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ABSTRACT:

Managing oceanographic data with traditional geographical information systems (GIS) is a difficult task because these systems have
been primarily designed for land-based applications. The main problem is that the nature of objects at sea is completely different
from the  nature  of  objects  found  on the land:  at  sea most  objects  are  represented by unconnected  points  that  can have three-
dimensional coordinates, the datasets have 'abnormal' distribution and the objects tend to change position over time. We propose in
this paper using a spatial model based on the three-dimensional Voronoi diagram (VD) to handle topological relationships between
objects. We present the main properties of the 3D VD, algorithms to construct and modify it, and show how some 3D GIS operations
are greatly simplified when a spatial model is built upon it

1. INTRODUCTION

Data collected for marine applications have particular properties
that are usually not present in data collected on the land. First,
because  almost  no  man-made  objects  are  found  at  sea,  the
objects (samples) are mostly represented by unconnected points,
to which some attributes are attached. Second, the samples are
usually collected from a boat, which results in datasets having
highly irregular distribution (samples are distributed according
to  each  ship's  track).  Two-dimensional  datasets  (e.g.
bathymetric samples having x-y coordinates and depth of water)
are  very  difficult  to  manage  with  traditional  geographical
information systems (GIS) because their spatial model is built
for two-dimensional land applications and their data structure is
based on the ‘overlays’ as a definition of adjacencies between
objects  (Gold  and  Condal,  1995).  Three-dimensional
oceanographic  datasets  are  usually  composed  of  CTD  data:
attributes  (Conductivity-Temperature-Depth)  of  the  water  are
measured with a sensor that is moved through the water column.
A three-dimensional (volumetric) representation of the water is
built  with  many water columns collected along different ship
tracks.  Samplings  obtained  in  such  a  way are  sparse  in  the
horizontal direction but abundant in the vertical direction. The
integration of such datasets into traditional GIS is problematic
because these systems usually deal only with surfaces and two-
dimensional  objects,  and,  as  a  result,  datasets  must  often  be
‘reduced’ by one dimension (for example by ‘slicing’ it) to be
integrated and analysed. Some solutions exist – using 3D raster
data structures as in the work of Jones (1989), Raper (1989) and
O’Conaill et al. (1992) – but, as shown in Section 4 , they have
shortcomings  for  oceanographic  data.  A  further  important
consideration is that the marine environment is dynamic, which
means that objects are likely to move over time. 

The many problems arising when using a traditional  GIS for
handling marine data have been described by many researchers
(Davis,  1988;  Li,  1993;  Lockwood,  1995).  Using  a  spatial
model based on the two-dimensional Voronoi diagram (VD), as
Gold and Condal (1995) propose, solves most of the problems
mentioned earlier. As explained in Section 2, the VD will adapt
naturally to the distribution of the data and its 'tiling' properties
can be used to  manage the  topological  relationships  between
unconnected  objects.  Moreover,  unlike  the  structure  of

traditional GIS, the topology can be updated locally. Wright and
Goodchild  (1997),  in a review, affirmed that this method was
the only published attempt at that time to solve many important
problems related to the nature of marine data. The only problem
not  tackled  by  Gold  and  Condal  is  3D  volume-based
representations. 

In this paper, we extend the work of Gold and Condal (1995)
and propose using the Voronoi diagram in three dimensions to
handle the topological relationships in oceanographic datasets.
As shown in Section 2, the concepts and properties of the VD
can all be generalized to three dimensions, and, as a result, we
have a spatial model capable of solving most of the problems
we have when dealing with oceanographic data. Although the
concepts  easily  generalize,  their  implementations  are  not
straightforward.  For  this  reason,  we discuss  in  Section  3  the
main  construction  and  modification  algorithms,  and  also
different data structures for storing the  VD and its geometric
dual,  the  Delaunay  tetrahedralization  (DT).  As  described  in
Section 4, such a spatial model has numerous advantages over
other  knows  methods.  One  of  them  is  that  many  three-
dimensional  spatial  analysis  operations  are  greatly  simplified
and optimised, and we show in Section 5 how some of these
operations, when applied to an oceanographic dataset, can help
us to have a better understanding of it. 

