
A PLATFORM FOR RAPID DEPLOYMENT OF MOBILE ASSET MANAGEMENT
SYSTEMS

Mr. Suen Lee and Prof. Yang Gao

Department of Geomatics Engineering
The University of Calgary

Calgary, Alberta, Canada T2N 1N4
sulee@ucalgary.ca; gao@geomatics.ucalgary.ca

KEY WORDS: GIS, Internet/Web, Management, Data Mining, Web based, Tracking

ABSTRACT:

In recent years, the convergence of location, information management and communication technologies have created an emerging
market known as location-based service (LBS). LBS is a critical enabling technology using location as a filter to extract relevant
information to provide value-added services. Mobile Asset Management System (MAMS) is one such service and has been rapidly
gaining attention from corporations and individuals. A MAMS offers timely and relevant information necessary for informed
decisions on efficient asset management, increasing productivity, profitability, safety and security. Despite there being a diverse array
of potential applications, all MAMS share common elements such as data collection from remote assets, wireless communication for
transmitting data from the assets to a central office back-end for storage, and software application to provide services to interested
users. If these elements are recreated for every new MAMS, as is generally the case today, then significant time and resources will be
wasted through duplication. Trying to tie the heterogeneous components into a MAMS has been a challenge for LBS developers. To
overcome these obstacles, technologies that provide the common elements and fundamental functions have been investigated and
developed at The University of Calgary. Heterogeneous components such as sensors, wireless networks and databases have been
integrated into a single Development Platform which can become a foundation and is an innovative solution to numerous and diverse
MAMS system development and for other LBS applications. By featuring an object-oriented, extensible and modular architecture,
developers can choose the functions from the platform to use in their applications, extend or customize other functions and add their
own specialized software applications when necessary. Technical details of the platform will be described along with field test results
in applications to vehicle tracking for safety and security monitoring.

1. INTRODUCTION

1.1 Background

Advances in widespread, robust and inexpensive location and
wireless communication technologies have resulted in an
explosion of activities in the field of Location Based Services
(LBS). Timely and relevant information enables informed
decision-making and offers improvements for productivity,
safety and security. One particular form of LBS, known as
Mobile Asset Management System (MAMS) has garnered
significant interest from corporations desiring more efficient
methods in managing their asset fleets. Other promising
applications include personal vehicle monitoring and security
systems. To be an effective tool, a MAMS must be capable of
aiding or performing operational decision-making. It must be
able to differentiate between dissimilar assets, seamlessly
handle spatial and non-spatial data. It must be capable of
collecting and storing information from the field and process
the data to and from numerous databases for data retrieval,
editing, analysis, presentation and decision-making functions.

The impetus for LBS came out of the demands of the United
State’s Federal Communications Commission (FCC) for
cellular operators to be able to provide the position of any
cellular devices operating on their network to public emergency
services, accurate to within 125 meters, as part of their
Enhanced 911 program [Prasad, 2001][FCC, 2003].
Technologies developed for accurate positioning via cellular
network or phone to provide emergency locations can also be
used for new and innovative applications. Devices integrating
wireless and positioning capabilities could be attached to

vehicles and assets for monitoring. Mining operations utilize
numerous and varied assets spread over a wide work area in
their operations and would greatly benefit from the deployment
of an effective MAMS into their operation. They could also be
used by consumers to determine nearby points of interests or
receive relevant information, using location-aware cellular
phones or other wireless devices. For these reasons, along with
expectations of rapid growth [Prasad, 2001], LBS has received
significant attention from industry, users and providers.

1.2 Development Platform

In this paper, a location aware Development Platform in support
of MAMS and other LBS applications will be presented. This
Platform helps augment MAMS development by providing
critical functionality required in a MAMS type applications,
allowing developers to reuse these functionality and maximize
their time and resources on the unique aspects of their
applications. The intent is to have a platform that can become
an engine for LBS development. While MAMS is the primary
application for the Platform, it will remain flexible enough so
that it could also be extended to other LBS activities in the
future. This Platform will offer important low-level functions
that developers can utilize as an important foundation for their
enterprise MAMS applications and feature an open architecture,
so that it can be utilized by third parties. A system developed
with the Platform will also be presented along with field and
simulated testing results.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 34, Part XXX

2. JAVA, WIRELESS LOCATION AND
COMMUNICATION TECHNOLOGY

The Platform is created using Java and leverages object-
oriented principles to realize advantages in maintenance and
ease of integration for third-party developers. It offers two-way
communication and control capabilities in conjunction with a
widespread cellular network and remote intelligent sensors.
Users have access to assets through the Internet.

