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ABSTRACT: 
 
The paper focuses on a particular aspect of  feature extraction from LiDAR data. To support transportation flow data estimation, 
points reflected back from vehicles should be extracted from a LiDAR cloud. A simple thresholding can certainly provide a good 
starting point to solve this task, but in order to achieve a robust solution there are several other tasks that should be addressed. First, 
the road itself should be identified (actually continuously followed) to define the search window for the vehicles. Then, the surface 
of the road must be modeled to obtain true elevation of the vehicle (which is measured in the normal direction of the surface). Once 
the LiDAR points representing a vehicle have been obtained, at minimum the vehicle orientation should be determined such as travel 
direction. This paper introduces a technique to accomplish the above mentioned tasks. The road is followed by the guidance of an 
initial coarse centerline description. Then a preprocessing phase takes place, the point cloud is segmented to get the vehicle blobs. 
The segmentation is based on standard image processing methods, such as histogram thresholding or edge detection techniques, both 
methods are currently under consideration. In the next step, vehicle outlines are created using statistical parameters, such as standard 
deviation of height values or height "texture" measures. The robustness of the process  has been improved by using Delaunay-
triangulation to test slope measures. The newly developed method has been implemented in Matlab environment and provides 
visualization tools for diagnostic purposes. The obtained results have proven that our algorithm performs well  in effectively 
extracting vehicles  from LiDAR data that can contribute to the complex task of traffic flow information evaluation. 
 
 

1. INTRODUCTION 

LiDAR stands for Light Detection And Ranging.  Regarding the 
data acquisition concept it is similar to radar, except it operates 
with laser light.  Flown with a helicopter or fixed wing aircraft, 
eye-safe laser pulses are sent to the ground and their reflections 
are recorded.  Accurate distances are then calculated to the 
points on the ground and therefore elevations can be determined 
for not only the ground surface but the buildings, roads, 
vehicles, vegetation and even something as thin as e.g. power 
lines (Barsi et al. 2003), (Tovari 2002). 
LiDAR technology provides a point cloud, in which all points 
have three coordinates and – in most cases – intensity values. 
The laser pulse reflects from the closest object, known as first 
pulse, (in this paper we have used only this). 
The greatest difference between LiDAR and other distance 
measurement methods is the data structure. We have points 
along a narrow strip, where we don’t know exactly where the 
beam is reflected from, therefore, we cannot add any attribute 
information to these points. In addition, when we use LiDAR 
for transportation purposes, we have to adjust our calculation by 
shortening against flight direction and elongating along it. 
Therefore, our task is to develop methods for selecting, 
separating and classifying points using different approaches. 
One objective was to extract vehicle points for classification in 
order to support transportation flow data estimation. 
In LiDAR processing there are two completely different 
possible approaches. If we don’t want to lose information, we 
have to use sampled 3D data points. But it is much easier if we 
handle the data set as an image, after interpolating it to a regular 

square grid, where the intensity comes from the height of the 
point, certainly calibrated. In this paper we have used the 
original sampled data and the resampled, interpolated form of it 
(image). The visual control with images is also easier. 
The methods were tested with two different datasets, with 
diverse point density. One of them was acquired in July 2000 
over the State Route US 35 (East of Dayton, OH), whilst the 
other is about Toronto, Canada, in winter 2004. (See flight data 
in Table 1) (Toth et al. 2003). 
 
 

 Flight 1 Flight 2 
Flying Height  
(AGL):   

470 m 660 m 

Average Ground 
Speed: 

56.6 m/sec     58.5 m/sec 

Heading:  290 degrees (North-
West) 

250 degrees 

Scan Frequency: 50 Hz 46 Hz 
Field of View (Half 
Angle): 

6 degrees 20 degrees 

Laser Repetition 
Rate: 

10 kHz 70 kHz 

Point density 1.5 points/m2 2.4 points/m2 
Area Route 35, Dayton, 

Ohio 
Toronto, Canada 

 
Table 1. Flight parameters 

 
In the Ohio data set, 20-30 points are reflected from a passenger 
car (and 40-60 from a truck) traveling along the flight direction. 



