
SCALABLE AND VISUALIZATION-ORIENTED CLUSTERING
FOR EXPLORATORY SPATIAL ANALYSIS

J.H.Guan, F.B.Zhu, F.L.Bian

a School of Computer, Spatial Information & Digital Engineering Center, Wuhan University, Wuhan, 430079, China-
jhguan@wtusm.edu.cn

TS, WG II/6

KEY WORDS: GIS, Analysis, Data Mining, Visualization, Algorithms, Dynamic, Multi-resolution, Spatial.

ABSTRACT:

Clustering can be applied to many fields including data mining, statistical data analysis, pattern recognition, image processing etc. In
the past decade, a lot of efficient and effective new clustering algorithms have been proposed, in which famous algorithms
contributed from the database community are CLARANS, BIRCH, DBSCAN, CURE, STING, CLIGUE and WaveCluster. All these
algorithms try to challenge the problem of handling huge amount of data in large-scale databases. In this paper, we propose a
scalable and visualization-oriented clustering algorithm for exploratory spatial analysis (CAESA). The context of our research is 2D
spatial data analysis, but the method can be extended to higher dimensional space. Here, “Scalable” means our algorithm can run
focus-changing clustering in an efficient way, and “Visualization-oriented” indicates that our algorithm is adaptable to the
visualization situation, that is, choosing appropriate clustering granularity automatically according to current visualization resolution.
Experimental results show that our algorithm is effective and efficient.

1. INTRODUCTION

Clustering, which is the task of grouping the data of a database
into meaningful subclasses in such a way that minimizes the
intra-differences and maximizes the inter-differences of these
subclasses, is one of the most widely studied problems in data
mining field. There are a lot of application areas for clustering
techniques, such as spatial analysis, pattern recognition, image
processing, and other business applications, to name a few. In
the past decade, a lot of efficient and effective clustering
algorithms have been proposed, in which famous algorithms
contributed from the database community include CLARANS,
BIRCH, DBSCAN, CURE, STING, CLIGUE and WaveCluster.
All these algorithms try to challenge the clustering problem of
handling huge amount of data in large-scale databases.

However, current clustering algorithms are designed to cluster a
certain dataset in the fashion of once and for all. We can refer to
this kind of clustering as global clustering. In reality, take
exploratory data analysis for example, the user may first want to
see the global view of the processed dataset, then her/his
interest may shift to a smaller part of the dataset, and so on.
This process implies a series of consecutive clustering
operations: first on the whole dataset, then on a smaller part of
the dataset, and so on. Certainly, this process can be directed in
an inverse way, that is, user’s focusing scope shifts from smaller
area to larger area. We refer to this kind of clustering operation
as focus-changing clustering. In implementation of focus-
changing clustering, the naive approach is to cluster the focused
data each time from scratch in the fashion of global clustering.
Obviously, such approach is time-consuming and low efficient.
The better solution is to design a clustering algorithm that
carries out focus-changing clustering in an integrated
framework.

On the other hand, although visualization has been recognized
as an effective tool for exploratory data analysis and some
visual clustering approaches were reported in the literature,
these researches has focused on proposing new methods of
visualizing clustering results so that the users can have a view
of the processed dataset’s internal structure more concretely and
directly. However, seldom concern has been put on the impact
of visualization on the clustering process. To make this idea
clear, let us take 2-dimensional spatial data clustering for
example. In fact, clustering can be seen as a process of data
generalization on basis of certain lower data granularity. The
lowest clustering granularity of a certain dataset is the
individual data objects in the dataset. If we divide the dataset
space into rectangular cells of similar size, then a larger
clustering granularity is the data objects enclosed in the
rectangular cells.

More reasonably, we define clustering granularity as the size of
the divided rectangular cell in horizontal or vertical direction,
and define relative clustering granularity as the ratio of
clustering granularity over the scope of focused dataset in the
same direction. Visualization of clustering results is also based
on clustering granularity. However, visualization effect relies on
the resolution of display device. For comparison, we define
relative visualization resolution as the inversion of the size
(taking pixel as measurement unit) of visualization window for
clustering results in the same direction as the definition of
clustering granularity. Obviously, a reasonable choice is that the
relative clustering granularity is close to, but not lower than the
relative visualization resolution of visualization window.
Otherwise, the clustering results can’t be visualized completely,
which means we do a lot but only part of its effect is shown up
in visualization.