2.1 Java

Java is a software development platform that was released in
1995 and offered the following benefits:

• The ability to write code once and have it run on multiple
hardware and software platforms with minimal effort

• Designed from the ground up on object-oriented
principals

• Better inherent security and safer memory management
compared to the C/C++ programming languages.

• Allow full-fledged applications to run completely within
an Internet browser

• Developing server-side applications for dynamic and
interactive Internet content

• Usable on a wide range of consumer devices

Java has especially become popular in the creation, serving and
presentation of content through the Internet and for Internet
enterprise applications. Three Java technologies, namely
Applets, Servlets and Java ServerPages, have features that are
especially useful for the serving and presentation of asset data
to users in a MAMS and are used in the Platform.

2.1.1 Java Applets

An Applet is a Java application designed specifically to work
within the confines of an Internet browser. An Applet is used
whenever complex or graphical information needs to be
presented as it has all the capabilities of a Java application, such
as a graphical user interface. However, as the Applet runs on
the remote user’s computer, it is a client-side process and is
therefore barred by Java security practice from accessing
resources on the server directly. To get access to these
resources, some application must be available on the server that
can respond to the Applet’s request and provide it with the
resources it needs. For this task, the Servlet is used.

2.1.2 Java Servlets and ServerPages

A Servlet is also a Java application, but one that resides on a
server and listens for requests from the outside. Potential
requests could be initiated by Applets. A Java Server Engine or
a fully Java Servlet enabled web server is needed to properly
operate Servlets. The Servlet is designed to primarily handle
multiple short-lived tasks simultaneously so it utilizes child
threads to handle new requests. Creating only a new child
thread, which can share global memory with other child threads,
is much faster and consumes less computer resources than
previous server-side applications. Child threads also have local
variables that are only visible within a thread context, so that
data meant for one client does not go to another client and do
not interfere with each other in any way.

Java ServerPages (JSP) is Java’s answer for server-side
scripting. A JSP file is simply a normal web page containing

HTML code intermixed with Java source code and has an
extension of JSP to identify it. The JSPs, like Servlets, are
processed by a Java Server Engine and is executed when it is
called by a user. After execution, the results are outputted as
HTML code in place of the Java source code in the JSP and
sent to the user for display. Because the JSP is a server-side
application, it also has access to all the resources that are
available on the server-side. The advantage that JSP has over
other server-side scripting methods is that JSP is a true
programming language and allows the full use of the extensive
Java class libraries. Any new development in Java, even if it has
nothing to do with Internet development, is automatically
available to JSPs and Servlets. This greatly enhances the reuse
of software and code. Another advantage is that JSPs are
precompiled and this benefits response time and performance.
JSPs are primarily designed to handle simple dynamic text
content, such as querying databases and returning the results in
a tabular form. Servlets can transfer any form of data to a
requester, including complex class objects containing desired
data. The class is serialized into a binary stream and sent to the
user application, which casts the binary data back into the
original class object and be directly used in the application.

2.2 Intelligent Sensors for Wireless Location and Asset
Data Acquisition

Remote sensors are important tool in MAMS; not only do they
provide the location of the mobile assets but they can also
acquire important data about the assets. Unlike human data
collectors, they are always at the asset and ready to acquire data
at any time and condition. There are several such sensors
available from different manufactures designed for mobile asset
management and could be used by the Platform. However, in
this paper, only the Asset-Link sensors from CSI Wireless will
be discussed. Asset-Link sensors has been used with a
prototype system, which will be discussed in Section 4, to
combine cellular communication, GPS technologies and greater
“intelligence” to create a fully integrated yet low-cost sensor
that is highly suitable for mobile asset management.

