
LIDAR dataset. The objective here is to introduce the necessary 
constraints to describe the fact that the model segment (12) 

 



 

coincides with the object segment (AB) after applying the 
absolute orientation.  

For the photogrammetric point (1), this constraint can be 
mathematically described by Equation 3. 

 

Figure 5: Similarity measure between photogrammetric and 
LIDAR linear features. 
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Equation 4 shows the constraint for point (2). 
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where 1λ  and 
2λ  are scale factors. 

Subtracting Equation 4 from Equation 3 yields: 
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Equation 5 emphasizes the concept that model line segments 
should be parallel to the object line segments after applying the 
rotation matrix. To recover the elements of the rotation matrix, 
Equation 5 is further manipulated and rearranged starting by 
dividing the first and second rows by the third to eliminate the 
scale factors, Equations 6. 
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A pair of conjugate line segments yields two equations, which 
contribute towards the estimation of two rotation angles, the 
azimuth and pitch angle along the line. On the other hand, the 
roll angle across the line cannot be estimated. Hence a 
minimum of two non-parallel lines is needed to recover the 
three elements of the rotation matrix (Ω,Φ,Κ). 

Now, the scale factor and the shift components are to be 
determined. Starting by applying the rotation matrix to the 
coordinates of the first point defining the photogrammetric line, 
Equation 7 is written. 
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Rearranging the terms yields: 
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In Equation 8, λ1 is eliminated by dividing the first and second 
rows by the third, Equations 9. The same applies to point 2 and 
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Combining Equations 9 and 10 produces the two independ
constraints as shown in Equations 11. 
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The two equations in Equations 11 can be written for each line 
in one dataset and its conjugate in the other. Consequently, two 

ENTAL RESULTS 

Two photogrammetric and one LI
in the study ties of the 

pairs of line segments yielding four equations are required to 
solve for the four unknowns. If the lines were intersecting, the 
shift components can be estimated (using the intersection 
points) but the scale factor cannot be recovered. As a result, at 
least two non-coplanar line segments are needed to recover 
these parameters. In summary, a minimum of two non-coplanar 
line segments is needed to recover the seven elements of the 3-
D similarity transformation. 

3. EXPERIM

DAR datasets were involved 
. Table 1 summarizes the proper

photogrammetric datasets. The LIDAR dataset was captured 
using an OPTECH ALTM 3100 laser scanner with an average 
flying altitude of 975 m and average point density of 2.24 
point/m2. The first and last responses were recorded; and range 
and intensity data have been collected as well. According to the 
sensor and flight specifications, 0.5 m horizontal and 0.15 m 
vertical accuracies are expected. Range and intensity images are 
generated through interpolating the scattered points using two 
interpolation schemes coded as I1 (pixel size of 0.3 m and 4 m-
radius search window using 2nd degree inverse distance 
weighting interpolation) and I2 (pixel size of 1.0 m using 
nearest neighbour interpolation.) 

 1st aerial dataset 2nd aerial dataset 
Camera used RC-10 analogue SONY F717 digital 
Focal length (mm) 153.167 11.6761 
# of images 6 17 
Avg. flying height (m) 975 737 
Avg. base (m) 540 221 
Pixel size (mm) 0.024 0.004 
Image measurement 
accuracy (mm) ± 0.024 ± 0.004 

Expected accuracy (assuming one pixel measurement error) 
planimetric (m) 0.15 0.25 
vertical (m) 0.39 1.19 
spatial (m) 0.42 1.22 

Table 1: Specifications of the photogrammetric datasets. 
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3.1

LID

 LIDAR as control in photogrammetric triangulation 

AR - RC-10 

Straight line segments extracted in LIDAR datasets I1 and I2 

LIDAR set I1 LIDAR set I2 

were used in separate experiments as the source of control 
information for the photogrammetric triangulation. Table 2 
summarizes the quality of the aligned photogrammetric model 
through check point analysis. The results for the I2 dataset in 
Table 2 demonstrated some overall improvement either in the 
mean or standard deviation. 

 
# of control lines 80 79 
# of check points 32 32 

∆X (m) 0.75 (±0.51) 0.65 (±0.28) 
∆Y (m) -0.10 (±0.43) -0.15 (±0.26) 
∆Z (m) -0.75 (±0.36) -0.69 (±0.42) 

Table 2: Check point analysi C-1s for LIDAR-R 0 datasets. 