In this paper, we propose a scalable and visualization-oriented
clustering algorithm for exploratory spatial analysis (CAESA),
in which we adopt the idea of combining DBSCAN and STING.
We built a prototype to demonstrate the feasibility of the
proposed algorithm. Experimental results indicate that our
algorithm is effective and efficient. CAESA needs less region
queries than DBSCAN does, and is more flexible than STING.

2. RELATED WORK

In recent years, a number of clustering algorithms for large
databases or data warehouses have been proposed. Basically,
there are four types of clustering algorithms: partitioning
algorithms, hierarchical algorithms, density based algorithms
and grid based algorithms. Partitioning algorithms construct a
partition of a database D of n objects into a set of k clusters,
where k is an input parameter for these algorithms. Hierarchical
algorithms create a hierarchical decomposition is represented by
a dendrogram, a tree that iteratively splits D into smaller subsets
until each subset consists of only one object. In such a hierarchy,
each node of the tree represents a cluster of D. The dendrogram
can either be created from the leaves up to the root
(agglomerative approach) or from the root down to the leaves
(divisive approach) by merging or dividing clusters at each step.

Ester et al. (1996) developed a clustering algorithm DBSCAN
based on a density-based notion of clusters. It is designed to
discover clusters of arbitrary shape. The key idea in DBSCAN
is that for each point of a cluster, the neighborhood of a given
radius has to contain at least a minimum number of points.
DBSCAN can effectively handle the noise points (outliers).

CLIQUE clustering algorithm (Agrawal et al., 1998) identifies
dense clusters in subspace of maximum dimensionality. It
partitions the data space into cells. To approximate the density
of the data points, it counts the number of points in each cell.
The clusters are unions of connected high-density cells with in a
subspace. CLIQUE generates cluster description in the form of
DNF expressions.

Sheikholeslami et al. (1998), using multi-resolution property of
wavelets, proposed the WaveCluster method which partitions
the data space into cells and app lies wavelet transform on them.
Furthermore, WaveCluster can detect arbitrary shape clusters at
different degrees of detail.

Wang et al. (1997, 1999) proposed a statistical information
grid-based method (STING, STING+) for spatial data mining. It
divides the spatial area into rectangular cells using a
hierarchical structure and stores the statistical parameters of all
numerical attributes of objects with in cells. STING uses a
multi-resolution to perform cluster analysis, and the quality of
STING clustering depends on the granularity of the lowest level
of the grid structure. If the granularity is very fine, the cost of
processing will increase substantially. However, if the bottom
level of the grid structure is too coarse, it may reduce the quality
of cluster analysis. Moreover, STING does not consider the
spatial relationship between the children and their neighboring
cells for construction of a parent cell. As a result, the shapes of
the resulting clusters are isothetic, that is, all of the cluster
boundaries are either horizontal or vertical, and no diagonal
boundary is detected. This may lower the quality and accuracy
of the clusters despite of the fast processing time of the
technique.

However, all algorithms described above have the common
drawback that they are all designed to cluster a certain dataset in
the fashion of once and for all. Although methods has been
proposed to focus on visualizing clustering results so that the
users can have a view of the processed dataset’s internal
structure more concretely and directly, however, seldom
concern has been put on the impact of visualization on the
clustering process.

Different from the algorithms abovementioned, the proposed
CAESA algorithm in this paper is a scalable and visualization-
oriented clustering algorithm for exploratory spatial analysis.
Here, “scalable” means our algorithm can run focus-changing
clustering in an effective and efficient way, and “visualization-
oriented” indicates that our algorithm is adaptable to
visualization situation, that is, choosing appropriate relative
clustering granularity automatically according to current relative
visualization resolution.

