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ABSTRACT: 

 
Clustering can be applied to many fields including data mining, statistical data analysis, pattern recognition, image processing etc. In 
the past decade, a lot of efficient and effective new clustering algorithms have been proposed, in which famous algorithms 
contributed from the database community are CLARANS, BIRCH, DBSCAN, CURE, STING, CLIGUE and WaveCluster. All these 
algorithms try to challenge the problem of handling huge amount of data in large-scale databases. In this paper, we propose a 
scalable and visualization-oriented clustering algorithm for exploratory spatial analysis (CAESA). The context of our research is 2D 
spatial data analysis, but the method can be extended to higher dimensional space. Here, “Scalable” means our algorithm can run 
focus-changing clustering in an efficient way, and “Visualization-oriented” indicates that our algorithm is adaptable to the 
visualization situation, that is, choosing appropriate clustering granularity automatically according to current visualization resolution. 
Experimental results show that our algorithm is effective and efficient. 
 
 

1. INTRODUCTION 

Clustering, which is the task of grouping the data of a database 
into meaningful subclasses in such a way that minimizes the 
intra-differences and maximizes the inter-differences of these 
subclasses, is one of the most widely studied problems in data 
mining field. There are a lot of application areas for clustering 
techniques, such as spatial analysis, pattern recognition, image 
processing, and other business applications, to name a few. In 
the past decade, a lot of efficient and effective clustering 
algorithms have been proposed, in which famous algorithms 
contributed from the database community include CLARANS, 
BIRCH, DBSCAN, CURE, STING, CLIGUE and WaveCluster. 
All these algorithms try to challenge the clustering problem of 
handling huge amount of data in large-scale databases.  
 
However, current clustering algorithms are designed to cluster a 
certain dataset in the fashion of once and for all. We can refer to 
this kind of clustering as global clustering. In reality, take 
exploratory data analysis for example, the user may first want to 
see the global view of the processed dataset, then her/his 
interest may shift to a smaller part of the dataset, and so on. 
This process implies a series of consecutive clustering 
operations: first on the whole dataset, then on a smaller part of 
the dataset, and so on. Certainly, this process can be directed in 
an inverse way, that is, user’s focusing scope shifts from smaller 
area to larger area. We refer to this kind of clustering operation 
as focus-changing clustering. In implementation of focus-
changing clustering, the naive approach is to cluster the focused 
data each time from scratch in the fashion of global clustering. 
Obviously, such approach is time-consuming and low efficient. 
The better solution is to design a clustering algorithm that 
carries out focus-changing clustering in an integrated 
framework.  
 

On the other hand, although visualization has been recognized 
as an effective tool for exploratory data analysis and some 
visual clustering approaches were reported in the literature, 
these researches has focused on proposing new methods of 
visualizing clustering results so that the users can have a view 
of the processed dataset’s internal structure more concretely and 
directly. However, seldom concern has been put on the impact 
of visualization on the clustering process. To make this idea 
clear, let us take 2-dimensional spatial data clustering for 
example. In fact, clustering can be seen as a process of data 
generalization on basis of certain lower data granularity. The 
lowest clustering granularity of a certain dataset is the 
individual data objects in the dataset. If we divide the dataset 
space into rectangular cells of similar size, then a larger 
clustering granularity is the data objects enclosed in the 
rectangular cells.  
 
More reasonably, we define clustering granularity as the size of 
the divided rectangular cell in horizontal or vertical direction, 
and define relative clustering granularity as the ratio of 
clustering granularity over the scope of focused dataset in the 
same direction. Visualization of clustering results is also based 
on clustering granularity. However, visualization effect relies on 
the resolution of display device. For comparison, we define 
relative visualization resolution as the inversion of the size 
(taking pixel as measurement unit) of visualization window for 
clustering results in the same direction as the definition of 
clustering granularity. Obviously, a reasonable choice is that the 
relative clustering granularity is close to, but not lower than the 
relative visualization resolution of visualization window. 
Otherwise, the clustering results can’t be visualized completely, 
which means we do a lot but only part of its effect is shown up 
in visualization. 
 



 

In this paper, we propose a scalable and visualization-oriented 
clustering algorithm for exploratory spatial analysis (CAESA), 
in which we adopt the idea of combining DBSCAN and STING. 
We built a prototype to demonstrate the feasibility of the 
proposed algorithm.  Experimental results indicate that our 
algorithm is effective and efficient. CAESA needs less region 
queries than DBSCAN does, and is more flexible than STING. 
 