2. PROPERTIES OF THE 3D VORONOI DIAGRAM

The Voronoi diagram for a set of points in a given space Rd is
the partitioning of that space into regions such that all locations
within any one region are closer to the generating point than to
any other. In two dimensions, each cell around a data point is a
convex polygon,  having a defined number  of neighbours;  for
example in Figure 1 the point  p has 7 neighbouring Voronoi
cells.  In  three  dimensions,  a  Voronoi  cell  generalizes  to  a
convex polyhedron formed by convex faces, as shown in Figure
2.  In  any dimensions,  the VD has a geometric  dual  structure
called  the  Delaunay  triangulation.  In  2D,  this  structure  is
defined by the partitioning of the plane into triangles – where
the  vertices  of  the  triangles  are  the  points  generating  each
Voronoi cell – that satisfy the empty circumcircle test (a circle
is  empty when no points is in its interior, but more than three



points can be directly on the circle). The two-dimensional DT is
illustrated  in  Figure  1  by  the  dashed  lines.  The  Delaunay
triangulation is popular for modelling surfaces because among
all the possible triangulations of a set of points, it creates one
where  the  minimum  angle  in  each  triangle  is  maximized
(triangles are as equilateral as possible), thus being useful for
interpolation.  The  generalization  to  three  dimensions  of  the
Delaunay triangulation is the Delaunay tetrahedralization: each
triangle  becomes  a  tetrahedron  that  satisfies  the  empty
circumsphere rule. The DT is unique for a set of points, except
when there are degenerate cases in the set (if five or more points
are cospherical in 3D). In these cases, an arbitrary choice must
be  made  among  all  the  possible  solutions.  The  number  of
tetrahedra in  a DT constructed  with  n  points  depends on the
configuration of these points, and can be up to O(n2).

Figure  1.  Two-dimensional  VD (bold  lines)  and  DT (dashed
lines).

Most  of  the  properties  of  the  2D  VD/DT generalize  to  3D,
except that the minimum angle in each Delaunay tetrahedra is
not  maximized.  There  can  indeed  be  almost  'flat'  Delaunay
tetrahedra.  These  tetrahedra,  called  slivers,  have  their  four
vertices  almost  lying on  a  plane and  thus  have  a  volume of
nearly  zero.  For  many  applications  where  the  Delaunay
tetrahedralization  is  used,  e.g.  to  perform  simulation  in
engineering  or  when  the  tetrahedra  are  used  to  perform
interpolation  directly,  these  tetrahedra  are  bad  and  must  be
removed.  Here,  one  might  wonder  why  use  them  if  their
properties are not  good? First,  it  should be said that  in most
cases the Delaunay tetrahedralization has a tendency to favour
equilateral tetrahedra over slivers. Second, the Voronoi diagram
is not affected by them; the Voronoi  cells in 3D will still be
'round'  (i.e.  relatively  spherical)  even  if  the  DT  has  many
slivers.  Third,  many  GIS  operations  (e.g.  spatial  analysis
functions)  use  the  properties  of  the  VD,  and  if  only  one
tetrahedron is not Delaunay, then the VD is corrupted.

Both the VD and the DT represent the same thing, just from a
different viewpoint.  The duality between the two structures in
three dimensions is simple: each polyhedron becomes a point
and each line becomes a face, and vice-versa. For example, a

Figure  2. A Voronoi cell in 3D. The edges are the Delaunay
edges joining the generator to its natural neighbours.

Delaunay tetrahedron becomes a Voronoi vertex (its position is
the  centre  of  the  circumsphere around  the  tetrahedron);  a
Delaunay  edge  becomes  a  (convex)  Voronoi  face;  and  a
Delaunay triangular face becomes an edge spanned by the two
Voronoi vertices that are dual to the two tetrahedra sharing the
face. For example, in Figure 2, the number of edges joining the
generator is equal to the number of faces of the Voronoi cell.