3. SCALABLE AND VISUALIZATION-ORIENTED
CLUSTERING ALGORITHM

3.1 CAESA OVERVIEW

Like STING, CAESA is also a grid-based multi-resolution
approach in which the spatial area is divided into rectangular
cells. There usually several levels of such rectangular cells
corresponding to different levels of resolution, and these cells
form a hierarchical structure: each cell at a high level is
partitioned to form a number of cells at the next lower level.
Statistical information associated with the attributes of each grid
cell (such as the mean, standard deviation, distribution) is
calculated and stored beforehand and is used to answer the
user’s queries.

Level 1 Level 2 Level 3

Figure 1: Hierarchical structure

Figure 1 shows a hierarchical structure for CAESA clustering.
Statistical parameters of higher-level cells can easily be
computed form the parameters of the lower-level cells. For each
cell, there are attributed-dependent and attribute-independent
parameters. The attribute-independent parameter is:

n—number of objects(points) in this cell

cellNo—number of this cell, it is calculated when the tree
structure is establishing

layerNo—layer number of this cell

The attribute-dependent parameters are:

m—mean of all values in this cell, where value is the distance
of two objects in this cell

s—standard deviation of all values of the attribute in this cell

d—density of all values in this cell

min—the minimum value of the attribute in this cell

max—the maximum value of the attribute in this cell

distribution—the type of distribution that the attribute value
in this cell follows(such as normal, uniform, exponential, etc.
NONE is assigned if the distribution type is unknown)

cellLoc— the location of this cell, it record the coordinate
information associated to the objects in data set.

relevant—coefficient of this cell relevant to given query

In our algorithm, parameters of higher-level cells can be easily
calculated from parameters of lower level cell. Let ni, mi, si, di,
mini, maxi, cellLoci, layerNoi, and disti be parameters of
corresponding lower level cells, respectively. The parameters in
current cell ni-1, mi-1, si-1, di-1, mini-1, maxi-1, cellLoci-1, layerNoi-1,
and disti-1 can be calculated as follows.

�=−
i

ii nn 1 (1)

n

nd
d i

ii

i

�
=−1 (2)

n

nm
m i

ii

i

�
=−1 (3)

2
1

1

22

1

)(

−
−

− −
×+

=
�

i
i

i
iii

i m
n

nms
s (4)

)(minminmin 1 iii =− (5)

)(maxmaxmax 1 i
i

i =− (6)

11 −=− ii layerNolayerNo (7)

)(min
1

1 icellNoi cellLoccellLoc
i−

=− (8)

The calculation of disti-1 is much more complicated, here we
adopt the calculating method designed by Wang et al.(1997) in
their algorithm of STING.

i 1 2 3 4
ni 80 10 90 60
mi 18.3 17.8 18.1 18.5

di 0.8 0.5 0.7 0.2
si 1.8 1.6 2.1 1.9

mini 2.3 5.8 1.2 4.2
maxi 27.4 54.3 62.8 48.5

layerNoi 5 5 5 5
cellNoi 85 86 87 88

cellLoci (80,60) (90,60) (90,60) (90,60)
disti NORMAL NONE NORMAL NORAML

Table 1: Parameters of lower cells

According to the formula present above, we can easily to
calculate the parameters in current cell:

ni-1 = 240

mi-1 = 18.254

si-1 = 1.943

di-1 = 0.6

mini-1 = 1.2

maxi-1 = 62.8

cellLoci-1 = (80,60)

layerNoi-1 = 4

disti-1 = NORMAL

The advantages of this approach are:

1. It is a query-independent approach since the statistical
information stored in each cell represents the summary
information of the data in the cell, which is independent
of the query.

2. The computational complexity is O(k), where k is the

number of cells at the lowest level. Usually, k<<N,
where N is the number of objects.

3. The cell structure facilitates parallel processing and

incremental updating.

3.2 Focus-changing Clustering

Focus-changing clustering means that CAESA can provide user
the corresponding information when his interested dataset is
changed. Take exploratory data analysis for example, the user
may first want to see the global view of the processed dataset,
then her/his interest may turn to a smaller part of the dataset to
see some details, and so on. To fulfil focus-changing clustering,
a simple method is to cluster focused data each time from
scratch in the fashion of current clustering algorithm. Obviously,
such approach is time-consuming and of low efficient. The
better solution is to design a clustering algorithm that carries
out focus-changing clustering in an integrated framework. Thus
clustering time and I/O cost is reduced, and the clustering
flexibility is enhanced.