Asset-Link sensors are an intelligent and fully autonomous
location and data acquisition system developed specifically for
mobile asset management applications. Asset-Link sensors
utilize an onboard high-sensitivity GPS receiver chip to provide
location data and data transmission through Aeris MicroBurst.
Not only does the Asset-Link acquire data, it can also be pre-
programmed to perform operations with the asset automatically
or when directed by a command from the asset owner. Because
of its small size, the Asset-Link sensors can be discretely
hidden into vehicles, making it an effective alarm and
monitoring system. Its low power consumption ensures that it
does not detrimentally affect the performance or usability of a
monitored asset, even if the asset is put into storage or is
inactive for weeks or months. [CSI, 2003]

2.3 Wireless Communication

Mobile location and data acquisition sensors from different
manufactures may use different wireless carriers in their
products. The Platform is designed to handle current and future
wireless technologies as they become available and allow users
of the Platform to take advantage of the technologies with little
effort. In the following, Aeris MicroBurst will be described
since it has been integrated with the Asset-Link sensors.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 34, Part XXX

Aeris MicroBurst is a wireless data communication system that
utilizes the analog portion of existing cellular networks, which
gives excellent coverage. MicroBurst is considered an ideal
solution for applications requiring widespread availability and
reliability but only have small data bandwidth requirements.
Many types of MAMS fall under this category of applications.
MicroBurst utilizes the Forward Control Channels (FOCC) and
the Reverse Control Channels (RECC) of an analog cellular
network. Together, they enable two-way communication and
control with assets.

FOCC messages are transmitted from the cellular switch to the
MicroBurst-enabled devices. FOCC messages, otherwise
known as Pages, are meant to trigger responses from the device
or to get the device or asset to perform a desired operation.
Each MicroBurst-enabled device can have up to 10 Mobile
Identification Numbers (MIN) which can be used to trigger a
different event or operation on the device. FOCC messages are
initiated by the device’s owner or interested users, who send the
page in a MicroBurst specific format to Aeris’s central hub.
Aeris then sends out the page to the desired device. RECC
messages are transmitted from the MicroBurst-enabled devices
onboard assets back to the cellular switch. These RECC
messages are then sent to the Aeris central hub, which finally
relays the messages through the Internet back to the asset
owners. Each message packet’s data is encoded into a number
string. To obtain data in real-time, the asset’s owner must be
continuously connected to the central hub via the Internet.
Otherwise, Aeris will store the data until the owner connects
with it. The maximum length of a number string is only 32
digits. However, by using each number efficiently, it is still
possible to send useful amounts of data with a MicroBurst
message packet. Multiple messages can also be used to increase
the amount of unique data that can be sent from the asset.
[Aeris.net, 2003]

3. PLATFORM ARCHITECTURE

The Platform is split into several components based on logical
and physical boundaries. This follows object-oriented principles
of grouping similar functionality together and also offers
performance and security benefits.

3.1 Client-Server System Architecture

A common paradigm found in computing is the Client-Server
(CS) architecture. The CS architecture utilizes servers that
contain data resources and may perform some or all of the data
processing function. The Client’s primary purpose is to present
data and processing results from the Server to users but may
also process data depending on the CS design used. The CS
design is split into additional subcategories, depending on the
fatness or thinness of the client layer. The thin client is a
lightweight application that can only display data and
processing results that are retrieved from the server. Being
lightweight, the client layer application requires less memory,
storage and processing power, therefore enabling the client
application to run on smaller and more mobile computing
devices, like PDAs. On the other side of the spectrum, there is
the fat or thick client where most processing functions are
carried out at the client side and only the data is retrieved from
the server. Between these two extremes, there are also hybrid
clients where the processing workload is split between the
server and client. The hybrid scheme was utilized in the
Platform for its advantages in performance and control of
remote access to the asset data [Peng and Tsou, pg. 13].

3.2 Platform Modules

The Platform features numerous useful functions for a MAMS
application. These functions have been separated into data,
application logic and presentation layers and placed into
independent modules. These modules can be used fully,
partially or customized depending on need. Much of the
configuration for the modules can be done in configuration files
or databases, thus allowing for significant customization
without a need to change the code. While these modules are
logically separated, they can physically operate on the same
server or be distributed across different servers. This can realize
improvements for scalability and performance while still
working seamlessly with each other.

