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ABSTRACT: 
 
Very high resolution images (e.g. IKONOS) and airborne lidar have been used for the automated 3D mapping of individual tree and 
building locations in a large test area in East London of some 8 x 8km extent with many tens of thousands of buildings and trees. 
Initial results of the building and tree detection algorithm for small area assessments were given in Kim & Muller (2002). In this 
work we report on the extension of the algorithm to the full area and the refinement of the algorithm to extract tree height. Also 
shown will be the building detection’s quantitative assessment using the OS® MasterMap® (Parish et al., 2003, submitted) and the 
random sample assessment of tree locations using higher resolution digitised aerial photography from different commercial suppliers. 
Overall the detection efficiency is greater than 75% even though the buildings have a huge range in floorplan, height, age and type. 
Tree detection efficiency is based on a visual assessment of the degree of overstorey crown overlap but has similarly high values.  
 

1. INTRODUCTION 

1.1 Aims 

The primary goal of the research work reported here was to 
develop practical techniques for the automated production of 
dense landscape object models focussing on buildings and trees 
in urban area. 
With the increasing demands for information on artificial and 
natural landscape objects in many application fields (e.g. risk 
insurance, mobile telecommunication, city planning, geological 
research etc..), newly delivered commercial high-resolution 
satellite imagery and LiDAR (Light Detection and Ranging) data 
are stimulating the development of automated GIS construction.  
This research aims at the retrieval of 3D shape or 2D boundaries 
of buildings, which are larger than 10 square metres and have 
some regularity, and individual tree crowns with an acceptable 
degree of accuracy in very dense urban environments from 
high-resolution images and range data. Data processing 
algorithms utilising both range and image data or between 
image clues are here described to address technical problems 
associated with the available data sources such as, insufficient 
data resolution to resolve detailed object structure, a very large 
search area and irregularity of targets (tree and building)..  
 
1.2 Previous research work 

Building detection has been one of the major research topics of 
the photogrammetric community over the last 20 years. A 
sample of previous work is provided here relevant to the work 
at UCL and other centres. Kim and Muller (1999) developed a 
graph- based building reconstruction algorithm using 2D edge 
lines extracted from aerial photographs. Roux and McKeown 
(1994) used multiple aerial photos to construct 3D roof models 
of buildings. Perceptual grouping and shadow information was 
used for 3D building reconstruction by Lin and Nevatia (1998). 
The AMOBE project at ETH Zurich (Henricsson et al, 1996) is 
one of the first examples of the use of colour information for 
building extraction. Brenner and Halla(1999) constructed 3D 
building models from Lidar data and multi-spectral information. 
Marr and Vosselman (1999) suggested algorithms to extract 
building structures from invariant moments derived from Lidar. 

Recently research has begun to examine the application of high 
resolution satellite images such as IKONOS for building 
extraction (see, for example, Fraser et al., 2001).  
Individual tree crown detection is a very recent topic in image 
understanding and remote sensing data analysis. Template 
matching involving the correlation between a pre-defined model 
and an image patch is one method proposed for automated tree 
detection (Pollock 1998). Zang (2001) showed the first 
promising results using texture analysis in high resolution 
optical urban images. Gong et al. (2002) used a semi-automated 
interactive 3D model-based tree interpreter from multi-ocular 
high-resolution aerial images. Straub (2003) used LiDAR and a 
top-down low level operator to extract tree crown. 

1.3 Data description 

Space Imaging’s IKONOS, which is the first commercial high-
resolution satellite imager of the Earth, has unprecedented 
clarity and detail (nominal IfoV≤1m). IKONOS products use a 
general photogrammetric model, based on Rational Polynomial 
Coefficients (Grodecki 2001) Several relevant articles regarding 
IKONOS photogrammetric modelling accuracy have recently 
been published. A comprehensive review of IKONOS image 
radiometric and photogrammetric quality has been performed 
by Grodecki and Dial(2001) and Baltsavias et al. (2001) 
respectively. In particular, Grodecki and Dial(2001) showed 
that, in the case of GCP controlled stereo images (Precision 
stereo), the accuracies were within 1 metre horizontally and 2 
metres vertically. According to this result, the photogrammetric 
quality of any IKONOS precision data set should be acceptable 
for urban area mapping, where landscape objects of a few 
metres’ scale are present.                         
 The test data-set used in our study consisted of an IKONOS Pro 
geocoded single view data set over East London (11 by 11km), 
which was pan-sharpened to one metre resolution and contains 
R-G-NIR bands, using an unidentified technique by the satellite 
supplier. An initial assessment was performed of the planimetric 
positioning accuracy through an inter-comparison with 
kinematic (k-GPS). This showed that the planimetric accuracy 
appeared to be better than it’s technical specification.Lidar data 
supplied by Infoterra Limited came from an Optech 1020 ALS 
(Airborne Laser scanner) (http://www.optech.on.ca/) which was 



 

used as a 3D range data source. This has an average  point 
density of 1 lidar footprint per 3-4 square metres point density. 
It was quickly established that the point density of this 3D range 
data was insufficient for reliable object model construction. 
Hence an image fusion algorithm was developed to address 
such problems.  
 