For example, the user wants to select the maximal regions that
have at least 100 houses per unit area and at least 70% of the
house prices are above $200,000 and with total area at least 100
units with 90% confidence. We can describe this query using
SQL like this:

SELECT REGION
FROM house-map
WHERE DENSITY IN (100, �)

AND price RANGE (200000, �)
WITH PERCENT (0.7, 1)
AND AREA (100, �)
AND WITH CONFIDENCE 0.9;

After getting this information, perhaps she/he wants to see more
detailed information, e.g., the maximal sub-regions that have at
least 50 houses per unit area and at least 85% of the house
prices are above $350,000 and with total area at least 80 units
with 80% confidence. By the following SQL, we can get
information we need from the original dataset. Here, we needn’t
scan all the original dataset again.

SELECT SUB-REGION
FROM house-map
WHERE DENSITY IN (50, �)

AND price RANGE (350000, �)
WITH PERCENT (0.85, 1)

AND AREA (80, �)
AND WITH CONFIDENCE 0.85;

To complete this task, we should firstly recalculate the
clustering granularity according to data objects distribution in
the associated dataset, then divide the data space into
rectangular cells of size equal to the minimum clustering
granularity; count data objects density for each cell and store
density value with each cell.

3.3 Visualization of Clustering Process

Although visualization has been recognized as an effective tool
for exploratory data analysis and some visual clustering
approaches were reported in the literature, these researches has
focused on proposing new methods of visualizing clustering
results so that the users can have a view of the processed
dataset’s internal structure more concretely and directly.
However, seldom concern has been put on the impact of
visualization on the clustering process. To make this idea clear,
let us take 2-dimensional spatial data clustering for example. In
fact, clustering can be seen as a process of data generalization
on basis of certain lower data granularity. The lowest clustering
granularity of a certain dataset is the individual data objects in
the dataset. If we divide the dataset space into rectangular cells
of similar size, then a larger clustering granularity is the data
objects enclosed in the rectangular cells.

Figure 2: Expected result

More reasonably, we define clustering granularity as the size of
the divided rectangular cell in horizontal or vertical direction,
and define relative clustering granularity as the ratio of
clustering granularity over the scope of focused dataset in the
same direction. Visualization of clustering results is also based
on clustering granularity. However, visualization effect relies on
the resolution of display device. For comparison, we define
relative visualization resolution as the inversion of the size
(taking pixel as measurement unit) of visualization window for
clustering results in the same direction as the definition of
clustering granularity. Obviously, a reasonable choice is that the
relative clustering granularity is close to, but not lower than the
relative visualization resolution of visualization window.
Otherwise, the clustering results can’t be visualized completely,
which means we do a lot but only part of its effect is shown up
in visualization.

Figure 3: CAESA’s result

Noises are random disturbance that reduces the clarity of
clusters. In our algorithm, we can easily find noises and wipe
off them by finding the cells with very low density and
eliminate the data points in them precisely. This method can
reduce the influence of the noises both on efficiency and on
time. Unlike the noises, outliers are not well proportioned.
Outliers are data points that are away from the clusters and have
smaller scale compared to clusters. So outliers will not be
merged to any cluster. When the algorithm finishes, the sub-
clusters that have rather small scale are outliers.

Figure 4: CAESA’s result after user’s focus changed

4. ALGORITHM

In this section we introduce the CAESA algorithm. First, we
set the minimum clustering granularity according to data
objects distribution in the whole concerned dataset; then divide
the data space into rectangular cells of size equal to the
minimum clustering granularity; after that, we count data
objects density for each cell and store density value with each
cell. Here, we adopt the cluster definition alike to grid-based
clustering algorithms. It takes CASEA two steps to complete a
given query, that is, calculate the statistical information and
stores to the quad-tree, then get user’s query and output the
result.