LIDAR-SONY F717 

Similar to the previous RC-10 experiments, straight line 

LIDAR set I2 

segments extracted in the two LIDAR datasets (I1 & I2) were 
used in separate experiments as the source of control 
information for the photogrammetric triangulation of the SONY 
F717 dataset. Table 3 summarizes the quality of the aligned 
photogrammetric model through check point analysis. Again, 
significant improvement is noticed in the y-coordinate while no 
improvement is seen in the other directions. 

 LIDAR set I1 
# of control lines 72 72 
# of check points 32 32 

∆X (m) 0.38 (±0.63) 0.42 (±0.70) 
∆Y (m) 0.35 (±0.70) 0.20 (±0.67) 
∆Z (m) -0.49 (±1.11) -0.51 (±1.12) 

Table 3: Check point analysis for LIDAR-SONY F717 datasets. 

sults for RC10 in Table 2, the mean 

rammetric model 

A s
strai enerated for RC-10 and SONY 
F717 imagery sets. The datum for each model was established 

Comparing the results for the RC-10 dataset in Table 2 with that 
for SONY F717 in Table 3, it is clearly noticeable from the 
standard deviation values that RC-10 has a closer fit to the 
involved check points. This should be of no surprise since the 
expected accuracies based on the height-base ratio in Table 1 
indicated such a trend. Inspecting Table 2 again for the 
improvement in results between I1 and I2 datasets, RC-10 
shows better overall results when the LIDAR was interpolated 
with the 1.0 m pixel size using the nearest neighbour method 
(I2 set). This improvement can be attributed to the fact that the 
1.0 m pixel size is closer to the 2.24 point/m2 LIDAR point 
density (equivalent to 0.7 m pixel size), making it a more 
realistic sampling size. Table 3 shows that almost no change 
occurred between I1 and I2 interpolation sets for the SONY 
F717. Larger pixel size and lower level of detail in the SONY 
F717 images contributed to the steadiness in results as 
compared to the RC-10. 

In another look at the re
values of the differences clearly suggest the existence of biases 
especially in the X- and Z- directions. The fact that the mean 
values in the same table are well above the standard deviation 
values supports this finding. Table 3 also indicates some biases 
in the SONY F717 results, but the standard deviation of these 
values are larger than the mean values; hence no conclusion can 
be drawn about the existence of such biases in any of the 
directions. 

3.2 LIDAR lines in the absolute orientation of the 
photog

eparate photogrammetric model, using both point and 
ght line features, has been g

using the coordinates of precisely surveyed ground control 
points. Hence the resulting photogrammetric models actually 
represent the real object space. LIDAR lines are then utilized as 
control information in an absolute orientation procedure to align 
the generated photogrammetric object space through a 3D 
similarity transformation. Assuming the LIDAR and ground 
control points used in the photogrammetric reconstruction both 
have the same reference frame, one can use the parameters of 
the transformation function directly to assess the quality of fit 
between the two datasets. 

LIDAR - RC-10 

Conjugate lines in photogrammetric and LIDAR datasets were 
ured. There were eighty lines in I1, seventy 

twenty three from manually identified and 
identified and meas
nine in I2, and 
intersected planar patches. Table 4 lists the transformation 
function parameters between LIDAR and RC-10 models. 

 I1 I2 Patch intersection
Scale 0.999526 ±0.00033 1.000097 ±0.00025 1.000050 ±0.00038

XT (m) 0.62 ±0.14 0.56 ±0.11 0.53 ±0.15 
YT ) 0.19 ±0.15 0.04  (m ±0.11 -0.11 ±0.14 
ZT (m) -0.98 ±0.07 -1.07 ±0.05 -0.86 ±0.08 
Ω (°) -  -0.004 0.003 ±0.014 ±0.010 0.029 ±0.029
Φ (°) 0.030 ±0.012 0.029 ±0.009 0.083 ±0.017
Κ (°) -0.020 ±0.018 0.009 ±0.013 -0.023 ±0.021

Table 4: ila am e D  
 

 
biases between the LIDAR and RC-10 datasets, thus confirming 
the results drawn from the first approach. After thorough 

3D sim rity par eters b tween LI AR and RC-10 
models.