2. ALGORITHMS 

The overall processing steps are shown in Figure 1. The overall 
procedure consists of 3 stages. Firstly, regions of interest (ROIs) 
are defined in a focusing stage using a normalised DEM, n-
DEM (i.e. heights above the “bare earth” terrain) and NDVI 
(Normalised Difference Vegetation Index). These “ROIs” are 
then refined using multi spectral information from the co-
registered optical images..  Then polygons for buildings and 
ellipses for tree crown are fitted to the refined ROI boundaries 
to identify buildings and trees in the “identification” stage. 
 

 
Figure 1. Overall Procedure 

 
2.1 Focusing 

A focusing strategy using the n-DEM and multi-spectral 
information is commonly used. In our case, NDVI for satellite 
information and normalised colour index from ratios such as (R-
G/R+G) originally used for aerial photos, was adopted. A key 
point in this strategy is the use of 3D range data. There are two 
common approaches: – a so-called “Top-down” approach, 
which directly segments the 3D range data and a “Bottom-up” 
approach (Kraus and Pfeifer 1997, Axelsson 1998, Lohnnmann 
et al. 2000, Vosselman 2000), which attempts to construct a 
Bare Earth DEM (DTM). The “Bottom-up” approach usually 
produces a coarser boundary but is more suited to wide area 
applications due to a lower computational demand.  
Our “Bottom-up” strategy used a hierarchical scheme to reduce 
CPU time and update reliability in the reconstructed DTM for 
dense altitude clusters.  
The definition of a seed area is the starting point for Bald Earth 
construction. 3D range data points are re-binned using (1) to 
avoid artefacts and the local min-max detection algorithm from 
Chaudhuri and Shankar (1989) is applied to the newly binned 
height plane.  
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where  h = height points at x,y coordinates 
hs=vertical renormalized factor 
hb= binned value  
nx=x/n, ny=y/n 
n = size of bin, usually at the maximum ALS data 
resolution  

From the detected local min-max points, region growing using 
the local slope (usually 25º) is used. If the dimensions of the 

region-growing sheet is larger than the estimated maximum-
building size, it’s likely to be a seed area (ground plane). Then 
two normal distribution are fitted to the height points on the 
“ground plane” using a window size by Kittler and Illingworth 
(1986)’s criterion. 
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where P(t) : the sum of Probability Density Functions (PDFs)  
  σ : the standard deviation 
                          
Now, 
If  µ2(t)- µ1(t) < the estimated object height, then µt(t) is the 
mean value height of a larger object surface or it is assumed to 
be a flat ground plane so that the window size then needs to be 
extended and the estimation repeated. 
If  µ2(t)- µ1(t) > the estimated object height, then µ1(t) is 
selected as a seed point within the window. 
 
Using a value of µ1(t) and window size, w, a gridding scheme 
can be applied. The Smith & Wessel (1990) method to 
interpolate bald earth seed points is employed here. It’s one 
kind of optimisation method for the solution of the following 
function 
 

(1-T) ∇2Z-T∇Z=0                (3) 
 
where Z : height points, T : Tension factor between 0.0 to 1.0 
    
When applying this method, a higher tension factor will produce 
a higher curvature surface. To construct a smoother surface at a 
lower hierarchical stage, a lower tension factor is required.  In 
the first stage, the lowest tension factor and the largest window 
size are used to save CPU time.  
Figure 2 shows one example of the refinement step in the flat 
earth surface. As seen in Figure 2, the  DTM detail is clearer in 
the later gridding steps and well preserves flatness. 
Now by thresholding the n-DEM (DSM-DTM), the “above 
surface points which are likely to be either trees and/or 
buildings” and “surface” points are split. Tree and building 
areas are simply separated around an NDVI value 0.3. 
Therefore, “tree ROI” and “building ROI” are defined in this 
step. 
 