3. 3D VD/DT ALGORITHMS AND DATA
STRUCTURES

As mentioned in the previous section, both the VD and the DT
are geometrically equivalent. By having one structure, its dual
can  always  be  constructed.  Because  it  is  easier,  from  an
algorithmic  and  data  structure  point-of-view,  to  manage
tetrahedra  over  arbitrary  polyhedra  (they  have  a  constant
number  of  vertices  and  neighbours),  we  construct,  store  and
modify a VD by working only on its dual. The VD is extracted
from a DT in O(n) time,  n being the number of data points in
the set.

We  first  describe  in  this  section  basic  operations  needed  to
construct  and  modify a  Delaunay tetrahedralization  and  then
discuss  some  possible  data  structures  that  can  be  used  to
efficiently store the DT and/or the VD.

3.1 Flipping in 3D

A  flip  is  a  local  topological  operation  that  modifies  the
configuration  of adjacent  tetrahedra  in  a tetrahedralization.  If
we consider five points {a,  b,  c,  d,  e} in R3,  there exist three
ways  to  tetrahedralize  them:  either  with  two,  three  or  four
tetrahedra, depending on their configuration in space. Figure 3
shows one such configuration: the point e is inside a tetrahedron
abcd.  Figure  4  shows  the  other  configuration  where  the
polyhedron  abcde is  tetrahedralized  with  either  2  or  3
tetrahedra. Based on this, we can define different kinds of flips.
A flip14 is the operation that will insert  e inside a tetrahedron
abcd (splitting it into 4 tetrahedra), and a flip41 is the inverse
operation that will delete e and merge together the 4 tetrahedra.
A flip23 transforms a tetrahedralization of 2 tetrahedra by one
with 3, and a flip32 is the inverse operation.

Figure 3. Flips 14 and 41.

3.2 Point Location

The point location problem involves finding which tetrahedron
in a DT contains a query point  x. This is needed for different
operations,  for  example to  insert  a  new point  in  a  DT or  to
interpolate,  as  it  is  explained  in  Section  5.  The  method  we
describe  here,  called  'walking',  was  discussed  in  the  earliest
papers  about  the  construction  of  triangulations  in  two
dimensions (Gold et al., 1977; Green and Sibson, 1978).



Figure 4. Flips 23 and 32.

Its generalization to three dimensions is straightforward as the
method  uses  only  the  adjacency  relationships  between  the
triangles. The idea is: starting from a given tetrahedron  t,  we
move to one of its neighbours t1 if the query point x and t1 are on
the  same side  of  the  triangular  face shared  by  t and  t1.  We
continue walking from tetrahedron to tetrahedron until t1 has no
such neighbour, which means that  t1 contains x. The method is
simple to implement as only one function – one that determines
if a point is left or right of a plane in 3D – is needed and no
extra storage is required. It is also very efficient in practice, as
Mücke et al. (1999) show.

3.3 Construction Algorithms

Many different algorithms can be used to construct a 3D VD.
One solution,  as  described  in  Brown (1979),  involves  firstly
constructing the  convex hull  of  the  set  of  points  in  (d  + 1)
dimensions – 4D in our case – and then projecting the result
one  dimension  lower  to  get  the  Delaunay  tetrahedralization.
Implementations  of  convex  hull  algorithms  in  higher
dimensions  are  readily  available,  e.g.  Qhull (Barber  et  al.,
1996). Another solution is using the DeWall algorithm (Cignoni
et  al.,  1998),  which  is  based  on  the  divide-and-conquer
paradigm. These algorithms might be useful for the construction
of  a  DT,  but  local  modifications  (insertion  of  a  new point,
deletion or movement of one) are either slow and complicated,
or simply impossible. 

