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ABSTRACT: 
 
It is now common to use data from two or more sensors for land cover change detection. Since the spatial and spectral resolutions of 
different sensors vary significantly, the ability to discriminate the land cover also varies greatly. In this paper the applications of 
landuse change detection including area statistics, temporal trajectories and spatial pattern are discussed. The area statistics show the 
general landuse change pattern, but with quite significant uncertainty. The results of this study show that if the area of detected 
landuse change accounts for less than 5% of the total area, the uncertainty of change detection can be very significant. Temporal 
trajectory analysis was also conducted with the particular focus on the analysis of unchanged and “stable” change trajectories, 
because they generally show the trend of landuse change that is irreversible. Unstable change trajectories, on the other hand, show 
relatively less significance since they largely contain reversible temporary changes (e.g. seasonal cropping and bare ground) and 
classification errors. The study results show overall accuracy of 85-90% with Kappa coefficients of 0.66-0.78 in classification and 
change detection. On spatial patterns, the landuse pattern metrics demonstrate a reasonable result, but most other patch metrics do 
not show recognisable patterns. 
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1. INTRODUCTION 

Land cover change plays a pivotal role in regional socio-
economic development and global environment changes (Chen 
2002). In arid environment, where fragile ecosystems are 
dominant, the land cover change often reflects the most 
significant impact on the environment due to excessive human 
activities. 
 
When monitoring natural environment and land cover change, 
three aspects are focused (Singh 1989, MacLeod and Congalton 
1998): 
 
• areal extent of the change, measuring the magnitude of the 

change; 
• the nature of the change, measuring the temporal trajectory 

of the change; 
• spatial pattern of the change, measuring spatial distribution 

and relationship of the change. 
 
Numerous works have been reported in these fields (Miller et al 
1998, Mertens and Lambin 2000, Petit et al 2001, Maldonado et 
al 2002, Pereira et al 2002). For landuse change detection, 
imagery data from various sensors such as Landsat MSS, TM, 
ETM, SPOT HRV, IRS and AVIRIS are often used, and it is 
common that images from two or more sensors were used 
(Prakash and Gupta 1998, Luque 2000, Masek et al 2000, 
Mertens and Lambin 2000, Roy and Tomar 2001, Ustin and 
Xiao 2001, Yang and Lo 2002). Since the spatial and spectral 
resolutions of different sensors vary significantly, the ability to 
discriminate the land cover also varies greatly. Some research 
work has been reported on the effect of multi-resolution sensors 

on spatial pattern metrics statistics based on the same stage 
multi-resolution imagery (Benson and MacKenzie 1995, 
Wickham and Riitters 1995), in which the focus of discussion 
was on the effects of spatial resolution on the landscape spatial 
pattern metric using multi-resolution remotely sensed imagery 
with the same acquisition period. Less attention, however, was 
paid to the effect of multi-resolution and multitemporal data on 
area statistics, trajectory statistics and spatial pattern metrics. 
This study evaluates the effect of multi-resolution data on the 
change detection in an arid environment over a monitoring 
timeframe of 30 years. The focus of the discussion is on the 
statistics of area extent, temporal trajectories and spatial pattern. 
 
 

2. METHODOLOGY 

The generic approach of this study is based on post-
classification comparison method, which is commonly 
employed in land cover change detection studies (Miller et al 
1998, Larsson 2002, Yang and Lo 2002, Zhang et al 2002, Liu 
and Zhou 2004). A unified land cover classification scheme was 
established for classification of images. The classified images 
were then used to derive class area statistics, temporal 
trajectories and spatial pattern in the past 30 years. 
 
2.1 Study area and data 

The study area is centred at 41°5’N and 85°43’E and located in 
Donghetan Township, Yuli County, Xinjiang Uygur 
Autonomous Region, China. It locates at the middle reach of 
Tarim River, the longest inland river of China (figure 1). At the 
fringe of Taklimakan Desert, the “green corridor” of Tarim 
Basin is one of the most important habitation areas in aridzone 



 

of China. The landscape in Donghetan is typical in Tarim River 
Valley, with a generally dry and harsh environment, 
represented by typical desert vegetation and soils. With the 
increasing land development in recent decades, the fragile 
environment has experienced quite remarkable change, largely 
reflecting the general development trend and temporal effect of 
government policies and administrative measures. 
 