3.2.1 Communication Module

The Communication Module contains the functionality to make
and maintain the connections to assets. The only configuration
required if using Microburst-enabled Asset-Link sensors is to
input settings regarding the IP address of the Aeris servers and
account settings to login to Aeris’s servers. The Communication
Module connects to the servers at Aeris’s central hub using the
Internet with network socket connections. Two connections are
made; one connection is to the Aeris Data (DS) Server; this
server relays messages sent from a remote Microburst-enabled
sensor back to the Office. The other connection is with the
Aeris Page (AS) Server; the AS Server relays pages sent by
users to the sensors.

The Communication Module is also responsible for maintaining
a continuous connection to the Aeris servers. These servers
send regular “pings” to any connection that is made to it, to
ensure that the connection is still valid. If no acknowledgement
message is sent back, then the connection will be terminated. As
well, other messages that are initiated by the Aeris server
usually require an acknowledgment. The Communication
Module has the necessary logic to recognize the message type
and to return a suitable acknowledgement back to the servers to
ensure the connection is not terminated. For messages that are
sent from a sensor onboard an asset, the raw data is extracted
and passed onto the Data Module for further processing.

There are a large number of messages that are used on the Aeris
MicroBurst service but all share a common format and binary
encoding method. Each message has a header and limiter plus
the actual message contents. The message contents include the
metadata, such as the message length, message identification
number to distinguish its message type and finally, the message
body itself. As the messages share a similar structure, then it is
natural to implement the different Aeris message types as
objects in the Platform by implementing Java classes to
represent each message type.

3.2.2 Data Module

The Data Module is responsible for serving data from
geospatial sources, such as vector data in ESRI Shape form or
raster image data, to local or remote users through the Internet.
It features a highly optimized code base and supports
simultaneous multi-user access. This module is also responsible
for receiving the decoded raw asset data from the
Communication Module, to store into databases and serve the
asset data to users. It is designed primarily to serve requests
from the Web Client, though any application that understands

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 34, Part XXX

the common protocol and the module’s data structure can
connect to the Data Module and receive data. It can be
configured without need to modify the source code, enabling
rapid setup of new MAMS applications and projects. The Data
Module is expected to work in a one-to-many environment.
That is to say, in an environment where multiple users are
expected to access the module simultaneously. The Java Servlet
technology fits this requirement well, given its seamless
handling of multi-user access. It also makes it possible for only
one instance of the Data Module to handle all the clients, thus
minimizing its memory footprint.

The Data Module works in conjunction with the
Communication Module. The Communication Module obtains
from the received Aeris message, the raw number string and
hands it to the Data Module. The Data Module then decodes the
number string into meaningful information, based on the
configuration set in the remote sensor and stores the
information into relational databases. There is a separate
Database component within the Data Module that is used to
handle the database management aspects. This is necessary as
the database is among the most variable aspect in a MAMS as
any changes in assets, or collected asset information would have
to be reflected in the database. Communication between the
Module and the databases are done through a standard public
interface and queries to help abstract the structure and format of
the actual database. This use of encapsulation helps minimizes
the effect that any changes to the asset data collection process
would have to the whole Data Module. The Database
component is where the number string decoding occurs and
where the necessary queries and update functions used to
interact with the actual databases are held. The database product
currently used is Microsoft Access, but all transactions with
databases involve the standard ODBC protocol, which will
allow different database software packages to be used in place
of Microsoft Access if necessary.

When providing vector data, the Data Module first opens the
ESRI Shape file to decode into an array of separate vector
features. This array is then broken apart into a Multi-Layer
Storage Scheme (MLSS), which is a key optimization for
reducing the search time for a request. This storage scheme
works by having several levels that cover the entire vector map
area; each level contains geospatial features of varying size,
with no feature being duplicated between the levels.
Furthermore, each level partitions the map area into a certain
cell size, with lower levels having smaller cell dimensions and a
greater number of cells as compared to higher levels.