Algorithms  that  allow  local  modifications  are  called
'incremental insertion algorithms' and they proceed as follow to
construct a DT. Starting from a valid DT, each point of a set is
added one at a time and the tetrahedralization is updated after
each insertion. To insert a single point x in a DT, the following
steps are required. First, the tetrahedron that contains x must be
identified  with  the  point  location  algorithm described  in  the
previous section. Then, all the tetrahedra whose circumspheres
contain x must be deleted and replaced by new ones. The first
increment  insertion  algorithm,  valid  in  any  dimensions,  was
developed  by  Watson  (1981).  His  idea  is  simple:  all  the
tetrahedra that 'conflict' with x are deleted from the DT and then
the  hole  thus  created  is  filled by creating edges linking  x to
every  vertex  of  the  hole  (they  prove  that  the  new resulting
tetrahedra  are  guaranteed  to  be  Delaunay).  Although  the
algorithm  is  simple  to  implement,  the  fact  that  the
tetrahedralization  is  temporarily  destroyed  can  corrupt  the
algorithm.  Field  (1986)  explains  the  problems  that  are
encountered when implementing the method.

Another incremental insertion algorithm, due to Joe (1991), is
numerically more stable because a complete tetrahedralization
is  kept  during  the  whole  updating  process.  The  conflicting
tetrahedra are deleted and replaced by new ones by a sequence
of flips. The first step is the insertion of x in the tetrahedron that
contains it by using a flip14. The four new tetrahedra are then
added  to  a  stack  that  will  control  the  sequence  of  flips  to

perform to restore the 'Delaunayness' in the tetrahedralization.
Each  tetrahedron  on  the  stack  must  be  tested  against  its
neighbours,  if  it  is  not  Delaunay then  a  flip  –  a flip23  or  a
flip32, depending on the configuration of adjacent tetrahedra –
will  destroy some tetrahedra and replace them by other  ones
(the  new ones  are  then  pushed  on  the  stack).  The algorithm
terminates when the stack is empty. The time complexity of this
algorithm, and of Watson’s algorithm, is O(n2)  for a set  of  n
points, not just for the insertion of a single point. This is worst-
case optimal since a DT of n points can theoretically have up to
O(n2) tetrahedra.

3.4 Deletion Algorithms

The deletion of a single vertex in a Delaunay tetrahedralization
is often simply referred to  as the  ‘inverse  of  the  incremental
insertion algorithm’. Like the insertion operation, it is a  local
operation that involves modifying only some adjacent tetrahedra
of a DT. Figure 5 illustrates a two-dimensional example where
the vertex x is deleted from a Delaunay triangulation. Although
the problem appears to be simple, it  is a much more difficult
task to implement than the insertion of a point,  and very few
algorithms can be found in the literature.

Figure  5. Left:  x is the vertex to be deleted in a 2D Delaunay
triangulation. Right: re-triangulation of the polygon. 

The most elegant algorithm, which is valid in any dimensions, is
by Devillers (2002).  In  two dimensions,  the  method involves
deleting  all  the  triangles  incident  to  the  vertex  x and  re-
triangulating the hole by using a priority queue of the potential
triangles that could be used to fill the hole. Devillers' algorithm
states that the potential triangle having the smallest power – the
power is a geometric function defined in Aurenhammer (1987)
– with respect to  x is guaranteed to be Delaunay. Because the
operation is local, the number of edges k incident to a vertex is
usually used to analyse deletion algorithms. Devillers' method
has  a  time  complexity  of  O(k  log  k)  in  two  dimensions.
Although possible, the implementation of the algorithm in 3D
requires  many modifications  to  handle  the  degenerate  cases,
and, to our knowledge, has not been implemented yet. Because
the  number  of  tetrahedra  present  in  a  Delaunay
tetrahedralization  of  n points  varies  depending  on  the
configuration of the points, the time complexity of the method
in 3D is O(t log k), where t is the number of tetrahedra needed
to fill the hole. A simpler solution involves keeping a list of all
potential tetrahedra and testing (Delaunay empty circumsphere
test) them against each vertex forming the hole. The resulting
algorithm is  slower  –  a  time complexity  of  O(t  k)  –  and  an
implementation can be found in CGAL (Devillers and Teillaud,
2003).

