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ABSTRACT: 
 
Airborne laser scanning has established itself as a dominant technology providing high quality surface data for a variety of 
applications. LiDAR has substantially widened the use of mapping, for instance, in the late nineties, telecommunication industry 
required large volumes of high-density DSM data. In addition, research has recently shown promising results in extracting features 
such as man-made objects, for example buildings, from the point cloud. More recently, research started to explore the feasibility of 
using Lidar data for transportation applications, including infrastructure, emergency and environmental mapping along corridors. 
Initial investigation on assessing the performance of extracting vehicles from LIDAR data and then categorizing them has proved 
that valuable traffic flow information can be obtained. The vehicle classification was mainly based on simple four-parameter 
description of the vertical profile of the vehicles. This paper is a continuation of that research effort by introducing an improved 
model of the vehicle profile description. A model library is formed based on the ground-based laser scanning data and an analytical 
approximation of the vehicle profile will replace the previous four-parameter description. The anticipated benefits are twofold: 1) a 
better extraction and a more robust coarse classification of the vehicles are expected, and 2) it is very likely that subclasses of 
vehicles can be introduced such as small cars, full-size cars, light trucks, SUVs and so on. This paper describes a newly developed 
model of vehicle profile description, the classification method, implementation, and algorithmic aspects. Extensive tests have been 
carried out to validate the method and assess its performance. 
 
 

1. INTRODUCTION 

Due to decreasing sensor prices and improved navigational 
accuracy, laser scanning technology (also known as LiDAR) 
has become a dominant technology in topographic mapping. 
LiDAR rapidly produces high density, accurate spatial data 
with minimal need for post processing (Flood 1999). Due to its 
data acquisition characteristics, LiDAR is mainly used for 
digital surface/elevation model (DSM/DEM) generation, but its 
application rapidly widens for instance in urban planning, 
agriculture or transportation. 
Transportation as a major momentum of modern economy 
creates even more complex tasks for engineers. Its 
environmental impact, accidents, and wasted time spent in 
congestion mean serious economical damage for motorized 
countries (Zhao 1997). Old city structures do not allow major 
changes in the road network; the problem should be solved in 
the area of operation and controlling. Nowadays, intelligent 
transportation systems (ITS) continuously gain ground in 
transportation management. ITS, as a sophisticated information 
system, however, requires accurate, high-density spatial data, 
which demand cannot be satisfied with conventional data 
acquisition technologies.  
Remote sensing, including LiDAR can contribute to this task. 
The research presented in this paper has been conducted as part 
of the NCRST-F (National Consortium for Remote Sensing in 
Transportation - Flows) project. We will discuss some aspects 
of the potential use of laser scanning technology in 
transportation, especially, focusing on different methods of 
vehicle classification. 
 

2. FIRST APPROACH: PCA 

In our initial approach we derived basic geometric features of 
the vehicles, such as length, width and height values. First, the 
vehicles have to be segmented from the data set, which can be 
accomplished applying well known techniques, such as 
thresholding, or edge detection. However, it’s not a 
straightforward task, since various effects may corrupt the 
resulted vehicle point cloud in the LiDAR data set.  
In order to reduce the dimensionality of the feature space, 
principal component transformation had been carried out. The 
input matrix contained the above mentioned parameters of all 
the involved vehicles. For the training, we used a data set 
acquired in Ohio, and for the tests, LiDAR data sets obtained 
from Michigan and Ontario. Further details of the Principal 
Component Analysis can be found in Toth et al. 2003a. As a 
result, the desired vehicle categories (e.g., passenger car, multi-
purpose vehicles, and trucks)  can be nicely separated and 
easily distinguished (Lovas 2004a). Figure 1 shows the vehicle 
categories in the 2D classification space. 
The result of this clustering served as a basis for automated 
pattern recognition methods. All three developed techniques 
(rule-based method, minimum distance method (Duda et al. 
2001), and neural network-based classifier, (Rojas 1993) are 
able to categorize the vehicles (72 training vehicles + 30 test 
vehicles) with accuracy better than 80 % (Toth et al. 2003b). 



 

 
Figure 1. Applying rule-based classifier based on PCA. 

 
 
2.1 PCA REFINEMENT: INTENSITY VALUES 

Applying more features could improve the performance of 
PCA-based classification. Since our latest dataset also contains 
intensity values, our next idea was to use them as additional 
parameters.  Comparing the dataset with spatial coordinates and 
the one with X, Y and intensity values, it can be clearly seen 
how the vehicles differ from the road surface (Figure 2). 
 

 

 
 

Figure 2. Elevation (red) and intensity (blue) road map 
 

Supposedly, different vehicle categories produce different 
reflection intensity. For example, an MPV or light truck has 
very steep rear window (if any), hence the rear sections of the 
car theoretically reflect more points, or points with higher 
intensity values, so does a lorry or an eighteen-wheeler. 
We stored the intensity values associated with the segmented 
vehicles in a database management system. The input matrix 
previously contained the following parameters: length, width 
and four mean height values (h1-h4) along the vehicle. In the 
next approach, the input matrix is extended with four further 
columns corresponding to the four mean intensity values (int1-
int4), see Table 1. 

