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ABSTRACT: 
 
The automatic interpretation of aerial and satellite images is one of the main important research topics in photogrammetry and image 
analysis. The aim of the interpretation is the recognition or verification of objects in images. The quality of the interpretation results 
depends among other factors on the information content of the input data. The more information in the input data the easier is the 
interpretation process. In this paper an approach is described that increases the quality of the interpretation process by using existing 
GIS data as prior information on the one hand and by combining multispectral and LIDAR data on the other hand. The approach is 
used for automatic change detection and is based on the evaluation of automatically derived training data sets from existing GIS data. 
For that reason no data dependent tuning factors have to be defined and no human interaction is necessary.  
 
 
 

1. INTRODUCTION 

GIS databases are very dynamic and can change very rapidly 
over the time. Automatic interpretation procedures are needed 
in order to provide up-to-date databases. One of the standard 
approaches for the automatic interpretation of aerial or satellite 
images are pixel-based classification algorithms. With that kind 
of algorithms and appropriate input data it can be distinguished 
for example between vegetation pixels and non-vegetation 
pixels. Also the pixel-wise differentiation between different 
vegetation classes can be made very reliable. But it is not 
possible to distinguish between landuse classes that can only be 
detected by the evaluation of pixel groups and not of single 
pixels. For example it is not possible to distinguish between 
residential and industrial settlement areas only by evaluating 
single pixels. In order to distinguish between such landuse 
classes, we use an object-based classification approach that 
classifies not single pixels but groups of pixels that represent 
already existing objects in a GIS database. An n-dimensional 
vector of the feature space represents the objects. With that 
approach it is very easy to combine input data from different 
sources, like multispectral and LIDAR data or other data 
sources. 
 
 

2. EXISTING WORK 

Object based image analysis approaches for the interpretation of 
aerial and satellite images are already successfully applied to 
other problems. These approaches can be subdivided into 
approaches that use object-oriented classification rules without 
any GIS input and approaches that use existing GIS data to 
superimpose it on an image (also known as per-field, per-parcel 
or knowledge-based classification).  
 
The difference to existing approaches is that in our approach the 
object interpretation is based on a maximum likelihood 
classification and all parameters are derived from existing 
training data. In own work it was shown that the result of a 

classification could be improved significantly by the combined 
use of multispectral and LIDAR data (Walter 1999). 
Furthermore it was shown that GIS-based classification can be 
successfully used to verify different object classes in the scale of 
1:25.000  (Walter 2004).  
 
Object-based image analysis is also used for example in (Benz 
et. al. 2004). The basic units in this approach are also image 
segments instead of single pixels. But these segments are 
derived from image segmentation techniques and not from 
existing databases. Therefore, this approach is more designed 
for the first acquisition of GIS objects and not for update or 
quality control. Most of the existing approaches that use GIS 
data as prior information are used for the detection and 
verification of roads (e.g. Zhang 2004) or buildings (e.g. Suveg 
and Vosselmann 2002).  
 
 

3. OBJECT-BASED CLASSIFICATION APPROACH 

In (Walter 2004) it was shown that it is possible to distinguish 
between the landuse classes forest, settlement, greenland and 
water with an object-based classification by using multispectral 
data. Because GIS databases contain typically more different 
landuse classes, this approach has to be refined. In the 
following we extend this approach and add LIDAR data as an 
input channel. This gives the possibility to evaluate more object 
characteristics. The approach will be tested on the example of 
the automatic classification of residential and industrial 
settlement objects.  
 
3.1 Overview 

The approach (see Figure 1) consists of two classification steps. 
In a first step, a pixel-based classification is calculated. The 
result of the pixel-based classification as well as the input 
channels (the multispectral and LIDAR data) are used as an 
input for the object-based classification that classifies not single 
pixels but groups of pixels that represent already existing 



objects in a GIS database. Both classification steps are based on 
a supervised maximum likelihood classification. The training 
areas are derived automatically from a GIS database in order to 
avoid the time consuming task of manual acquisition. In a pixel-
based classification, the grayscale values of each pixel in 
different input channels and possibly some other pre-processed 
texture channels are used as input. For the classification of 
objects (groups of pixels), we have to define new measures that 
can be very simple (for example the mean gray value of all 
pixels of an object in a specific channel) but also very complex, 
like measures that describe for example the texture, the 3D 
shape, the homogeneity or the pixel-based classification result 
of an object.  
 