The topmost level has only one cell that contains the entire
map. As each vector feature is decoded from the ESRI Shape
file, its boundary coordinates is then added into the smallest
possible cell that they can fit into. By sorting the vector features
into different cells, only a fraction of the entire vector data set
needs to be searched for the majority of client requests and
thereby greatly improve the responsiveness of the system. The
MLSS is fully customizable; the number of levels, the number
of cell partitions in the horizontal and vertical can be adjusted
to best match the vector feature density characteristics of any
particular dataset. As the Data Module is built upon a Servlet
foundation, the vector data is stored into global memory, so that
threads created to service requests from multiple users share the
vector data and thereby reduce memory usage. The vector data
is persistent in memory, even after client threads have been
destroyed once requests have been serviced. This ensures that
the time and processor consuming procedure of decoding the

ESRI Shape file only occurs once during the Data Module’s
initialization phase.

The Data Module also provides raster data, most commonly
with MapPoint Web Service. MapPoint provides global spatial
data and extensive street maps for North America, Europe and
many cities in South America. This large amount of spatial
information from one source is essential for providing services
to companies with assets spread over entire regions or
countries.

Requests for data are received by the Data Module through the
Servlet communication method. All forms of user request
follow a standard protocol, which indicate the type of request
and other associated information required by the server to
perform the request. The server then performs the request and
then packages the requested data into a single message and
sends it back to the user. After receiving a request, the Servlet
performs the operations necessary to accomplish the request
and sends the results back to the requestor [Lee and Gao, 2002].

Configuration of the Data Module can be done through two
methods. The primary method is through adding parameters
into a standard XML based configuration file used for each
Servlet. The second supported method is to have the XML file
provide the location of a separate configuration file, which
would be parsed by the Data Module. These configuration
methods provide the Data Module with important parameters
such as the location of the vector data, the ODBC name of
associated databases and the coordinates of the desired map
extent. In this way, different projects can be created using the
same template Data Module and without the need to modify the
source code or to write any additional code.

3.2.3 Application Module

The Application Module consists of a Server component and
also the Web Client which helps users access data and tools.
Whenever a user connects to the Application Module through a
browser, the Web Client, which is the other component in this
module, is downloaded and proceeds to run on the user’s
computer. By centralizing the storage and distribution of the
Web Client, benefits can be realized through reduced support
and administrative costs. Administrators need only to apply
updates and bug fixes to the Application Module code base and
users can be confident that they are using the latest version of
the Web Client whenever they connect to the Module.

The basis of the Web Client is the Java Applet, which allows
for the creation of a software application that offers a graphical
user interface that would easy for users to grasp. It also enables
the application to run on multiple platforms without any need to
modify the source code. The Web Client includes a Toolbar
component, a Statusbar component and a Map component plus
a Parent Shell and is based on a Model-View-Controller
scheme. The Toolbar is the Controller in the Web Client as it is
responsible for receiving inputs from users and controlling the
application based on the inputs. The Parent Shell acts as the
Model, containing the majority of the Web Client’s logic. It
also links all the other components together, passing controls
and notifications to the View and for communicating with
Platform server-side modules. The Statusbar component is used
to display text information passed to it from either the Map or
Toolbar components. The Map component is used to display
the geospatial data via a graphical presentation. Both the

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 34, Part XXX

Statusbar and Map components are part of the View, as they
help present information and processing results to the user.

For the Web Client, all of the user accessible tools appear to be
part of the Toolbar, at least as seen from the user’s point of
view. However, the implementations of these functions are
actually in the Parent Shell. The Toolbar is only used to activate
the proper functions in the Parent Map. The tools that have
been created include typical GIS-type functions for map
viewing and manipulation as well as for viewing and querying
spatial and non-spatial information. These functions interface
with the Data Module and retrieve data from it. Another
category of functions are used for asset control, which sends
user-issued commands to the Relay Server. The type of control
functions available vary depending on the asset and the
configuration of the onboard remote sensor but typically
include positioning, tracking and safety and security related
controls. The current configuration of the remote sensor and
asset combination is part of the information stored into the
database dedicated to assets. This database is queried by the
Web Client to determine which command functions, if any, to
show to a user when a certain asset is selected. In addition to
asset information that can be queried using the Web Client,
spatial information regarding the current address of assets or
nearby streets can also be queried using the geo-referencing
tools available in the Web Client. The nearest vector feature to
a mouse click is determined using a nearest vector feature
search algorithm. Each vector feature has metadata that includes
the necessary identification numbers that allow the Parent Shell
to request extended information regarding the feature.