Study areaStudy area

 
 

Figure 1. Location map of the study area. 
 
Five multi-temporal remotely sensed images were acquired for 
change detection of this study (table 1), including Landsat MSS, 
TM, ETM and SPOT HRV multispectral images. In addition, a 
multispectral 4-m resolution IKONOS image was acquired in 
September 2000 for field investigation and accuracy assessment 
of image classification. The images were geometrically rectified 
and registered on the map coordinates (table 2). 
 

Table 1.  Data used in this research. 
 

Satellite Sensor Path/Row Resolution 
(m) 

Acquisition 
Date 

Landsat 1 MSS 154/31 57* 3/7/1973 
Landsat 2 MSS 154/31 57* 12/10/1976 
SPOT 1 HRV 216/266/9 20 20/7/1986 
Landsat 5 TM 143/31 30 25/9/1994 
Landsat 7 ETM 143/31 30 17/9/2000 

* Resampled resolution. 
 
Table 2.  RMS errors on geometric correction and registration 

of the images. 

 RMSE X 
(pixels) 

RMSE X 
(m) 

RMSE Y 
(pixels) 

RMSE Y 
(m) 

MSS (1973) 0.23 13.11 0.35 19.95 
MSS (1976) 0.38 21.66 0.49 27.93 
SPOT (1986) 0.21 4.20 0.22 4.40 
TM (1994) 0.24 7.20 0.20 6.00 
ETM (2000) 0.17 4.85 0.16 4.56 
 

2.2 Classification and accuracy assessment 

Using the unified land cover classification scheme developed in 
a previous study (Zhou et al 2004), the multitemporal images 
were classified into five classes including ‘grass and woodland’, 
‘salty grass’, ‘water body’, ‘bare ground’ and ‘cropland’. The 
classification accuracy was assessed using the common 

‘confusion matrix’ method, showing an overall accuracy of 85-
90% with a Kappa coefficient of 0.66-0.78. The details were 
reported by Zhou et al 2004. 

2.3 Change detection 

2.3.1 Measuring the area extent of the change: The 
five-date classified images were integrated to GIS 
database. The area statistics of land use classes were 
obtained from attribute tables. 

2.3.2 Establishing landuse change trajectories: 
Based on the classification scheme, all possible landuse 
change trajectories are shown in figure 2. Note that there 
was no cropland found in this area before 1990’s so that 
the class “C” is not included in the classification of 1973, 
1976 and 1986 images. As highlighted in figure 2, for 
example, a trajectory can be specified as G → W → G → 
G → C, meaning that the land was found as 
grass/woodland in 1973, water body (flooded) in 1976, 
grass/woodland again in 1986 and 1994, and cultivated as 
cropland in 2000. 
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Figure 2.  All possible landuse change trajectory identified for 

the study area. 
 
For the analysis of temporal human impact on the environment, 
we have classified all found trajectories into three generic 
classes, namely, unchanged, stable change and unstable changes 
(table 3). The unchanged class includes trajectories such as G 
→ G → G → G → G and W → W → W → W → W indicating 
that the same land cover type was found on the sample point 
over the past 30 years. The stable change class includes 
decisive changes due to human activities such as building 
dam/reservoir and cultivation. They represent the major human 
impact on the environment. The representative trajectories of 
this class include, e.g., G → G → G → C → C, S → S → G → 
G → C, and G → G → W → W → W. The unstable change 
class includes those indecisive changes due to the natural 
processes or minor human activities such as light grazing. For 
example, grassland may be flooded during summer and 
subsequently dried out as salty grass because of strong 
evapotranspiration. Examples of trajectories of this class are G 
→ W → B → G → G (flooded, eroded and recovered) and G → 
W → G → W → G (repeatedly flooded). 
 
The accuracy of the trajectories was assessed using the 
percentage of the ‘true’ landuse trajectories. If at a sample point, 



 

the landuse classes were all confirmed by the five-date ground 
references, the case was regarded as ‘true’ trajectory, otherwise 
it is a ‘false’ case. We have chosen a stratified random sampling 
scheme for selecting sample points of reference data for 
trajectory accuracy assessment. 790 sample points were 
generated using the method as reported by Zhou et al (2004). 
 

Table 3. Classification of landuse change trajectories. 
 