3.2 Preprocessing of the input channels 

The input channels for the pixel-based and object-based 
classification are multispectral bands, LIDAR data and a texture 
channel. In the following, the pre-processing of this data is 
described. 
 
3.2.1 Pre-processing of the LIDAR data: In Haala and 
Walter (1999) it was shown that the result of a pixel-based 
classification can be improved significantly by the combined 
use of multispectral and LIDAR data because they have a 
complementary “behavior”. There are two different kinds of 
information in LIDAR data: (a) the height of the terrain and (b) 
the local height of the objects on the terrain. For the 
classification only the local height is used. Therefore we use a 
Digital Terrain Model and “subtract” it from the LIDAR data. 
The result is a normalized DHM that contains only the local 
height of the objects (see Figure 2).  
 

 
 
 

3.2.2 Texture channel: Different landuse classes cannot be 
distinguished only by their spectral behavior but also because of 
different textures. In our approach, we use a texture operator 
based on a co-occurrence matrix that measures the contrast in a 
5 * 5 pixel window. Figure 3 shows the used texture operator in 
an example. The input image is shown in Figure 3 a, the texture 
(calculated from the blue band) in Figure 3 b. 
 

3.3 Pixel-based classification 

The result of the pixel-based classification is used as an 
additional channel for the object-based classification. The 
training areas are derived from an already existing GIS database 
in order to avoid the time consuming task of manual 
acquisition. This can be done, if it is assumed that the number 
of changes in the real world is very small compared with the 
number of all GIS objects in the database. That assumption can 
be seen as true because we want to realise update cycles in the 
range of several months. 
 
In the pixel-based classification all pixels have to be classified 
into the landuse classes: houses, streets, greenland, trees and 
water. The GIS data (ATKIS; see section 4) that is used in this 
project is captured in the scale 1:25.000 and does not contain 
the object class houses. Therefore a heuristic is needed that 
derive automatically training areas for this class.  
 
The training areas for houses are derived from the object classes 
of the GIS database that are representing settlements. In ATKIS 
there exist four settlement object classes: residential areas, 
industrial areas, areas of mixed use and areas of special use. 
The following three conditions are used to select pixels that are 
representing houses: (1) the pixels must be located in one of the 
four object classes for settlements, (2) the pixels must have a 
local height above the terrain and (3) the pixels must not 
represent vegetation.  
 
Figure 4 shows the process chain to calculate the training areas 
for houses. First, all pixels are selected which are representing 
settlement objects. From these pixels all pixels are selected 
which are above the ground. A vegetation index is used in order 
to eliminate all pixels that are representing vegetation. The 
result contains only pixels that are likely to represent roofs of 
houses. Figure 5 shows the training areas for houses on an 
example. The input image is shown in Figure 5 a and the 
calculated training areas in Figure 5 b. 
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3.4 Object-based-Classification  

The basic idea of object-based classification is to classify not 
single pixels but groups of pixels that represent already existing 
objects in a GIS database. Each object is described by an n-
dimensional feature vector and classified to the most likely class 
based on a supervised maximum likelihood classification. The 
n-dimensional feature vector describes the spectral and textural 
appearance of the objects. Again, the trainings areas are derived 
automatically from an existing database. 
 