While the Web Client can run on numerous platforms, there are
certain requirements that must be met in order for a computer to
properly run the Web Client. The primary requirement is that
the client computer must have a recent Java Virtual Machine
(JVM) available. A JVM is necessary in order to run the Java
based Web Client and to provide the built-in Java classes that
are used by the application, so that the downloaded application
can be as small as possible. The JVM is also necessary to run
other Java applications. Fortunately, JVMs are offered by
numerous providers for multiple platforms and operating
systems. The version developed by Sun is one of the most
popular and featured-filled, which is not surprising since Java
was developed by Sun. It is freely available for download from
Sun’s website and is known as the Java Run-Time Environment
(JRE).

When a user first accesses the Application Module, the Web
Client is downloaded onto the user’s computer, compiled and
executed within the Internet browser environment. Once the
initialization processes are complete, the Web Client is in a
blank state with no data or parameters stored in the Web
Client’s memory. It must then request an initial set of
parameters from the Application Module back at the Office
server. This first set of parameters provides important details
regarding the map and data that would be needed for the rest of
the client session. It provides the access addresses for the Data
and Relay Server modules, the coordinate extent of the selected
map area as well as information regarding other map data
sources that are available from the Data Modules.

When a vector data message is received from the Data Module,
the Parent Shell passes the message to the Map component. The
contents of a vector data message includes the coordinate extent
of the new visible area, the vector feature type (polygons,
polylines, etc.), metadata regarding each distinct vector

feature’s class as well as any assets that are within the visible
area. The Map decodes the packed vector and asset data into an
array of coordinates, converting from coordinate space to the
display space using the coordinate extent of the visible area.
Each vector feature is drawn onto the display using Java
provided tools for drawing polygons and polylines. Information
about assets can be provided in graphical form, by indicating
the location of assets on the map, or in text and tabular form
using JSPs to query the Data Module’s database for current or
historical information.

A unique ability offered by the Platform is the ability for users
to remotely check on and control assets in real-time. This is
possible through the integration of the Aeris MicroBurst service
with CSI Asset-Link sensors. Users can issue a specific
command through the Web Client to the Communication
module. It passes the message onto the Aeris’s AS server. Aeris
then proceeds to deliver the command by paging the onboard
Asset-Link sensor which then performs the desired operation
and reports back the success or failure of the operation as well
as any results that may have occur. An Asset-Link sensor can be
preprogrammed to perform a series of operations automatically
based on conditions or triggered manually through a page.
Operations of use in real-world applications include requests
for current positions, unlocking doors, arming and unarming
alarm systems, enabling or disabling engine ignition, speed
limiters and continuous tracking. The configured operation and
their numbered command strings are stored into the sensor
database as the configuration can be unique for different
sensors and/or asset combinations. For security reasons, the
actual command strings and sensor identification numbers are
not shown to users.

4. TESTING RESULTS

A prototype system, named as iVCAMS3 (Internet-based
Vehicle Control And Monitoring System for Safety and
Security), has been developed using the development platform
at The University of Calgary to monitor and control vehicles for
safety and security purposes. The main screen can be seen in the
following figure.

Figure 1. iVCAMS3 main screen

4.1 Field Testing

Field-testing was conducted to ensure that iVCAMS3 could
successfully receive messages from Asset-Link equipped assets
using the MicroBurst network and send commands back. Asset-
Link sensors were placed onto cars in several cities throughout
North America. During the tests, pages were issued to the

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 34, Part XXX

Asset-Link sensors for their locations. Their locations were sent
back to the server and instantly updated into iVCAMS3 and
plotted onto the map. The accuracy of the location data was
confirmed with the drivers of the cars and was high. Other
commands, such as remote unlocking of doors, were also tested
and were successfully received by the sensors and the correct
operations performed.

The total time necessary to complete all steps in paging an asset
were also monitored during the course of tests. The times for 29
pages are shown in Figure 2. These pages were sent to two
assets; one asset traveling between Calgary and Edmonton
while the second asset was in Fort Lauderdale, Florida. The
average time for roundtrip of a page was found to be 9.25s, with
a maximum time of 16s, which was reached by only one of the
pages. The standard deviation was two seconds.