Level 1 
classes 

Level 2 
classes 

Description Trajectory 
examples 

Grass/wood 
land 

No change G→G→G→G
→G 

Salty grass No change S→S→S→S→
S 

Water body No change W→W→W→W
→W 

Unchanged 

Bare ground No change B→B→B→B→
B 

Old 
cultivation 

Changed to and 
remained as 
cropland since 1994 

G→G→G→C→
C 

New 
cultivation 

Changed to and 
remained as 
cropland since 2000 

S→S→G→G→
C 

Abandoned 
cultivation 

Revered from 
cropland to other 
classes in 2000 

G→G→G→C→
G 

Stable 

Reservoirs/p
onds 

Changed to and 
remained as water 
bodies since 1986 

G→G→W→W
→W 

Grass/woodl
and 

Periodical changes 
between cover G and 
S 

G→S→G→G→
S 

Flooded Periodical changes 
between cover W 
and other types 

G→W→G→W
→G 

Unstable 

Bare ground Periodical changes 
between cover B and 
other types 

G→B→B→G→
B 

 

2.3.3 Analysing spatial pattern: The spatial pattern 
of landuse influences the ecological process of movement 
of matter and energy. The spatial pattern of landuse and 
land cover has been actively researched in the field of 
landscape ecology (Miller et al 1998, Farina 1998). In this 
study we have selected five variables to analyze landuse 
patch characteristics and landscape patterns. Table 4 
summarizes the computation and interpretation of these 
variables. 

 
Spatial pattern is different from the area statistics and temporal 
trajectories because the effect of errors cannot be detected from 
ground references and their corresponding statistics directly. 
Generally, landuse pattern parameters should reflect the overall 
trend of landuse change, so that they should not show acute 
fluctuation over long time series. We therefore propose to use 
the time series to assess the effect of multi-resolution imagery. 
 
1. If the change of metrics for every landuse class from one 

time to another is stable, the metrics are comparable and 
can reflect the regularity of land use spatial pattern change. 
These metrics can be regarded as a metrics that can be 
used and are not affected by resolution of remote sensing 
data. 

2. If the change of metrics for every land use class from one 
time to another is not stable, and obviously related to the 
spatial resolution of the data, these metrics are regarded as 

being affected by the spatial resolution of data and they 
can be used with care. 

3. If the change of metrics from one time to another is not 
stable, and, though related to the spatial resolution 
obviously, the metrics for the same spatial resolution are 
not comparable, the metrics cannot be used. 

 
Table 4. Spatial statistics for analyzing spatial patterns of 

landuse changes. 
Abbreviation Name Equation* Interpretation 
PPU 
(Frohn 1998) 

Patch Per 
Unit A

mPPU =  Fragmentation of 
area pattern, with 
higher values 
indicating more 
fragmented areas. 

PAFD 
(Saura and 
Martínez-
Millán 2001) 

Perimeter-
Area 
Fractal 
Dimension 

2
PAFD

akp •=  
Complexity of 
area shapes, 
ranging between 
1 and 2 with 
higher values 
indicating more 
complex shapes. 

MSI 
(Saura and 
Martínez-
Millán 2001) 

Mean 
Shape 
Index 

m
a
p

MSI

m

i i

i

4
1
∑
=

=  

Irregularity of the 
shapes, with the 
minimum value for 
perfect square 
shapes. 

SD 
(Farina 1998) 

Shannon 
Diversity ∑

=

−=
n

i
ii PPSD

1

ln

 

Variety and 
relative 
abundance of the 
cover type, with 
the higher values 
indicating more 
diversified 
landuse. 

DI 
(Farina 1998) 

Dominanc
e Index 

SDnDI −= ln
 

Dominance of one 
landuse class 
over the others, 0 
< DI ≤ 1. 

 
* where: m = total number of patches of the class of interest; A 
= total area of the study area; p = perimeter of class of interest; 
k = constant; a = area of each class of interest; n = total number 
of classes; and P is the ratio of a class area to the total area, 
which reflects relative importance of landuse types. 
 