 

2. RELATED WORK 

In recent years, a number of clustering algorithms for large 
databases or data warehouses have been proposed. Basically, 
there are four types of clustering algorithms: partitioning 
algorithms, hierarchical algorithms, density based algorithms 
and grid based algorithms. Partitioning algorithms construct a 
partition of a database D of n objects into a set of k clusters, 
where k is an input parameter for these algorithms. Hierarchical 
algorithms create a hierarchical decomposition is represented by 
a dendrogram, a tree that iteratively splits D into smaller subsets 
until each subset consists of only one object. In such a hierarchy, 
each node of the tree represents a cluster of D. The dendrogram 
can either be created from the leaves up to the root 
(agglomerative approach) or from the root down to the leaves 
(divisive approach) by merging or dividing clusters at each step. 
 
Ester et al. (1996) developed a clustering algorithm DBSCAN 
based on a density-based notion of clusters. It is designed to 
discover clusters of arbitrary shape. The key idea in DBSCAN 
is that for each point of a cluster, the neighborhood of a given 
radius has to contain at least a minimum number of points. 
DBSCAN can effectively handle the noise points (outliers). 
 
CLIQUE clustering algorithm (Agrawal et al., 1998) identifies 
dense clusters in subspace of maximum dimensionality. It 
partitions the data space into cells. To approximate the density 
of the data points, it counts the number of points in each cell. 
The clusters are unions of connected high-density cells with in a 
subspace. CLIQUE generates cluster description in the form of 
DNF expressions.  
 
Sheikholeslami et al. (1998), using multi-resolution property of 
wavelets, proposed the WaveCluster method which partitions 
the data space into cells and app lies wavelet transform on them. 
Furthermore, WaveCluster can detect arbitrary shape clusters at 
different degrees of detail. 
 
Wang et al. (1997, 1999) proposed a statistical information 
grid-based method (STING, STING+) for spatial data mining. It 
divides the spatial area into rectangular cells using a 
hierarchical structure and stores the statistical parameters of all 
numerical attributes of objects with in cells. STING uses a 
multi-resolution to perform cluster analysis, and the quality of 
STING clustering depends on the granularity of the lowest level 
of the grid structure. If the granularity is very fine, the cost of 
processing will increase substantially. However, if the bottom 
level of the grid structure is too coarse, it may reduce the quality 
of cluster analysis. Moreover, STING does not consider the 
spatial relationship between the children and their neighboring 
cells for construction of a parent cell. As a result, the shapes of 
the resulting clusters are isothetic, that is, all of the cluster 
boundaries are either horizontal or vertical, and no diagonal 
boundary is detected. This may lower the quality and accuracy 
of the clusters despite of the fast processing time of the 
technique. 
 

However, all algorithms described above have the common 
drawback that they are all designed to cluster a certain dataset in 
the fashion of once and for all. Although methods has been 
proposed to focus on visualizing clustering results so that the 
users can have a view of the processed dataset’s internal 
structure more concretely and directly, however, seldom 
concern has been put on the impact of visualization on the 
clustering process. 
 
Different from the algorithms abovementioned, the proposed 
CAESA algorithm in this paper is a scalable and visualization-
oriented clustering algorithm for exploratory spatial analysis. 
Here, “scalable” means our algorithm can run focus-changing 
clustering in an effective and efficient way, and “visualization-
oriented” indicates that our algorithm is adaptable to 
visualization situation, that is, choosing appropriate relative 
clustering granularity automatically according to current relative 
visualization resolution. 
 
 

3. SCALABLE AND VISUALIZATION-ORIENTED 
CLUSTERING ALGORITHM 

 
3.1 CAESA OVERVIEW 

Like STING, CAESA is also a grid-based multi-resolution 
approach in which the spatial area is divided into rectangular 
cells. There usually several levels of such rectangular cells 
corresponding to different levels of resolution, and these cells 
form a hierarchical structure: each cell at a high level is 
partitioned to form a number of cells at the next lower level. 
Statistical information associated with the attributes of each grid 
cell (such as the mean, standard deviation, distribution) is 
calculated and stored beforehand and is used to answer the 
user’s queries. 
 