 

In the opposite direction, this value is under 10 (Lovas et al. 
2004). 
Figure 1 shows a cross section of the LiDAR strip, which is a 
view about the cross section at the centerline. 
 
 

 
 

Figure 1. Cross section of the road with surroundings 
 

In this paper we present three, different methods for vehicle 
segmentation (Figure 2).  
 
 

 
 

Figure 2. Data processing flowchart 
 

2. DATA FILTERING  

In Figure 1 not only the road but also the surroundings 
(vegetation, ground work, landmarks, transmission line and 
vehicles) can be seen. First, we can easily detach the points not 
belonging to vehicles. If the position of the centerline of the 
road, and the number of lanes and their width are known, the 
usable swath can be obtained.  
If the centerline is not given, we can develop a semi-automatic 
algorithm that is based on the cross sections. Roads are usually 
located on embankments. We have to mark one cross section 
and the road direction, then using the calculated parameters 
from the sample section (height of the trapeze, angles and 
lengths, road slope from centerline), and the basic properties of 
the road (angle of slope - both for the long and cross direction, 
curve radius). Then the same data for the next cross-section 
should be calculated, close to the last one (e.g., 10 meters). 
Combining this with the original dataset we can decide whether 
the calculation is right or not. If the calculations are correct, and 
the matching is good, the middle position and the parameters of 
the given cross-section can be recorded. If not, the same 
calculation with the same parameters in a different position 
should be performed (rotating by a small angle around the 
middle point  of the last recorded cross section ). If in this 

position a properly matching cross section cannot be found, this 
has to be ignored, and a shorter distance from the last recorded 
one have to be used. 
 

3. THRESHOLDING 

In order to perform vehicle extraction, we have to separate all 
points above the average road height in a local environment. 
We cannot accomplish that without knowing the road level at 
every position of the vehicles or other objects (e. g., vegetation). 
Using a zone with a little bit smaller width than the sampling 
density, we can ensure that only one point can  fall inside. A 
polyline connecting these points and the centerline represent the 
road surface. This should not be very accurate because we use 
only the first pulse reflected from the tops; the lowest part of the 
vehicle is the engine hood, which is higher above the road than 
the distance between the points (Figure 3.). All points above 
that surface possibly belong to a vehicle. This new set is the 
basis for our further examinations. 
 
 

 

 
 

 
 

Figure 3. Test data in 3D: rear and front view 
 

In case of sloping roads the same height could represent a road 
and also a vehicle. In order to identify  vehicles more easily we 
have to compensate for the slope of the  road. The centerline of 
the road is given or being calculated only horizontally. In 
Figure 4, the sampled point heights are shown along the 
centerline. The long section of the road is shown, where the 
sloping angles are different, but can be approximated with lines 
segments (marked in red). Decreasing all point height to the 
value of the regression line, at the point’s horizontal position 
this goal can be achieved (Pitas 2000) 
 



 

 
 

Figure 4. Point heights along the long-section and the 
interpolated elevation of the centerline 

 
4. DELAUNAY-TRIANGULATION 

The other way to get vehicle points is using Delaunay-
triangulation. Figure 5 shows the calculated triangles on the test 
area.  
The grayscale image is color-coded for the triangle slopes; 
hence this can be the basis of vehicle segmentation. This 
method is accurate, precise, and less sensitive for errors. 
 
 

 
 

 
 
Figure 5. Result of the Delaunay-triangulation and the grayscale 

image, representing triangles slope 
 
Using Delaunay-triangulation for the initial data set, the non-
regular network of triangles can be created; this method 
minimizes data loss caused by interpolation, however, it is hard 
to handle this network. The creation of these triangles is 
automatic, therefore, the special characteristics of the road, 
vehicles and landmarks cannot be considered. 