However,  these  methods  temporarily  destroy  the
tetrahedralization and some problems can arise. For this reason,
we have developed a method that  uses the flips described  in
Section 3.1 and an algorithm similar to the one implemented in
CGAL.  The  methods  works  fine  for  most  cases  and  we are
currently  working  on  making  it  fully  robust  for  all  the
degenerate cases.



3.5 Movement of Points

When a  point  is  continually  moving  over  time,  it  makes no
sense  to  continually  insert,  delete  and  re-insert  it  again
somewhere else, because it is a costly operation. Instead, it can
simply  be  moved  and  the  topological  relationships  locally
updated when it is needed. Roos (1991) and Gold (1991) detail
a  method  that  uses  flipping  to  update  the  adjacency
relationships  of a 2D Delaunay triangulation  as one vertex is
moving over time. The movement of only one vertex to another
location  involves  updating,  by  flips,  all  the  topological
relationships that will be modified from the starting point to the
end point. If the location of the point is just slightly changed,
the  topological  relationships  will  probably  not  need  to  be
updated, but as soon as the moving point enters or leaves the
circumcircle  of  a  neighbouring  triangle,  a  flip  must  be
performed.

These  ideas  generalize  to  three  dimensions,  although,  to  our
knowledge, no implementation is known. We are also currently
working on implementing the method by using flip23 and flip32
to update the DT as one vertex is moving.

3.6 Possible Data Structures

When  choosing  a  data  structure  to  store  a  Delaunay
tetrahedralization (or a Voronoi  diagram), there is  a trade-off
between  the  size  of  the  data  structure  and  the  topological
relationships stored. For example, a very simple data structure
means that when some operations are performed more work will
have to  be made (e.g.  to  retrieve the  boundaries  of  Voronoi
cells), while a data structure where the DT and its dual are both
stored will speed up the use of these operations. 
The simplest data structure to store the DT is the tetrahedron-
based data structure where each record represents a tetrahedron
with  four  pointers  to  its  vertices  and  four  pointers  to  its
neighbouring tetrahedra. Many implementations of the DT (e.g.
CGAL) use this data structure because it is simple and yields a
fast construction. However, in our case, the VD will be needed
for many spatial analysis functions and storing both might be
advantageous.  One  solution  is  using  the  facet-edge structure
(Dobkin and Laszlo, 1989), which stores symmetrically both the
primal and dual of a three-dimensional subdivisions. As it name
implies, the 'atom' of the structure is a pair of an edge and a face
and operators to navigate from edges to edges on a same face or
to  visit  all  the  faces  incident  to  a  given  edge  are  available.
Construction  operators  are  also  available.  Although  this
solution  seems  attractive,  it  has  been  found  difficult  to
implement in practice and, to our knowledge, has not been used
for 'real projects'.

We  are  currently  working  on  a  simpler  data  structure,  the
'augmented  quad-edge',  that  also  stores  symmetrically  the
primal and dual 3D subdivisions. It uses the popular quad-edge
structure (Guibas and Stolfi, 1985) originally developed for 2D
subdivisions  to  store  individually  each  cell  (tetrahedron  or
Voronoi cell). The cells are linked together by the dual edge to
the  face  shared  by  the  two cells.  The  data  structure  is  very
simple  to  implement  as  only  the  quad-edge operators  with
minor modifications are needed to construct and modify the DT
and the VD at the same time. The major limitation of this data
structure is its high storage requirements.