3. RESULTS AND DISCUSSION  

3.1 Area statistics 

From the area statistics (table 5) some major changes of landuse 
can be observed in the past 30 years. For cropland, its area 
increased from 4% on the 1994 TM image to 13% on the 2000 
ETM image. For grass and woodland, its area decreased 5-7% 
from 72-75% on early MSS to 60-66% on later SPOT, TM and 
ETM images. For salty grassland, it decreased from 5-7% on 
the MSS and SPOT to 3% on the TM and ETM images. For 
water body, it accounts for 8-10% on the MSS, 18-23% on the 
SPOT and TM, and 9% on the ETM data. 
 
In the study area the large-scale reclamation started in 1992 and 
increased very rapidly in the past decade. This is confirmed by 
the increase of cropland shown on the TM and ETM images. In 
early 1980s, a large reservoir formed in sand dune area because 



 

of the construction of a dam in the north. This is shown by the 
sharp increase of water body area converted from grass and 
woodland. Salty grassland is one of major kind of landuse class 
that was reclaimed. Since 1992, salty grassland has decreased 
very significantly, in association with the rapid increase of 
cropland, as shown on the 1994 and 2000 images. These major 
landuse changes are consistent with natural or human events. 
 
Table 5.  Area statistics of the land cover types over the 30-year 

study period. 
 

   1973 1976 1986 1994 2000 

(ha) - - - 254.3 797.0 Cropland 
(%) - - - 4.0 12.6 
(ha) 4746.8 4577.2 4129.9 3811.9 4153.2 Grass / 

woodland (%) 74.9 72.2 65.2 60.2 65.6 
(ha) 331.1 416.4 376.1 202.6 170.7 Salty 

grass (%) 5.2 6.6 5.9 3.2 2.7 
(ha) 476.9 608.8 1143.3 1441.2 547.8 Water 

body (%) 7.5 9.6 18.0 22.7 8.6 
(ha) 781.3 733.7 686.7 626.1 667.1 Bare 

ground (%) 12.3 11.6 10.8 9.9 10.5 

 
In contrast, some landuse changes reflected by area statistics are 
not related to natural or human events. For example, the bare 
ground under natural condition would be stable so that there 
should not be obvious change of bare ground area. However, 
according to the area statistics, bare ground increased from 
9.9% in 1994 to 12.3% in 2000. While comparing with the area 
in 1973, the area of the bare ground in 2000 showed 15% 
decrease. This clearly shows the uncertainty to relate the 
landuse change to natural and human activities and it is 
probably largely influenced by the classification accuracy and 
spatial resolution of the data. We therefore recommend that if 
the area of detected landuse change accounts for less than 5% 
of the total area, the uncertainty of change detection can be very 
significant. 
 
Generally, classified results with a low spatial resolution should 
show approximately equal opportunity for omission and 
commission errors related to small patches. The uncertainty in 
area statistics, therefore, is likely linked to the classification 
errors caused by the low spatial resolution. In the study area, 
the poorer classification results were found in association with 
lower spatial resolution (Zhou et al 2004), demonstrated by the 
higher fluctuation of area statistics results. Concentration on the 
detected change area, e.g. the temporal trajectory analysis, 
therefore, seems to be a better and more promising approach. 

3.2 Temporal trajectories 

From the temporal trajectory statistics, the unchanged area 
occupied 37.7% of the total area, stable change accounted for 
19.6%, and unstable change showed 42.6% (table 6). For the 
unchanged area, grass and woodland occupied 80.9%. In the 
stable-change area, cropland converted from other classes 
accounted for 54.5%. For the unstable-change area, water body 
interchanged with other landuse classes (not including bare 
ground) occupied 59.7%. 
 
On the accuracy of the change trajectories, the average 
accuracies were 90.9%, 78.1% and 40.2%, for the unchanged, 
stable change and unstable change trajectories, respectively. 

The overall accuracy of all trajectories was 67.7% (table 6). 
The unchanged trajectories showed the highest accuracy (all 
over 90%), while the accuracy of unstable change trajectories 
was the lowest (all below 60%). Clearly if the classification of 
all five-stage images confirms the same class at a given location, 
the likelihood of misclassification is limited. On the contrary, 
the unstable change trajectories were characterised by frequent 
change of landuse classes, mostly occurred at the boundaries 
between classes, the larger classification errors were 
unavoidable. The much greater number of trajectory cases 
(combinations) of the unstable change category may also 
contribute significantly to the higher error level.  
 