The method presented here is based on triangulation. The 
gradients of the triangles are very dissimilar, but there are only 
slight differences between the heights of points in neighboring 
triangles.  
First, we calculate the slope angle of each triangle to a reference 
plane that is practically the approximate position of the road 
surface; this value in radians is linked to the center of gravity of 
the triangles. This is still insufficient information to separate 
vehicles because triangles contain also points reflected from the 
surface of the road, therefore, resulting in very different slope 
angles. In the test data, the horizontal distance between points is 
generally less than the distance from the road surface and the 
points reflected back from vehicles. The perimeter of a triangle 
gives information about the slope of it; if both the slope and the 
perimeter of a triangle is big, then the triangle most likely 
belongs to the boundary of a vehicle. Using the centerline of the 
road and lane parameters, triangles at the sides of lanes could be 
filtered out. 
A vehicle is found, if the bordering triangles are tend to have 
slope angles in the same direction, like the walls of a tent, and 
there is a space between these “walls”. The vehicle envelope 
can be achieved, fitting a polygon on the points found (only 
vertically), one for higher ones, one for the lower ones, which 
are on the same level as the road. Separating points for these 
two polygons could be achieved using heights; inside the higher 
level polygon -as a fence- including points fitting on polygon 
we could get the vehicle points. The extensions of vehicles 
could also help filter out some wrong triangles. (See Figure 3 
for vertical, Figure 4 for horizontal triangle errors) (Sederberg 
et al. 1985). 
 

5. CLASSIFICATION 

The segmentation of vehicles from this pre-processed data is 
based on the remaining triangles. First, the distances between 
each pair of observation points are calculated. These can be 
used to compute the hierarchical cluster information based on 
the single linkage algorithm. Then, we could define clusters for 
each vehicle using the resulting cluster-tree. 
For each cluster representing a vehicle we make a principal 
component analysis, to get eigenvectors, which stretches a 
coordinate system. The length of the vectors carries information 
about the dimensions of the vehicle, while the orientation has 
about the moving direction. 
In the introduction we mentioned the potential of using image-
processing techniques for segmentation.  
 
 

 
 

Figure 6. Intensity image of the surface 
 

The intensity of pixels is derived from their height, after 
creating the covering surface (Figure 6.). The network is regular 
rectangular, the pixel size should be less than the minimal 
distance between the points in the point cloud. We used bilinear 
interpolation for calculating the pixel values. 



 

 
 

Figure 7. Binary image 
 
It is easier to use a binary image for classification, therefore, the 
original image has to be converted, using an appropriate 
threshold value. As described above, because of the elevation of 
the road, the same pixel value could represent both vehicle and 
road points. (It can be seen in Figure 5 and 6.) 
In Figure 7, the labeling method can be easily applied to get 
connected components, which based on the investigation of the 
neighboring pixel values (4 or 8 neighbors), and sort them into 
classes; each separate class gets a unique identifier.  
 

6. CONCLUSIONS 

This paper demonstrated a way to extract vehicles from a 
LiDAR point cloud to provide data for vehicle classification. 
The comparison results of the introduced three methods are 
shown in Table 2. 
 
 

 Route 35, Dayton, 
Ohio 

Toronto, Canada  

Thresholding 4/4 13/14 
Triangulation 4/4 14/14 
Image labeling 4/4 12/14 

 
Table 2. Segmentation methods comparison 

(Extracted vehicle/present vehicles) 
 
In Figure 8, the results obtained for one vehicle are shown. 
Because of the automatic Delaunay triangulation, which 
operates without any constraints, one point is missing, but it 
provides the most precise boundary of the vehicle out of the 3 
algorithms. The fastest method is the thresholding-based 
technique. 
 
 

 
Figure 8. Vehicle points with polygon boundary 

(Red - Triangulation, Green - Labeling, Blue - Thresholding) 
 
The results are promising, but further work is needed for refined 
segmentation. In addition, using denser point cloud is expected 
to result in better point selection. 
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