 

 
Level 1                  Level 2                 Level 3 

 
Figure 1: Hierarchical structure 

 
Figure 1 shows a hierarchical structure for CAESA clustering. 
Statistical parameters of higher-level cells can easily be 
computed form the parameters of the lower-level cells. For each 
cell, there are attributed-dependent and attribute-independent 
parameters. The attribute-independent parameter is: 
 

n—number of objects(points) in this cell 

cellNo—number of this cell, it is calculated when the tree 
structure is establishing 

layerNo—layer number of this cell 

The attribute-dependent parameters are: 

m—mean of all values in this cell, where value is the distance 
of two objects in this cell 

s—standard deviation of all values of the attribute in this cell 

d—density of all values in this cell 

min—the minimum value of the attribute in this cell 

max—the maximum value of the attribute in this cell 



 

distribution—the type of distribution that the attribute value 
in this cell follows(such as normal, uniform, exponential, etc. 
NONE is assigned if the distribution type is unknown) 

cellLoc— the location of this cell, it record the coordinate 
information associated to the objects in data set. 

relevant—coefficient of this cell relevant to given query 

 
In our algorithm, parameters of higher-level cells can be easily 
calculated from parameters of lower level cell. Let ni, mi, si, di, 
mini, maxi, cellLoci, layerNoi, and disti be parameters of 
corresponding lower level cells, respectively. The parameters in 
current cell ni-1, mi-1, si-1, di-1, mini-1, maxi-1, cellLoci-1, layerNoi-1, 
and disti-1 can be calculated as follows. 
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The calculation of disti-1 is much more complicated, here we 
adopt the calculating method designed by Wang et al.(1997) in  
their algorithm of STING.  
 
 

i 1 2 3 4 
ni 80 10 90 60 
mi 18.3 17.8 18.1 18.5 

di 0.8 0.5 0.7 0.2 
si 1.8 1.6 2.1 1.9 

mini 2.3 5.8 1.2 4.2 
maxi 27.4 54.3 62.8 48.5 

layerNoi 5 5 5 5 
cellNoi 85 86 87 88 

cellLoci (80,60) (90,60) (90,60) (90,60) 
disti NORMAL NONE NORMAL NORAML 

 
Table 1: Parameters of lower cells 

According to the formula present above, we can easily to 
calculate the parameters in current cell: 
 

ni-1  = 240 

mi-1  = 18.254 

si-1 = 1.943 

di-1 = 0.6 

mini-1 = 1.2 

maxi-1 = 62.8 

cellLoci-1 = (80,60) 

layerNoi-1 = 4 

disti-1 = NORMAL 

 
The advantages of this approach are: 
 

1. It is a query-independent approach since the statistical 
information stored in each cell represents the summary 
information of the data in the cell, which is independent 
of the query. 

 
2. The computational complexity is O(k), where k is the 

number of cells at the lowest level. Usually, k<<N, 
where N is the number of objects. 

 
3. The cell structure facilitates parallel processing and 

incremental updating. 
 
3.2 Focus-changing Clustering 

Focus-changing clustering means that CAESA can provide user 
the corresponding information when his interested dataset is 
changed. Take exploratory data analysis for example, the user 
may first want to see the global view of the processed dataset, 
then her/his interest may turn to a smaller part of the dataset to 
see some details, and so on. To fulfil focus-changing clustering, 
a simple method is to cluster focused data each time from 
scratch in the fashion of current clustering algorithm. Obviously, 
such approach is time-consuming and of low efficient. The 
better solution is to design a clustering algorithm that carries 
out focus-changing clustering in an integrated framework. Thus 
clustering time and  I/O cost is reduced, and the clustering 
flexibility is enhanced. 
 
For example, the user wants to select the maximal regions that 
have at least 100 houses per unit area and at least 70% of the 
house prices are above $200,000 and with total area at least 100 
units with 90% confidence. We can describe this query using 
SQL like this: 
 

SELECT     REGION 
FROM        house-map 
WHERE      DENSITY IN (100, �) 

AND price RANGE (200000, �) 
WITH PERCENT (0.7, 1) 
AND AREA (100, �) 
AND WITH CONFIDENCE 0.9; 

 
After getting this information, perhaps she/he wants to see more 
detailed information, e.g., the maximal sub-regions that have at 
least 50 houses per unit area and at least 85% of the house 
prices are above $350,000 and with total area at least 80 units 
with 80% confidence. By the following SQL, we can get 
information we need from the original dataset. Here, we needn’t 
scan all the original dataset again. 
 