 
 
length width h1 h2 h3 h4 int1 int2 int3 int4 

7,37 1,2 0,9 1,1 1,2 1,1 87,5 69,4 27,0 17,8

5,72 1,2 0,7 1,0 1,2 1,2 33,2 30,6 39,4 45,5

8,18 1,7 0,9 1,3 1,2 1,0 55,1 38,1 81,1 75,0

 
Table 1. The structure of the input matrix 

 
As opposed to the striking positive results of the PCA method 
which is based on geometric parameters, the enhanced 
algorithm did not result in good distinguished categories; the 
deviation between the intensity values turned out to be too 
high.. 
 

3. MODEL-BASED CLASSIFICATION 

Our next approach is also based on geometric parameters of 
vehicles, this method uses height values and the length/width of 
the vehicle, and its objective is deriving the shape, i.e., the 
profile of the vehicle. 
The dataset used as training data for the PCA was acquired over 
Route 35 (Dayton, OH). In order to investigate the effect of the 
point density, we used a dataset obtained in Toronto (in 2004) 
for our shape and profile investigations (Table 2).  The dataset 
collected in Ohio has relatively modest point density, but, still 
we could apply it for classification purposes. However, the data 
from Toronto had a higher point density that we were able to 
use for developing a refined technique. 
 
 



 

 Flight 1 Flight 2 
Flying Height  (AGL):   470 m 660 m 
Average Ground Speed: 56.6 m/sec 58.5 m/sec 
Heading:  290 degrees 250 degrees 
Scan Frequency: 50 Hz 46 Hz 
Field of View (Half 
Angle): 

6 degrees 20 degrees 

Laser Repetition Rate: 10 kHz 70 kHz 
Point density 1.5 points/m2 2.4 points/m2

Area Route 35, OH Toronto, Canada 
 

Table 2. Flight parameters 
 

Practically, in the Ohio dataset, 20-30 points were collected 
from a passenger car (and 40-60 points from a truck) traveling 
along the direction of flight. In the opposite direction, the value 
of collected points/vehicle is under 10, based on which we were 
not able to reliably determine the vehicle profile. However, 
from at least 20 points, reasonable vehicle profiles could be 
calculated 
Due to multipath reflection or processing errors, the coordinates 
of some points are wrong, but our main problem is caused by 
out-of-shape points. For classification, we need points 
describing the profile of the vehicle; therefore, airborne LiDAR 
seems to be an appropriate technology for this purpose, since 
points are reflected from the top of the vehicle. However, the 
flight line does not always coincide with the road (or centerline 
of the road) and from the side of the scan swath points tend to 
reflect also from the side of vehicles; these points have smaller 
height values than the profile points. 
Points reflected from the side of vehicles, or from roadside 
objects, as well as multipath reflection can corrupt the results. 
In order to eliminate this effect, the sides of vehicles have been 
cropped; only points in the middle strip were used for creating 
the profile (Lovas 2004b). 
 
Shape Detection 
 
First, the vehicles are divided into equal parts along their 
profiles (not laser profile, which is across!), each containing at 
least two points. In every section, the mean height value of the 
points, i.e., the points of the profile are calculated. Our 
experiments show that the minimum resolution should be at 
least 8 sections along the profile; this makes also visual 
recognition possible. In case of a passenger car, the engine hood 
and the trunk lid are clearly shown, so is the MPV’s bulky 
figure (presumably an SUV or van), and the shape of the 
eighteen-wheeler is even better outlined on the picture below 
(Figure 3).  
 

 
Passenger car Multi purpose vehicle 

 
 

Truck 
 

Figure 3. Typical vehicle shapes 
 
The partition of each vehicle depends on the number of 
reflected points and the point distribution. All the 

vehicles used in this shape-definition were previously 
classified with PCA-based clustering and controlled by 
visual recognition based on color-coded 3D models.  
In order to compare the shapes, we have to normalize for 
length. The deviation in actual vehicle length is only one factor 
(more than 90% of vehicles are between 4 and 5 meters); the 
other contributor is elongation which is proportional to speed. 
The previously categorized vehicles tend to have similar 
profiles (Figure 8). Creating a buffer zone (envelope curve) 
based on profile points with extreme values shows the key to 
the profile based vehicle detection. These buffer zones have to 
be created for each predefined category; every new vehicle 
profile is evaluated whether it fits or not in the particular buffer 
zone. The upper and lower boundaries are marked in red, the 
sample shape in green, respectively. 
 

4. GROUND-BASED LIDAR DATA 

In general, ground-based laser scanning technology has similar 
advantages as airborne LiDAR. It rapidly produces high 
density, accurate spatial data. On the ground, the sensor 
coordinates can be obtained by accurate positioning methods, 
such as DGPS or conventional geodetic measurements. 
Recently LiDAR sensors are frequently complemented with 
digital camera systems, and besides the 3D coordinates and the 
laser intensity values, the “color” of each point, can be attached 
(Figure 4). 
 