First we should create a tree structure to keep the information of
the dataset, there are two parameters must be input to setup the

tree. One parameter is dataset to be placed in the hierarchical
structure; the other parameter is the number of desired cells at
the lowest level. It needs two step to build the quad-tree:
calculate the bottom layer cell statistical information directly by
the given dataset, then calculate the higher layer cells statistical
information according to the lower layer cells. We only need to
go through the dataset once in order to calculate the parameters
associated with the grid cells at the bottom level, the overall
computation time is nearly proportional to the number of cells.
That is, query processing complexity is O(k) rather than O(n),
here k means the number of cells. We will analyze performance
in more detail in later sections.

The process of creating the tree structure goes like this:

Input:
D //Data to be placed in the hierarchical structure
k //Number of desired cells at the lowest level

Output:
T //Tree

CAESA BUILD Algorithm
// Create the empty tree from top to down
T = root node with data values initialized; //Initially

only root node
i = 1;
repeat

for each node in level i do
create 4 children nodes with initial values;

end for
i = i + 1;

until 4i = k;
// Populate tree from bottom up
for each item in D do

determine leaf node j associated with the position of
D;

update values of j based on attribute values in item;
end for
i = log4(k);
repeat

i = i - 1;
for each node j in level i do

update values of j based on attribute values in its 4
children;

until i = 1;
End of CAESA BUILD Algorithm

Figure 5: CAESA BUILD algorithm

Once the user changes her/his focus scope, adjust clustering
granularity based on the criterion that relative clustering
granularity is close to, but not lower than the relative
visualization resolution of visualization window. With the new
clustering granularity, re-divide the focused data space; then
resort to grid-based clustering algorithm to cluster the focused
data. Note that new clustering granularity must be n times of the
minimum clustering granularity where n is a positive nature
number. Due to the sufficient information (such as location of
coordinate, relevant coefficient etc.) , we can easily use the
formal result to answer the new query.

The process of query answering is as follows:

Input:

T //Tree
Q //Query

Output:
R //Regions of relevant cells

CAESA QUERY Algorithm
QUEUE q;
i = 1;
repeat

For each node in level i do
if cell j is relevant to Q

mark this cell as such;
q.add(j);//cell j add to queue so as to calculate its

neighbor
end if

i = i + 1; //go on with the next level
until all layers in the tree have been visited;
for each neighbor cell i of cells in q AND i doesn’t in q

do
if (density(i) > M_DENSITY)

Identify neighboring cells of relevant cells to create
regions of cells;

end if
end for
D1=R.data();
calculate the new clustering granularity k1
call CAESA BUILD Algorithm with parameter D1, k1

End of CAESA QUERY Algorithm

Figure 6: CAESA QUERY algorithm

To handle very large databases, the algorithm constructs units
instead of original data objects. To obtain these units, first,
partitioning is done to allocate data points into cells. Statistics
information is also obtained for each cell. Then we test to see if
a cell is qualified as a unit. The definition of unit is as follows:

The density of a unit is greater than a certain predefined
threshold. Therefore, we determine if a cell is a unit by its
density. If the density of a cell is M (M�1) times of the average
density of all data points, we regard such a cell as a unit. There
may be some cells of low density but are in fact part of a final
cluster, they may not be included into units. We treat such data
points as separated sub-clusters. This method will greatly
reduce the time complexity, as will be shown in the experiments.

The clusters identified in this algorithm are denoted by the
representative points. Usually, user may want to know the
detailed information about the clusters and the data points they
include. For each data point, we need not test which cluster it
belongs to. Instead, we need only find the cluster a cell
belonging to, and all data points in the cell belong to such
cluster. This process can also improve the speed of the whole
clustering process.

5. PERFORMANCE EVALUATION

We conduct several experiments to evaluate the performance of
the proposed algorithm. The following experiments are run on a
PC machine with Win2000 operating system (256M memory).
In CAESA, we only need to go through the data set once in
order to calculate the parameters associated with the grid cells
at the bottom level, the overhead of CAESA is linearly
proportional to the number of objects with a small constant
factor.

Ti
m

es
(s

ec
)

Number of cells at bottom layer

2000

1.0

800060004000

0.5

1.5

2.0

2.5
3.0

0.0
0

CAESA

STING

*

*

*

*

Figure 7: Overhead comparison between STING and CAESA
when user change her/his focus

To obtain performance of CAESA, we implemented the house-
price example discussed in Section 3.2. We generated 2400 data
points(houses), the hierarchical structure has 6 layers in this test.
Figure 2 shows the expected result, Figure 3 shows the result of
our algorithm, and Figure 4 shows the result when user change
her/his focus according to the last query. From the experimental
result we can see apparently that our algorithm is valid and has
a high performance.