SELECT      SUB-REGION 
FROM         house-map 
WHERE       DENSITY IN (50, �) 

AND price RANGE (350000, �) 
WITH PERCENT (0.85, 1) 



 

AND AREA (80, �) 
AND WITH CONFIDENCE 0.85; 

 
To complete this task, we should firstly recalculate the 
clustering granularity according to data objects distribution in 
the associated dataset, then divide the data space into 
rectangular cells of size equal to the minimum clustering 
granularity; count data objects density for each cell and store 
density value with each cell. 
 
3.3 Visualization of Clustering Process 

Although visualization has been recognized as an effective tool 
for exploratory data analysis and some visual clustering 
approaches were reported in the literature, these researches has 
focused on proposing new methods of visualizing clustering 
results so that the users can have a view of the processed 
dataset’s internal structure more concretely and directly. 
However, seldom concern has been put on the impact of 
visualization on the clustering process. To make this idea clear, 
let us take 2-dimensional spatial data clustering for example. In 
fact, clustering can be seen as a process of data generalization 
on basis of certain lower data granularity. The lowest clustering 
granularity of a certain dataset is the individual data objects in 
the dataset. If we divide the dataset space into rectangular cells 
of similar size, then a larger clustering granularity is the data 
objects enclosed in the rectangular cells.  
 

 
 

Figure 2: Expected result 
 
More reasonably, we define clustering granularity as the size of 
the divided rectangular cell in horizontal or vertical direction, 
and define relative clustering granularity as the ratio of 
clustering granularity over the scope of focused dataset in the 
same direction. Visualization of clustering results is also based 
on clustering granularity. However, visualization effect relies on 
the resolution of display device. For comparison, we define 
relative visualization resolution as the inversion of the size 
(taking pixel as measurement unit) of visualization window for 
clustering results in the same direction as the definition of 
clustering granularity. Obviously, a reasonable choice is that the 
relative clustering granularity is close to, but not lower than the 
relative visualization resolution of visualization window. 
Otherwise, the clustering results can’t be visualized completely, 
which means we do a lot but only part of its effect is shown up 
in visualization. 
 

 
 

Figure 3: CAESA’s result 
 
Noises are random disturbance that reduces the clarity of 
clusters. In our algorithm, we can easily find noises and wipe 
off them by finding the cells with very low density and 
eliminate the data points in them precisely. This method can 
reduce the influence of the noises both on efficiency and on 
time. Unlike the noises, outliers are not well proportioned. 
Outliers are data points that are away from the clusters and have 
smaller scale compared to clusters. So outliers will not be 
merged to any cluster. When the algorithm finishes, the sub-
clusters that have rather small scale are outliers. 
 

 
 

Figure 4: CAESA’s result after user’s focus changed 
 
 

4. ALGORITHM 

In this section we introduce the CAESA algorithm. First, we 
set the minimum clustering granularity according to data 
objects distribution in the whole concerned dataset; then divide 
the data space into rectangular cells of size equal to the 
minimum clustering granularity; after that, we count data 
objects density for each cell and store density value with each 
cell. Here, we adopt the cluster definition alike to grid-based 
clustering algorithms. It takes CASEA two steps to complete a 
given query, that is, calculate the statistical information and 
stores to the quad-tree, then get user’s query and output the 
result. 
 
First we should create a tree structure to keep the information of 
the dataset, there are two parameters must be input to setup the 



 

tree. One parameter is dataset to be placed in the hierarchical 
structure; the other parameter is the number of desired cells at 
the lowest level. It needs two step to build the quad-tree: 
calculate the bottom layer cell statistical information directly by 
the given dataset, then calculate the higher layer cells statistical 
information according to the lower layer cells. We only need to 
go through the dataset once in order to calculate the parameters 
associated with the grid cells at the bottom level, the overall 
computation time is nearly proportional to the number of cells. 
That is, query processing complexity is O(k) rather than O(n), 
here k means the number of cells. We will analyze performance 
in more detail in later sections. 
 