Table 6.  Area, accuracy and combination statistics of landuse 

trajectory types 
 

Area Accuracy 

Types Area 
(ha) (%) True 

cases (%) False 
cases (%) 

All 
case

s 

Combi-
nations

Grass/wood land 1931.9 30.5 218 89.3 26 10.7 244 1

Salty grass 7.7 0.1 2 100.0 0 0.00 2 1

Water body 47.0 0.7 11 100.0 0 0.00 11 1

Bare ground 400.8 6.3 50 96.2 2 3.9 52 1

Unchanged 2387.5 37.7 281 90.9 28 9.1 309 4

Old cultivation 124.0 2.0 20 80.0 5 20.0 25 6

New cultivation 675.4 10.7 72 83.7 14 16.3 86 16
Abandoned 
cultivation 

128.6 2.0 0 0.00 10 100.0 10 2

Reservoirs / 
ponds 

311.8 4.9 33 84.6 6 15.4 39 3

Stable 1239.9 19.6 125 78.1 35 21.9 160 27

Grass/woodland 435.3 6.9 19 34.6 36 65.5 55 16

Flooded 1618.0 25.5 110 56.1 86 43.9 196 28

Bare ground 655.4 10.3 0 0.0 70 100.0 70 36

Unstable 2708.7 42.8 129 40.2 192 59.8 321 80

Total 6336.1 100.0 535 67.7 255 32.3 790 111

 
In the past 30 years, less than 40% of the total area was 
unchanged, while the stable and unstable change accounted for 
more than 60%. It appears that landuse in the study area has 
changed dramatically. However, one should note that the stable 
change only occupied less than 20% of the total area, which 
indicates the irreversible landuse change. In reality, unchanged 
trajectories show the original condition of land cover; stable 
change trajectories show most human-induced changes; while 
unstable change trajectories are relatively less significant since 
they tend to show natural (i.e. reversible) land cover change and 
also contain most of classification errors. Therefore, for landuse 
change detection study, we recommend that the focus should be 
on the analysis of unchanged and stable change trajectories, 
especially the stable change trajectories, because of their higher 
accuracy and meaningful indication of the irreversible change. 

3.3 Spatial pattern 

Table 7 summaries the findings related to spatial pattern indices. 
It shows that SI varies between 0.8 and 0.1 and DI varies 
between 0.4 and 0.7. The detailed fluctuation over time 
generally reflects change of spatial pattern. For example, after 
the construction of a dam in early 1980s, the appearance of the 
reservoir and reduction of grass and woodlands led to greater 



 

landuse diversity, resulted in increasing SD and decreasing DI 
from 1973 to 1986. From 1994 to 2000, the landuse diversity 
increased with the large scale cultivation, resulted in higher SD 
and lower DI from 1994 to 2000. Note that the SD and DI 
showed reverse trend during the period of 1986 to 1994, while 
decreasing SD and increasing DI were observed. This could be 
largely affected by the increasing number of landuse types 
(from four to five due to the addition of cropland). It is, 
therefore, reasonable to conclude that the temporal change of 
SD and DI indicates the trend of landuse diversity and they are 
not sensitive to the spatial resolution of remotely sensed images, 
but could be affected by the changing number of landuse 
classes. 
 

Table 7.  Metrics of all landuse classes for five-stage data 
 

Metrics Classes 1973 1976 1986 1994 2000 

Cropland - - - 1.515 1.799 
Grass / woodland 0.189 0.584 2.525 0.884 1.278 
Salty grass 0.331 1.042 2.273 0.379 0.884 
Water body 1.136 2.967 7.623 1.484 0.694 

PPU 

Bare ground 0.521 1.200 1.673 0.616 0.915 

Cropland - - - 1.230 1.256 
Grass / woodland 1.307 1.345 1.304 1.328 1.358 
Salty grass 1.216 1.224 1.301 1.237 1.241 
Water body 1.292 1.309 1.291 1.308 1.3967 

PAFD 

Bare ground 1.120 1.249 1.255 1.300 1.284 

Cropland - - - 1.874 2.614 
Grass / woodland 6.325 7.741 13.690 13.828 11.096 
Salty grass 1.551 1.667 2.729 2.304 1.812 
Water body 2.173 2.038 4.151 3.007 3.204 

Patches 
metrics 

MSI 

Bare ground 2.088 2.784 3.706 3.018 3.274 

SD - 0.823 0.889 0.996 0.882 1.084 Pattern 
metrics DI - 0.563 0.498 0.390 0.728 0.526 

 
In this study, the PAFD values did not show significant 
variation between landuse classes. In general, the cropland 
showed generally less complex shapes than natural land cover 
types, particularly grass and woodland and water body, but 
difference in PAFD values are quite small (about 0.10 – 0.15). 
This result also shows that the PAFD is not sensitive to the 
spatial resolution of the images. 
 