(a) original 
DEM 

(b) initial 
stage DTM

 
(d)intermediat
e stage DTM 

(d) final stage 
DTM 

Figure 2. Hierarchical refinement of DTM 
 
2.2 Refinement of region of interest 

By labelling isolated areas, a set of ROIs can be defined. 
However, their boundaries are not sharp because of the poor 
resolution of the 3D range data (1pixel /3-4 m) compared with 
optical images.  
A strategy to cope with such a situation is the compensation of 
ROIs through optical image clues using mainly multi-spectral 
information.  
The overall procedure is shown in Figure 3.  
The positions of buildings and trees can be identified by 
locating “above ground” 3D range points. Thus, supervised 



 

classification schemes, where training sets can be found for 
building and tree height points, can be introduced. 
To use 3D range points as training vectors, correct co-
registration with optical images is indispensable especially 
correcting for “building lean effects”. We applied the method 
proposed by Baltsavias et al.,(2001). 
                  
                 ∆Xi=-∆Z sin(a)/tan(e) 

∆Yi=-∆Z cos(a)/tan(e)                           (4) 

where ∆Z : normalised height points-Bald earth height angle,  
             a : sensor azimuth angle,  
             e : sensor elevation angle 
 
This relationship is not very exact but can be used with some 
margin considering the intrinsic planimetric error of IKONOS 
Pro image (3-4 metre in here). By combining NDVI and n-DEM 
heights, training vectors for tree, building and bare earth can be 
defined. Then a Bayesian supervised classification using 
individual ROIs can be applied using these training vectors.  A 
Priori probabilities of tree and building areas in a Bayesian 
classifier can be calculated through (5) 
 

 
Figure 3. ROI Refinement scheme  
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where M = total number of 3D range points in the ROI,  
           m = 3D points of some height and NDVI range, which              
                  is assumed from the iteration process 
           w : weight value from normalized heights 
               
The results of this supervised  classification stage are then 
combined with segments to preserve edges using the FCFM 
(fuzzy clustering and fuzzy merging) method (Looney 2002).   
To begin with, the edge lines within a building RoI are extracted 
and the remaining parts are pre-segmented. Then, the separated 
edge portion is combined by a distance measurement in colour 
space along its path. For 8-way connectivity, the nearby 
segments are checked and the nearest colour distance is 
measured to all of the surrounding segments’ centres.  
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 where Ck: the centre of cluster k,  
            ui : colour vector of edge points 
 
Now the edge preservation is completed in all the other 
processing chains. Secondly, FCFM, whose prototype class 
number depends on the pixels in region P, is applied to a pre-

defined region, P. The relationship between the prototype’s 
class number and pixels can be expressed as follows. 

)500/log(1 SCn +=       (7) 

where |S| : the number of pixels from a predefined segment S 
The cluster number is adjusted by the internal logic of FCFM 
once more, so that optimal numbers of segments are produced 
keeping the edge parts, because relatively noisy portions of 
segments are already removed as the detected edges. The next 
step is the data fusion between FCFM colour segmentation and 
the results of the Bayes classifier. This is performed by 
measuring an overlap ratio and then reassembling. The overlap 
measurement between the FCFM segment and the building part 
by a Bayes classifier is given 
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where |Rt| : vector number of a region t 
          |Rx|: vector number of a cluster x 
          |Rmax|: vector number of maximum size region 
          |Rmin|: vector number of minimum size region 
          N : constants by clusters N=1 building, N=0.7 tree, N=0.5 
bare filed 
 
The results are shown in Figure 4. On the opposite side of the 
direction of the Sun (i.e. shadow side), the edges are clearer. 
Consequently, the boundaries of those parts show a good 
agreement with an estimated straight line. However, one 
problem for this scheme is the hidden part of the building in 
shadow, where the distances of the colour space are all similar 
in spite of the difference in the multi-spectral signature, and as 
the supervised classified scheme doesn’t work correctly, the 
correct building boundaries are not detected.  
 

  
Figure 4. The first refinement result of building ROI by 

clustering scheme (missing Lidar points over some 
“hidden” buildings results in no identification.) 

 
To compensate for the weakness of this method, the SRG 
(Seeded Region Growing) algorithm developed by Adams and 
Bischof (1994) was introduced in the last part of the refinement.  
One difference with the original SRG is the use of multiple seed 
points, which are matched onto the roof structures by the 
previous registration work. From clusters of seed points, the 
building area grows until there is a convergence of pixel number 
by updating the statistical value of each cluster. The result of the 
SRG stage is shown in Figure 5. 
 