The process of creating the tree structure goes like this: 
 
 

Input: 
D //Data to be placed in the hierarchical structure 
k //Number of desired cells at the lowest level 

Output: 
T //Tree 

CAESA BUILD Algorithm 
// Create the empty tree from top to down 
T = root node with data values initialized; //Initially 

only root node 
i = 1; 
repeat 

for each node in level i do 
create 4 children nodes with initial values; 

end for 
i = i + 1; 

until 4i = k; 
// Populate tree from bottom up 
for each item in D do 

determine leaf node j associated with the position of 
D; 

update values of j based on attribute values in item; 
end for 
i = log4(k); 
repeat 

i = i - 1; 
for each node j in level i do 

update values of j based on attribute values in its 4 
children; 

until i = 1; 
End of CAESA BUILD Algorithm 

 
Figure 5: CAESA BUILD algorithm 

 
Once the user changes her/his focus scope, adjust clustering 
granularity based on the criterion that relative clustering 
granularity is close to, but not lower than the relative 
visualization resolution of visualization window. With the new 
clustering granularity, re-divide the focused data space; then 
resort to grid-based clustering algorithm to cluster the focused 
data. Note that new clustering granularity must be n times of the 
minimum clustering granularity where n is a positive nature 
number. Due to the sufficient information (such as location of 
coordinate, relevant coefficient etc.) , we can easily use the 
formal result to answer the new query. 
 
The process of query answering is as follows: 
 
 

Input: 

T //Tree 
Q //Query 

Output: 
R //Regions of relevant cells 

CAESA QUERY Algorithm 
QUEUE q; 
i = 1; 
repeat 

For each node in level i do 
if cell j is relevant to Q 

mark this cell as such; 
q.add( j );//cell j add to queue so as to calculate its 

neighbor 
end if 

i = i + 1; //go on with the next level 
until all layers in the tree have been visited; 
for each neighbor cell i of cells in q AND i doesn’t in q 

do 
if (density( i ) > M_DENSITY) 

Identify neighboring cells of relevant cells to create 
regions of cells; 

end if 
end for 
D1=R.data(); 
calculate the new clustering granularity k1 
call CAESA BUILD Algorithm with parameter D1, k1 

End of CAESA QUERY Algorithm 
 

Figure 6: CAESA QUERY algorithm 
 
To handle very large databases, the algorithm constructs units 
instead of original data objects. To obtain these units, first, 
partitioning is done to allocate data points into cells. Statistics 
information is also obtained for each cell. Then we test to see if 
a cell is qualified as a unit. The definition of unit is as follows: 
 
The density of a unit is greater than a certain predefined 
threshold. Therefore, we determine if a cell is a unit by its 
density. If the density of a cell is M (M�1) times of the average 
density of all data points, we regard such a cell as a unit. There 
may be some cells of low density but are in fact part of a final 
cluster, they may not be included into units. We treat such data 
points as separated sub-clusters. This method will greatly 
reduce the time complexity, as will be shown in the experiments. 
 
The clusters identified in this algorithm are denoted by the 
representative points. Usually, user may want to know the 
detailed information about the clusters and the data points they 
include. For each data point, we need not test which cluster it 
belongs to. Instead, we need only find the cluster a cell 
belonging to, and all data points in the cell belong to such 
cluster. This process can also improve the speed of the whole 
clustering process. 
 

5. PERFORMANCE EVALUATION 

We conduct several experiments to evaluate the performance of 
the proposed algorithm. The following experiments are run on a 
PC machine with Win2000 operating system (256M memory). 
In CAESA, we only need to go through the data set once in 
order to calculate the parameters associated with the grid cells 
at the bottom level, the overhead of CAESA is linearly 
proportional to the number of objects with a small constant 
factor. 
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Figure 7: Overhead comparison between STING and CAESA 
when user change her/his focus 

 
To obtain performance of CAESA, we implemented the house-
price example discussed in Section 3.2. We generated 2400 data 
points(houses), the hierarchical structure has 6 layers in this test. 
Figure 2 shows the expected result, Figure 3 shows the result of 
our algorithm, and Figure 4 shows the result when user change 
her/his focus according to the last query. From the experimental 
result we can see apparently that our algorithm is valid and has 
a high performance. 
 
 

6. CONCLUSION 

In this paper, we proposed a scalable and visualization-oriented 
clustering algorithm for exploratory spatial analysis. It is of high 
performance and low computing cost, and it can run focus-
changing clustering efficiently, can be adaptable to visualization 
situation, that is, choosing appropriate relative clustering 
granularity automatically according to current relative 
visualization resolution. We built a prototype to demonstrate the 
practicability of the proposed algorithm. Experimental results 
show our algorithm is effective and efficient. 
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