3.4.1 Object characteristics: In order to distinguish 
between residential and industrial settlement objects we have 
first to describe the typical appearance of these two object 
classes. The following five characteristics can be used in order 
to decide if a settlement object represents a residential or an 
industrial area (these characteristics are especially valid in 
Germany – in other countries they may differ): 
 

• average size of the houses: in industrial areas the houses 
are typically very large whereas in residential areas 
houses are typically smaller 

• average roof slope of houses: in industrial areas are 
typically houses with flat roofs whereas in residential 
areas are typically houses with sloped roofs  

• percentage of trees: trees can be found very often in 
residential areas but only rarely in industrial areas 

• percentage of sealed ground: the percentage of sealed 
ground is typically higher in industrial areas as in 
residential areas 

• textural appearance: the textural appearance of 
industrial areas is more homogenous as in residential 
areas 

 
Not all characteristics must be valid for an object. Very often 
only three or four characteristics apply for a specific object but 

this is not a problem because the object-based classification 
classifies the object into the most likely class. This is a very 
robust approach that can handle also fuzzy descriptions of 
objects. Figure 6 shows two typical examples of residential and 
industrial areas. 

3.4.2 Calculation of the object characteristics: In order to 
represent the object characteristics as a feature vector we have 
to transform them into numeric values. Figure 7 shows the 
calculation of the different object characteristic on an example. 
Figure 7 a shows the calculation of the average house size per 
object. All pixels, which were classified as houses, are selected 
from the pixel-based classification result. Than, for each object, 
the average house size is calculated. It can be seen in the 
example that industrial settlement objects are having typically a 
larger average house size per object that is represented with 
brighter grey values and residential settlement objects are 
having typically a smaller average house size that is represented 
by darker grey values.  
 
The calculation of the average roof slope per object is shown in 
Figure 7 b. All house pixels are selected from the pixel-based 
classification result and intersected with the normalized DHM. 
With that input data, the average roof slope per object can be 
calculated. High average roof slopes stand for areas with sloped 
roofs and are represented with bright grey values and low 
average roof slopes stand for areas with flat roofs and are 
represented with dark grey values. 
 
Figure 7 c shows the calculation of the percentage of trees per 
object. All tree pixels are selected from the pixel-based 
classification result and for each object the percentage of trees 
is calculated. Trees can be found only seldom in industrial 
settlement objects. Therefore it can be seen in the example that 
industrial settlement objects are represented with dark grey 
values which stand for a low percentage of trees and residential 
settlement objects with bright grey values which stand for a 
high percentage of trees.  
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Figure 4. Calculation of the training areas for houses
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Figure 5. Training areas for the landuse class houses
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Figure 7. Calculation of the object characteristics 



The calculation of the percentage of sealed ground is done in 
the same way as the calculation of the percentage of trees with 
the difference that all street pixels are selected from the pixel-
based classification result (Figure 7 d). Industrial settlement 
objects have typically a higher percentage of sealed ground and 
are represented by bright grey values whereas residential 
settlement objects have typically a lower percentage of sealed 
ground and are represented with darker grey values. 
 
The calculation of the textural appearance is shown in 
Figure 7 e. We use the same texture operator as described in 
section 3.2.2 and calculate the average texture per object. 
Industrial settlement objects are represented typically with 
brighter grey values because they have a more homogenous 
textural appearance whereas residential areas are represented 
typically with darker grey values because they have a more 
inhomogeneous textural appearance. 
 
3.4.3 Classification: The five object characteristics span a 5-
dimensional feature space. The feature vector of each object is 
evaluated and classified either to the object class residential 
settlement objects or industrial settlement objects. Table 1 
shows the feature vectors of some objects of the test site. All 
values are mapped onto the interval [0..255], like in a typical 
pixel-based classification. 
 

Table 1. Feature vectors of the objects 
object 

number 
average 
house 
size 

average 
roof slope 

percent. 
trees 

percent. 
sealed 
ground 

average 
texture 

A01BH8D 93 85 20 99 55 
A01BH85 25 29 8 34 102 
A01BH86 25 56 11 76 61 
A01BH7W 185 65 21 86 67 
A01BH7X 191 48 7 34 50 

… … … … … … 
 

In order to classify the objects, we use a maximum likelihood 
approach that classifies the objects into the most likely class 
based on the evaluation of training data. The objects of the 
existing GIS database represent the training data.  
 
Figure 8 a shows the distribution of the percentage of trees for 
all objects of the GIS database and Figure 8 b the distribution of 
the percentage of tress for industrial settlement objects and 
residential settlement objects. It can be seen in the diagram that 
the higher the percentage of trees the higher is the likelihood 
that an object is representing a residential settlement area. But it 
can also be seen that there is an overlapping area where an 
object can represent a residential settlement object or an 
industrial settlement object with a similar likelihood.  
 