The shift values in Table 4 for all sets indicate the existence of

investigation, it was found that RC-10 control points were 
recorded with respect to SAD 69 reference frame prior to 1998. 
On the other side, LIDAR data was based on SAD 69 after 1998 
adjustments. Certain biases especially in the X- and Z-directions 
have been reported between the two versions. The overall 
normal vector between conjugate photogrammetric and LIDAR 
lines before and after absolute orientation is calculated and 
showed in Table 5. In this table, the best results were for linear 
features extracted using LIDAR planar patch intersection, 
followed by I2 and then I1 datasets. 

 I1 I2 Patch intersection 
 Before absolute orientation 
DX (m) -0.26 ±1.00 -0.24 ±0.54 -0.23 ±0.25 
DY -0.15(m)  ±1.09 -0.01 ±0.56 0.02 ±0.20 
DZ (m) 0.96 ±0.64 1.01 ±0.65 0.72 ±0.37 

 After absolute orientation 
DX (m) 0.03 ±0.96 0.04  ±0.52 0.005 ±0.13 
DY (m) -0.03 ±1.04 0.02  ±0.54 -0.057 ±0.12 
DZ (m) -0.02 ±0.45 -0.06  ±0.46 -0.115 ±0.41 
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LIDAR – SONY DSC-F717 

Conjugate lines in photogrammetric and LIDAR datasets were 
identified and measured. There were sixty eight in each of I1 
and I2 datasets. Table 6 lists the parameters of the 3D 
transformation function between the SONY and the LIDAR 
datasets. 

 I1 I2 
Scale 0.999407 ±0.0005 1.00015 ±0.0006

XT (m) 0.70 ±0.19 0.69 ±0.20 
YT (m) -0.09 ±0.19 -0.08 ±0.2 
ZT (m) -0.63 ±0.13 -0.69 ±0.1 
Ω (°) -0.083 ±0.037 -0.05 ±0.027 
Φ (°) 0.0005 ±0.036 0.012 ±0.026 
Κ (°) 0.131 ±0.039 0.076 ±0.041 

Table 6: 3D similarity parameters between LIDAR and SONY 
model. 

Again, the consistent shift values in Table 6 suggest the 
existence of biases between the LIDAR and SONY F717 
datasets. Also, the overall normal vector between conjugate 
photogrammetric and LIDAR lines before and after absolute 
orientation of this set is calculated and shown in Table 7, in 
which the standard deviations indicate LIDAR I2 dataset has 
the best result. 

 Before absolute orientation After absolute orientation
 I1 I2 I1 I2 

DX (m) -0.29 ±1.08 -0.33 ±0.69 0.08 ±1.03 0.03 ±0.60
DY (m) -0.02 ±1.08 0.05 ±0.60 -0.07 ±1.09 0.02 ±0.59
DZ (m) -0.52 ±1.20 -0.57 ±1.17 -0.11 ±1.16 -0.12 ±1.14

Table 7: Overall normal vector between conjugate 
photogrammetric (SONY F717) and LIDAR lines 
before and after absolute orientation. 

4. CONCLUSIONS AND RECOMMENDATIONS 

These experiments have demonstrated the compatibility of 
LIDAR and photogrammetric models generated by 
metric/analog and amateur/digital cameras. It also proved the 
usefulness of using LIDAR straight lines as a source of control 
for photogrammetric orientation. Straight-line features 
confirmed again its versatility in photogrammetric processes. 
An interesting conclusion is the feasibility of using LIDAR 
intensity images to collect necessary control for orienting 
photogrammetric models, although additional inaccuracies can 
be attributed to some difficulties and ambiguities when 
identifying linear features on the intensity image. The 
experiments also highlighted the role played by the sampling 
methodology through the choice of the interpolation method, 
grid size, and search space. The enormous extra computational 
effort and storage space spent to produce over-sampled grids 
inversely affected the reconstruction of the object space. 

Further work is being undertaken to clarify a number of 
additional aspects arising from these experiments. This work 
includes the analysis and description of the discrepancy pattern 
between the true surface and generated LIDAR surfaces in the 
presence of various systematic errors. The two-step nature of 
the second approach can be utilised for this purpose. Also, 
experiments are being performed on the automatic extraction of 
the control features from the LIDAR data (intensity as well as 
range images). Another vital extension of the work is to 

investigate automatic correspondence among LIDAR and 
photogrammetric features. A logical application would be to 
develop methodologies for robust true ortho-photo generation 
that could handle relief displacements in large scale imagery 
over urban areas. 
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