 
(a) Cookie cut 
image by building 
ROI 

 
(b) Lidar seed 
points on building 
roofs 

 
(d) Newly defined 
edge by SRG 

Figure 5. Final building outline examples refinement by SRG 
 



 

2.3 Identification of target shape 

2.3.1 Building 
The boundary defined through the SRG is relatively accurate 
but still contains some undulation. There is a great deal of 
published methods for the generalization of detected building 
primitive from multi-spectral images and Lidar. The simplest 
method is to use the Douglas-Peucker Line Approximation 
Algorithm (Hershberger and Snoeyink 1992). However, a 
problem using their scheme is encountered because building 
shapes are irregular in our test area so that the discrimination 
between noise and true building edges is very difficult. A 
simple polygon approximation from Wall and Danielsson 
(1984) is here applied to the refined building from the SRG and 
shows satisfactory results  
 
2.3.2 Tree crown identification 
The main problem addressed here is the lack of information 
required for automated individual tree detection (texture, crown 
boundary) as it is missing in our 1 metre resolution imagery. In 
our case, Lidar points, even though the resolution is not high 
enough to precisely model or count individual trees can be 
applied synergistically with the optical data. The starting point 
is NDVI, because normalized colour using R-G-B scheme 
doesn’t provide sufficient information for tree detection because 
of the illumination effect. Also normalized colour 
transformations are not useful because these are based on the R-
G-B colour space analysis. Our own colour scheme uses the 
following colour spaces:   

Ch 1 : (R-G)/(R+G), Ch 2 : (G-NIR)/(R+NIR),Ch3 : NDVI 

This algorithm is only applied to the channels within areas with 
high NDVI (>0.2) values. The shadowed areas must be removed 
to avoid classification problems. The definition of a shadow 
mask is, fortunately, very simple. The pan-sharpened image is 
transformed using the USGS Munsell HSV scheme and a k-
means classification is applied to this image. Using this method, 
the shadow area can be easily defined and removed in 
consecutive processing stages. The Lidar points in the high 
NDVI area can be split into two parts using thresholds of n-
DEM height > 6m for points defined as trees and n-DEM height 
< 0.5m for grassland points. These selected points can then be 
used to provide training vectors for a maximum likelihood 
classification. The classification results based on these 
approaches are in extremely good agreement with trees and 
grassland. Using tree masks from the classification, the Lidar 
points from the tree crown areas can be re-collected. Kriging 
has been established as the most reliable method to keep the 
continuous change of height value in a round shape. It shows 
there are relatively clear divisions between DEM peaks. 
Therefore the key issue is how these DEM peaks can be divided. 
Wood (1996) studied the detection of topographic features from 
DEMs. Usually, a sloping surface that is concave in the cross-
sectional direction is a channel so the channel points of a tree 
DEM can be detected using Wood’s method. Each tree crown is 
enclosed by a detected channel point so we can split the tree 
crown by removing weakly connected components using 
channel points. In each tree DEM patch, ellipse fitting can be 
applied using Pilu et al. (1999)’s method. Then the eccentricity 
is checked. If this value is higher than some threshold, in the 
weakly connected parts, one more split is made and the ellipse 
is re-fitted. This process is continued until patches are fitted or 
have fewer points than a given lower threshold.    
 

3. RESULTS & ASSESSMENTS 

The final three products consist of - DTM, boundaries of 
building structures and ellipses representing tree crowns. These 
products have been verified using GIS data (OS® 
MasterMap®) and visual inspection.   
 
3.1 DTM 

A DTM covering an area of  8 by 8 km was constructed (Figure 
6) in 4 stages using the hierarchical gridding scheme for the 
entire east London area. A quality assessment comparing 
commercial DTMs (such as the 50m OS® Panorama®) is 
impossible because of the large resolution differences but visual 
inspection in detail shows large landscape objects like  the 
Millennium dome can be successfully removed and small 
natural alternations in height are well preserved. 

 

 
(b) DEM near the river 

Thames around the 
Millennium dome 

 
(a) Constructed DTM  for the 

whole East London area  
(c) Constructed DTM  

Figure 6. Constructed DTM   
 
3.2 Building boundaries 

The Building Detection Metrics (Shufelt & McKeown, 1993) 
scheme is used here to evaluate the  accuracy of building 
outlines compared with OS® MasterMap® data. In the Shufelt 
& McKeown scheme, quality assessment factors are defined as 
below.  
 