4. VORONOI DIAGRAM AS A SPATIAL MODEL

Two-dimensional  GIS's  vector-based  representations  describe
individually  each  object  with  geometric  primitives,  usually

points,  lines  and  polygons.  The structure  of  these  systems is
based on the 'overlays', i.e. that the topology between objects is
based on the intersection of lines, and, moreover, the building
of this topology is a global process that needs to be done each
time  there  is  a  modification  on  the  map.  The  vectorial
representation  has also been extended to 3D, for example by
Molenaar  (1992),  but  the  same  'problems'  are  present.
Modelling  three-dimensional  oceanographic  data  with  such  a
spatial  model  is  obviously  impossible  because,  firstly,  the
definition  of  topology  is  not  appropriate,  and  secondly,  the
movement of objects is almost impossible.

The  other  spatial  model  used  in  the  GIS  and  3D modelling
systems  is  the  raster  representation.  Such  a  spatial  model
divides the space into regular cells that are usually squares in
2D and cubes in 3D (this is also called a voxel representation).
The  raster  representation  is  particularly  useful  to  represent
fields or continuous phenomena because cells cover the whole
space. Although being a popular representation in geosciences
because  the  model  gives  a  simple  definition  of  spatial
relationships,  it  cannot  represent each object individually (the
original data are 'lost' when converting them to raster) and the
volume of data can become enormous if one wants to have a
fine  resolution,  especially  in  3D.  To  overcome  the  latter
problem, the  octree (Samet, 1990),  where voxels are indexed
and merged together to save space, can be used.

A spatial model for oceanographic data should ideally be able to
represent both discrete objects and continuous phenomena. The
Voronoi diagram has properties from both the vector and the
raster spatial models: each individual object can be represented,
and the ‘tiling’ properties give a definition of adjacency even
for unconnected objects (each point generates one cell and this
cell has some neighbours). Field-type data can be represented
by assigning an attribute value to each Voronoi cell. There are
several reasons for using a spatial model based on the Voronoi
diagram over other models:
1. This is an adaptive method, i.e. the size of the cells depends

on the distribution of the data points.
2. This is an automatic method that does not need user-defined

parameters to be constructed.
3. Original  data  are  kept  and  not  ‘lost’,  as  is  the  case  with

raster representation.
4. By  using  the  dual  of  the  VD,  the  Delaunay

tetrahedralization,  the  rendering  is  optimised  since
triangular  elements  are  the  primitives  of  choice  for  most
graphics packages and video cards.

5. Local updates to the model are possible.

5. 3D SPATIAL ANALYSIS FUNCTIONS AND
APPLICATIONS

Once the VD/DT is built, many spatial analysis operations are
possible and even simplified. This section gives some examples
of these.

5.1 Spatial Interpolation with the VD

Interpolation  methods  are  used  to  estimate  the  value  of  an
attribute at  unsampled locations.  They are required  to model,
visualise and better understand a dataset, and also to convert a
dataset to another format (e.g. from scattered data to voxels).
Traditional GIS interpolation methods (e.g. distance-based and
triangle-based methods) can be generalized to 3D but they have
many flaws when dealing with datasets having a highly irregular
distribution.  These  flaws  are  caused  by  the  fact  that  these
methods do not  consider the configuration of the data. It has



been shown that natural neighbour interpolation (Sibson, 1981)
avoids most of the problem of traditional methods and performs
well  for  irregularly  distributed  data  (Gold,  1989;  Watson,
1992). This is a method entirely based on the Voronoi diagram
for both selecting the neighbours and assigning a weight to each
of them; and it  is  valid  in any dimensions.  To interpolate  at
location x in 3D, a temporary point  x must be inserted into the
VD. The neighbours involved in the interpolation process are
the neighbours of  x, and the weight of each is defined by the
volume that the Voronoi cell of x steals from the Voronoi cell
of the neighbour in the absence of x. 