In order to make the distinction between the two object classes 
clearer, we evaluate not only one object characteristic but more 
than one. Figure 9 a shows in a scatterplot the two-dimensional 
distribution of the two object characteristics ‘percentage trees’ 
and ‘average house size’ for all objects in the GIS database. 
Figure 9 b shows the same distribution only for residential 
settlement objects and Figure 9 c for industrial settlement 
objects. It can be seen that the distinction between the two 
object classes becomes clearer. The more object characteristics 
are evaluated the clearer becomes the distinction. All object 
characteristics are used in the object-based classification. That 
means that we evaluate a 5-dimensional feature space and 
classify the objects to the most likely class based on the 
statistical distribution of the training data. 

 

 

Figure 8. Distribution of percentage of trees 

 
4. RESULTS AND DISCUSSION 

The approach was tested on a test area with 24 km2 that contains 
190 residential settlement objects and 84 industrial settlement 
objects. The test site is Vaihingen/Enz that is located in the 
southern part of Germany and represents a rural environment 
with smaller settlements. The multispectral data were captured 
with the DMC camera system, which is a CCD-matrix based 
camera system with 4 multispectral channels: R, G, B and Near 
Infrared (Hinz 2001). The LIDAR data were captured with the 
TopScan system and have an average point distance of 
approximately 1 m (Schleyer 2001). The LIDAR data and the 
multispectral data were resampled into regular raster images 
with a pixel size of 1m. The tests were carried out with ATKIS 
datasets. ATKIS is the German national topographic and 
cartographic database and captures the landscape in the scale 
1:25,000 (ADV 1988). 
 
In a manual classification all residential and industrial 
settlement objects of the databases were compared with the 
images and subdivided into the classes OK, unclear and not OK 
(see Figure 10). The class OK contains all objects with no 
change in the landscape (172 + 64 = 236 objects). The class 
unclear contains all objects where it was unclear if there was a 
change or not without evaluating additional sources (18 + 19 = 
37 objects). The reason for the relatively high number of objects 
in that class is that the distinction between residential and 
industrial objects in ATKIS is not only done because of the 
spectral appearance but also because of non-visible criteria’s 
(for example “non disturbing trade and repair businesses” have 

a) b) c) 

Figure 9. Scatterplot (x-axis: percentage trees, y-axis: 
average house size) 



to be captured as industrial settlement areas, but this 
characteristic cannot be seen in images). The class not OK 
contains all objects where a change in the landscape happened 
or which were captured wrongly. In this class were only 1 + 2 = 
3 objects, because the GIS data was up-to-date and settlement 
objects change their object class only very seldom.  
 
The result of the object-based classification can also be seen in 
Figure 10. The automatic approach classified 93% (163 + 57) of 
all objects of the class OK to same object class as they were 
collected in the GIS database. The classification of the objects 
of the class unclear reflects the situation that even a human 
operator is not able to classify these objects unambiguous: 60% 
(9 + 13) objects where classified to the same object class as they 
were collected and 40% (9 + 6) where classified to the other 
class. All objects (2 + 1) of the class not OK were classified into 
the other class, as they were collected. It is very important for a 
change detection approach that all objects, where definitely a 
change has happened, are found by the program. Otherwise an 
operator has to overwork the whole result of the automatic 
approach, which is nearly as much work as a manual change 
detection. If the automatic approach finds to many changes, is 
in opposition to that not a big problem. In our example 7% of 
the objects will be marked as a potential change by the object-
classification and have to be controlled even there is actually no 
change. 

The manual overwork of the object-based classification could 
be further decreased because the result is not only a 
classification of the objects into the most likely class but also a 
probability vector that describes the quality of the result. These 
quality measures can be used for an automatic evaluation of the 
results. This topic will be researched in future work. Another 
field of application for the automatically derived quality 
measures is the automatic quality control of GIS databases. 
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Figure 10. Results  