 

 
 

 
 

Figure 4. Test cars (laser points fused with camera image) 
 
The main difference lies in the point density; ground laser 
sensors usually mounted on tripods, the objects to be mapped 
are not moving during measurements, and hence there is 
enough time to scan through the area with the desired point 
density. Of course, the application area of airborne LiDAR 
significantly differs from that of ground sensors, similarly to the 
relation between airborne and close-range photogrammetry. 
In our first approach, we derived the “mean-shape” from the 
training data set and then generated a buffer-zone for the 
classifier. In order to improve the resolution of the profile, we 
performed a ground-based laser scanning campaign in a packed 



 

parking lot. The goal was to get information about as many 
vehicle categories, as possible.  
 
Categorizing Issues 
 
The ground based laser scanning measurement was performed 
in Hungary, where the traffic patterns are basically 
representative for Europe, while in our research we used 
airborne data sets acquired in the USA and Canada, where 
characteristics of the traffic are noticeably different. From the 
nineties, there are much more MPVs (especially light trucks) 
sold in the US as passenger cars. In Europe, there are much less 
MPVs running on the roads, and most of them are minivans, not 
SUVs and light trucks, while in the passenger car category, the 
proportion of hatchback cars is definitely higher, whereas the 
proportion of the sedans is much higher in the US. Therefore, 
we focused on vehicles that can be representative in both 
regions.  
 
 

  
 

Figure 5.  The point clouds of the test vehicles 
 
For our model-based investigations, we used the data set 
acquired about a Ford Mondeo with a conventional sedan 
profile, and about a VW Golf, which is a hatchback; two very 
popular cars with very typical shapes (Figure 5).  
 
PCA Test 
 
First, these two typical vehicles were classified using PCA; the 
cars have been categorized correctly. In the PCA, where 6 
parameters were involved (length, width, heights), these cars 
are on the border of two groups (passenger cars traveling along 
and against flight direction): the cars from the airborne mapping 
are either elongated or shortened, that is why the moving 
directions can also be distinguished in the 6 parameter case.  
 
 

 
 

Figure 6. The new cars in the PCA-based clustering 

In our ground based laser measurements the cars parked in a 
parking lot, therefore, their length values in the dataset fall 
between the shortened and elongated length values of the 
airborne dataset (Figure 6). 
 
Profile Determination 
 
In order to derive the shape of vehicles, the sides have been 
cropped, since the points reflected from the side of the vehicle 
are not included in the profile determination. Just for the sake of 
comparison, in the airborne campaign, typically 20-30 points 
are reflected from an elongated car, in the ground based dataset 
these test vehicles have about 200-300 000 points, despite the 
side-looking sensor position (the back of the car is shadowed). 
 
 

 
 

Figure 7. Shapes of the ground-laser measured vehicles 
 

 
 

Figure 8. Shapes of the airborne campaign 
 

 
 

Figure 9. The combined shape curves and envelopes 
 
As it can be seen in the Figures 7 to 9, the shapes of the cars 
measured with the ground sensor are fit in the previously 
defined buffer zone. The only difference is the back part of the 
vehicles, where the hatchbacks are remarkable higher than the 
sedans. The classification cannot be exclusively based on the 
length, since it depends on the speed of the vehicle; therefore, 
the shapes in the figures are normalized in length.  



 

Using the ground models, sample shapes can be derived for the 
subclasses, e.g. hatchbacks, sedans and caravans in the 
passenger car category and minivans, light trucks and SUVs in 
the MPV category. 

5. CONCLUSIONS 

The vehicle classification and recognition methods described in 
this paper show reasonable performance in categorizing 
vehicles, which proves the capability of LiDAR in supporting 
traffic flow applications. This paper focused on classification 
using ground-based laser scanning datasets that could lead to a 
refined classification in the future. In addition, we developed 
technics to decrease the impact of corrupting points (reflected 
from the side of the vehicle, multipath reflection, other objects 
on the road etc.), since the vehicle points can be filtered either 
by cropping the outliers or filtering the shapes and adjusting the 
resolution along the profile.  
As opposed to airborne measurements, the ground-based laser 
scanning campaign was performed in Hungary, where the 
traffic pattern is significantly different from that in the US. 
Therefore, we have chosen widely used vehicle models as test 
vehicles, which can be representative even in the US. In the 
ground laser dataset the point density was exceptionally high, 
especially compared with the airborne set; in the profile 
determination process the overwhelming number of points 
ensured a very good resolution. The resulted shapes are nicely 
fit within the previously derived buffer zone (with sample 
shape); the only visible difference is caused by the higher back 
parts of European cars. 
The shape-based method can be directly used as a classifier, or 
can be used to enhance the previously used PCA based 
classification. Applying ground based laser scanned data, a 
detailed shape library can be established, which can be used to 
distinguish between sub-classes within the categories.  
The potential of using intensity values in the classification 
procedure has also been investigated. Although, the intensity 
maps seem to be applicable for segmentation, the point density 
of our dataset (2.4 points/m2) might not be sufficient for that 
purpose. 
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