Roundtrip Latency of Pages to Assets

6

8

10

12

14

16

18

0 5 10 15 20 25 30

L
at

en
cy

 (s
)

Figure 2. Page latencies

4.2 System Testing

To test the theoretical limits on the system, in terms of number
of assets that can be supported, simulation testing was
performed using several different computer systems acting as
the Server. Simulation enabled precise control of variables and
made it possible to quantify the limits of the Platform. In its
development tools, Aeris provides software that simulates the
Aeris AS and DS servers. This enables developers to create
applications that are fully compatible with the Aeris protocol
before using it with the real Aeris system. The simulated server
is customizable and can be modified to send messages at any
defined rate. In this way, we can simulate a different number of
units by varying the frequency that messages are sent out by the
simulated Aeris server. We can then determine the limitations
of the system in terms of the number of units and assets that it
can support, by monitoring the CPU and network bandwidth
usage using PerfMon. These monitored attributes are displayed
in Figure 3. The server tested consisted of an Intel Pentium III
933MHz system with 512MB of RAM and running the
Microsoft Windows 2000 operating system.

With an assumption that an asset will send a message once
every 30s, 64 messages per second approximates to a fleet of
about 1900 assets and 131 messages per second represents
about 3900 assets. From the results of Figure 3, the CPU usage
for even 3900 assets is not taxing the server, as it only ranges
from 20% to 25%. For 1900 assets, the CPU usage is lower as
would be expected, ranging from 7% to 15%. As for network
bandwidth usage, the simulation results shows that this should
not be a major concern as the usage is 15KB/s and 29KB/s for
1900 and 3900 assets respectively and well within the limits of
even home broadband Internet connections.

Simulated Asset Testing

0

5

10

15

20

25

30

Time

C
P

U
 U

sa
ge

 (%
)

0

5

10

15

20

25

30

K
B

/s
 R

ec
ei

ve
d 131 Msgs/s

64 Msgs/s

131 Msgs Bandwidth

64 Msgs Bandwidth

Figure 3. Simulated asset testing

5. CONCLUSION

A fully complete platform has been developed and is capable of
addressing all major concerns in MAMS, including asset data
acquisition, transmission and handling and analysis as well as
unique capabilities for user access to asset data. It reduces the
resource, time and cost needed to deploy a MAMS, thereby
enhancing its benefits. It features a modular design separating
the important functions of a MAMS and enables developers the
flexibility to choose whether to use all or only certain
capabilities of the Platform.

This Platform was used as a basis for a real-world MAMS
known as iVCAMS3. This system was built based on the
requirements of industrial partners and field testing was
conducted to ensure that the asset could send messages and
locations back to the Office and that users could issue
commands to the asset. Testing was completed successfully
with vehicles with Asset-Links installed in multiple cities in
Canada and the USA. It was possible to monitor vehicles when
they were stationary and in motion. Roundtrip latency of
messages was around 10s, making it possible to have real-time
monitoring and control capabilities with assets.

ACKNOWLEDGMENTS

The research was supported by a NCE GEOIDE grant.

REFERENCES

Aeris.net, 2003. “MicroBurst Technical Details”,
http://www.aeris.net/aeris_web/products_microburst_technical.
html (accessed 1 Feb. 2004)

CSI Wireless, 2003. “Asset Management Products”,
http://www.csi-
wireless.com/products/documents/NewAssetLink.pdf (accessed
1 Feb. 2004)

FCC, 2003. FCC: Enhanced 911.
http://www.fcc.gov/911/enhanced/ (accessed 14 Oct. 2003).

Lee, S. and Y. Gao. “Mobile Asset Tracking and Management
Over the Web”. Proceedings of Geodesy for Geotechnical and
Structural Engineering. May 21-24, 2002, Berlin, Germany.

Peng, Z. and M. Tsou. Internet GIS – Distributed Geographic
Information Services for the Internet and Wireless Networks.
John Wiley & Sons, New Jersey, 2003.

Prasad, M., 2001. "Location Based Services",
http://gisdevelopment.net/technology/lbs/techlbs003pf.htm
(accessed 1 Feb. 2004)