   Building Detection Percentage =  100 TP /(TP+FN) 
   Branching Factor = FP / TP 
   Quality Percentage = 100TP / (TP + FP + FN) 
where TP: True Positive (Both data sets (detected building and 
OS data) classify the pixel as being part of an building) 
TN: True negative (Both data sets classify the pixel as being 
part of the background) 
FP: False Positive (Detected data set classifies the pixel as a 
building, OS data set classifies it as background) 
FN: False Negatives (Detected data set classifies the pixel as 
background, OS data set classifies it as a building) 
 
Figure 7 (a) and Table 1 shows the detection accuracy of 
building boundaries in a 1.0 by 1.5 km area using the method 
described here. As seen in Figure 7 (b), small building 
structures such as houses and irregular shaped buildings are 
successfully detected. 
 

Building Detection Percentage 74.97 % 
Branching Factor 0.19 

Quality Percentage 65.67 % 
Table 1. Quality assessment of detected building boundaries cf. 

Parish et al., (2003)  
 



 

 

 
(a) Detected building boundaries 

on 1 by 1.5 km area 

 
(b) Building detection 

examples 
Figure 7. Detected building boundaries 

 
3.3 Tree crown 

For the entire 8 by 8 km area, tree crowns were extracted.  
Some isolated individual tree crowns well match with the 
optical images (Figure 8 (b)). However, in aggregated tree 
clusters, it is not so clear whether the fitted crown ellipse is 
correct or not because both the visual image and the DEM are 
too low a resolution. Also, overall accuracy including results for 
forest areas are not so good when comparing locally detected 
tree crowns in the 1.5 by 1 km sub area (Figure 8 (a)). That’s 
because of the local variation in spectral signature. 

 

 
(a) Tree detection in a 1 by 1.5 km 

area 

 
(b) Subsets of  8 by 8 km 

tree detection results 

Figure 8. Tree detection in a 1 by 1.5 km area 
 

4. SUBSIDENCE RISK MAPPING 

Kelvin (2003) used the tree crown centre locations as detected 
here together with the OS® MasterMap® digital map data and 
the surface and sub-surface geology from the BGS DiGMapGB-
50 dataset to assess the impact of tree locations on potential 
building subsidence. Within the UK, most domestic subsidence  
occurs on shrinkable clay soils.  Vegetative desiccation is a 
prime cause of clay shrinkage.  When allied with the 
aforementioned commercial datasets, the tree location data 
allows mapping of the desiccation zones.  If a simple risk 
classification is adopted, a relatively straightforward method of 
identifying potential occurrences of subsidence can be used 
(Figure 9). This offers significant improvements over existing 
subsidence risk assessment methodologies, such as those carried 
out for insurance purposes, which do not fully account for the 
spatial distribution of the causative factors.  This method offers 
much potential for future refinement.  The publication of more 
detailed studies of vegetative desiccation characteristics would 

improve the potential accuracy of the findings, and the 
possibility exists of adding value to the OS® MasterMap® data 
in the form of information relating to building age and condition.  
It is to be hoped that this method will generate results consistent 
with those of existing techniques, such as PSInSAR.  If this is 
the case, then the techniques developed within this paper would 
be applicable for predictive purposes within the context of 
urban development.  

 
Figure 9. Subsidence Riskmap accounting for buildings 

influenced by two or more dessication zones using 
tree data derived using the methods described here. 
(taken from Figure 4.11 of Kelvin, 2003). Geology 
data: IPR/43-39C British Geological Survey. © 
NERC. MasterMap data: Ordnance Survey ©Crown 
Copyright. 

 
5. CONCLUSION 

A general landscape object detection method for a very large 
urban areas has been demonstrated here. It consists of focusing 
by DTM construction, refinement of ROI by data fusion 
between 3D range data and multi-spectral signature and object 
identification by boundary generalization and fitting. 
Assessments of final products – DTM , building and tree crown, 
shows acceptable quality compared with ground truth like GIS 
data sets and appears to be reliable under visual inspection 
considering the limited resolution of the 3D range data. 
However, object detection quality should be able to be upgraded 
with the introduction of more reliable machine vision 
algorithms such as a robust generalization process for building 
boundaries and splitting methods for tree crown reflectance 
using the optical image rather than the Lidar DEM. 
Domestic subsidence is a well-known problem when buildings 
with shallow foundations (in the UK much of the housing stock 
is over 100 years old) lies on clay soils with large amounts of 
tree cover. Central to this is the ability to determine individual 
tree locations and their proximity to buildings. Using external 
information on (a) soil geology; (b) building age; (c) tree root 
damage potential depending on tree type; (d) tree height 
(determined from lidar), landscape object detection result in this 
research can provide a map of buildings under risk from 
subsidence. 
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