Although the method  has been implemented with success for
2D applications (Watson, 1992), its use in 3D is quite limited
because  its  implementation  is  a  complicated  process  that
requires the computation of two VD – one with  x and another
one  without  –  and  also  of  the  volume of  Voronoi  cells.  An
algorithm  that  uses  flipping  and  an  incremental  insertion
algorithm, as described in  Sections 3.1  and  3.3,  has recently
been developed by the authors of this paper (Ledoux and Gold,
2004).  The  algorithm is  efficient  (its  time  complexity  is  the
same as the one for inserting a single point in a VD/DT) and we
believe it to be considerably simpler to implement than other
known  methods,  as  only  an  incremental  algorithm based  on
flips, with some minor modifications, is needed.

5.2 Extraction of Iso-Surfaces

It is notorious that three-dimensional data are very difficult to
visualise, even within a 3D environment that offers translation,
rotation and  zoom functions.  One of the  best  ways to  better
understand a dataset  is to extract and visualise in 3D an iso-
surface from it.  An iso-surface (see Figure  6),  also called an
implicit surface, is the three-dimensional analogous concept of
an iso-contour line in two dimensions:  it represents the space
where the attribute of a dataset has the same value. The most
common  algorithm  to  extract  iso-surfaces,  called  marching
cubes (Lorensen and Cline, 1987), was designed to work with a
voxel  input  only.  This  algorithm  can  nevertheless  be  easily
rewritten to work with a set  of adjacent tetrahedra instead of
cubes: each tetrahedron of a DT is visited and the intersections
between the implicit surface and each edge of the tetrahedron
are computed by linear interpolation. There are three possible
cases for each tetrahedron: no intersection; three edges intersect
and therefore a triangular face of the implicit surface is created;
or four intersections, in that case two triangular faces must be
created.  The  resulting  implicit  surface  is  formed  of  many
adjacent, but topologically unconnected, triangular faces, which
is ideal for fast rendering. 

With the new techniques developed in recent years in computer
graphics, it is possible to draw many iso-surfaces and view them
all  by  using  'transparency'  techniques,  by  assigning  different
colours  to  each,  by  'peeling  off'  surfaces  and  by  navigating
inside  and  outside  to  see  the  shape.  Visualisation  therefore
plays  an  important  role  in  understanding  a  dataset,  as  it
becomes  a  form  of  qualitative  spatial  analysis.  Head  et  al.
(1997)  give more examples  of  how visualisation  can help  to
better understand an oceanographic dataset.

5.3 Temporal Data and Real-Time Applications

The VD permits  insertion,  deletion and movement  of objects
with local modifications only; thus every operation is reversible.
As shown in Gold (1996), by simply keeping a 'log file' of every
operation done it is possible to rebuild each topological state of
a map, at any time. This solves a big problem with temporal 

Figure  6.  Example  of  an  iso-surface  extracted  from 3D data
points.

data and GIS, and it is valid both in 2D and 3D. There is no
need to keep various 'snapshots' on the data at different time for
further analysis: when a map a at specific time is desired, it is
reconstructed from the original  data from the log file. A map
can also be viewed like a 'movie' of the changes during a certain
period of time with for example boats and water moving.

This spatial model also permits 'real-time' applications,  i.e. as
data  are  collected  at  sea,  they can be quickly processed  and
added to the system for analysis, without rebuilding the whole
topological relationships. This permits us to directly evaluate at
sea the quality of a survey done and to correct mistakes or add
new data while the boat is still near the site. Hatcher and Maher
(1999) present more examples of real-time GIS applications at
sea.

6. DISCUSSION

The main objective of our research is to build a complete spatial
model  to  manage  and  analyse oceanographic  data.  We have
presented  the  main  properties  of  the  3D  Voronoi
diagram/Delaunay  tetrahedralization  and  showed  that  it  can
indeed solve most of the problems arising when other methods
are used. We have already implemented many construction and
modification operators and we are planning to implement all the
algorithms  discussed  in  this  paper.  We  have  also  developed
some 3D spatial analysis functions and are currently working on
building  a  more  complete  list.  Finally,  the  results  of  this
research  are  not  only  limited  to  oceanographic  data,  as  the
needs for modelling these data are similar to the needs in other
fields, such as geology and atmospheric sciences.
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