By definition the MSI is related to spatial resolution. The higher 
is the spatial resolution, the more details on the object shape are 
revealed, and thus the higher MSI is observed. This study 
confirmed the assumption as the MSI showed generally higher 
values on SPOT, and decreasing values on ETM, TM and MSS, 
closely related to their spatial resolutions. Comparing landuse 
types, croplands obviously showed the least irregularity 
suggesting the fundamental difference between human-induced 
landuse and natural land cover patterns. An exception, however, 
was observed on salty grass that showed less MSI than the 
cropland in 2000. This could be due to that only a small area of 
salty grass had left after the reclamation in late 1990s. 
 
In this study the result of PPU showed some effects of spatial 
resolution indicated by general higher value on the SPOT image. 
However, this pattern was not well supported by the other 
evidences. The PPU values did not show a recognisable pattern 

in relation to landuse types, nor on spatial resolution. As a ratio 
of patch numbers and area, PPU can largely be affected by a 
number of factors including spatial resolution of the image, 
classification accuracy and post-classification sorting methods, 
thus the real spatial pattern that may be revealed by PPU could 
be well masked. 
 
According to the above analysis, it is suggested that SD, DI and 
PAFD are not sensitive to the spatial resolutions of multi-sensor 
images, while MSI is closely related to the spatial resolution. 
All these four indices have demonstrated good usability as 
indicators of spatial pattern of landuse/cover types in this study. 
PPU, on the other hand, did not present itself as a reliable and 
meaningful indicator for the spatial pattern analysis in this 
study. 
 
Benson and MacKenzie (1995) and Frohn et al (1998) stated 
that spatial resolution had important effect on most landscape 
metrics. However, Wickham and Riitters (1995) stated that 
landscape metrics should not be dramatically affected by the 
change in pixel size up to 80m. These results appear to be 
inconsistent. However, taking into account the difference of the 
metrics discussed in their works, the results of this study 
confirm the previous work to some extent. For example, the 
metrics discussed by Benson and MacKenzie (1995) were 
percent water, number of lakes, average lake area and perimeter, 
the fractal dimension, and texture, of which some are similar to 
MSI in principle, thus it is understandable that the influence of 
spatial resolution was emphasised. On the other hand, Wickham 
and Riitters (1995) used DI so that it is expected that his finding 
is confirmed by this study. 

4. CONCLUSION 

The ability to discriminate the landuse/cover types varies 
significantly for multitemporal images because of various 
spatial and spectral resolutions of images acquired by different 
sensors. The area statistics are capable of showing the general 
landuse change trends, but the uncertainty caused by area 
fluctuation due to classification errors may play a significant 
role to create misleading results. In this study, the poorer 
classification results were found in association with lower 
spatial resolution, demonstrated by the higher fluctuation of 
area statistics results. Concentration on the detected change area, 
e.g. the temporal trajectory analysis, therefore, seems to be a 
better and more promising approach. 
 
In the past 30 years, less than 40% of the study area was 
unchanged, while the stable and unstable change accounted for 
more than 60%. Unchanged trajectories show the original 
condition of land cover; stable change trajectories show most 
human-induced changes; while unstable change trajectories are 
relatively less significant since they tend to show natural (i.e. 
reversible) land cover change and also contain most of 
classification errors. Therefore, for landuse change detection 
study, we recommend that the focus should be on the analysis 
of unchanged and stable change trajectories, especially the 
stable change trajectories. 
 
For spatial pattern analysis, this study suggests that SD, DI and 
PAFD are not sensitive to the spatial resolutions of multi-sensor 
images, while MSI is closely related to the spatial resolution. 
All these four indices have demonstrated good usability as 
indicators of spatial pattern of landuse/cover types in this study. 
PPU, on the other hand, did not present itself as a reliable and 



 

meaningful indicator for the spatial pattern analysis in this 
study. 
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