6. CONCLUSION

In this paper, we proposed a scalable and visualization-oriented
clustering algorithm for exploratory spatial analysis. It is of high
performance and low computing cost, and it can run focus-
changing clustering efficiently, can be adaptable to visualization
situation, that is, choosing appropriate relative clustering
granularity automatically according to current relative
visualization resolution. We built a prototype to demonstrate the
practicability of the proposed algorithm. Experimental results
show our algorithm is effective and efficient.

REFERENCES

Agrawal R., Gehrke J., Gunopulos D. et al., 1998. Automatic
subspace clustering of high dimensional data for data mining
applications. In Proc. of the ACM SIGMOD, pp. 94–105.

David Hand, Heikki Mannila and Padhraic Smyth., 2001.
Principles of Data Mining. Massachusetts Institute of
Technolology Press.

Ester,M., Kriegel, H. P., Sander,J. et al., 1996. A density-based
algorithm for discovering clusters in large spatial databases with
noise. In Proc.of 2nd Int. Conf. Knowledge Discovery and Data
Mining, pp. 226-231.

Guha S., Rastogi R. and Shim K., 1998. CURE: an efficient
clustering algorithm for large databases. In: Proc. of the ACM
SIGMOD, pp. 73�84.

Halkidi, M., Batistakis, Y. and Vazirgiannis, M., 2001.
Clustering algorithms and validity measures. In Proc of 13th
Intl. Conf. on Scientific and Statistical Database Management,
pp. 3 – 22.

Hinneburg, A., Keim, D. and Wawryniuk, M., 2003. Using
projections to visually cluster high-dimensional data. IEEE
Computational Science and Engineering], 5(2), pp. 14 – 25.

Hu, B. and Marek-Sadowska, M., 2004. Fine Granularity
Clustering-Based Placement. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems. 23(4), pp. 527
– 536.

Jiawei Han, Micheline Kamber. Data Mining: Concepts and
Techniques. Morgan Kaufmann Publishers, 2001.

Matsushita, M. and Kato, T., 2001. Interactive visualization
method for exploratory data analysis. In Proc. of 15th Intl. Conf.
on Information Visualization, pp. 671–676.

Memarsadeghi, N. and O'Leary, D.P., 2003. Classified
information: the data clustering problem. IEEE Computational
Science and Engineering. 5(5), pp. 54 – 60.

Ng Ka Ka. E. and Ada Wai-chee Fu., 2002. Efficient algorithm
for projected clustering. In Proc.of ICDE, pp. 273–273.

Sheikholeslami G., Chatterjee, S. and Zhang, A., 1998.
WaveCluster: a multi-resolution clustering app roach for very
large spatial databases. In Proc. of 24th VLDB, pp. 428� 439.

Tin Kam Ho., 2002. Exploratory analysis of point proximity in
subspaces. In Proc. of 16th Intl. Conf. on Pattern Recognition.
Vol. 2, pp. 196 – 199

Wang Lian, Cheung, W.W., Mamoulis, N., et al., 2004. An
efficient and scalable algorithm for clustering XML documents
by structure. IEEE Transactions on Knowledge and Data
Engineering, 16(1), pp. 82 – 96

Wang, W., Yang, J. and Muntz, R., 1997. Sting: a statistical
information grid approach to spatial data mining. In Proc. of
VLDB, pp. 186–195.

Wang, W., Yang, J. and Muntz, R., 1999. Sting+: An Approach
to Active Spatial Data Miniing. In Proc. of ICDE, pp. 116–125.

ACKNOWLEDGEMENTS

The work is supported by Hi-Tech Research and Development
Program of China under grant No. 2002AA135340, and Open
Researches Fund Program of SKLSE under grant No.
SKL(4)003, and IBM Research Award, and Open
Researches Fund Program of LIESMARS under grant No.
SKL(01)0303.

