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ABSTRACT: 
 
For the past fifteen years line photogrammetry has been an extremely active area of research in the photogrammetry and computer 
vision communities. It differs from traditional analytical photogrammetry in the nature of the primitives employed in a variety of its 
fundamental tasks. While in traditional photogrammetry zero-dimensional entities, i.e., points are exclusively used as a driving power 
in its various orientation and exploitation procedures – in line photogrammetry as the name suggests linear, that is one-dimensional 
features often corresponding to elongated man-made features in the object space are employed. Of course, that means that no prior 
correspondence between distinct point in object space and its projection in the image is required and the entire linear feature (with 
arbitrary geometry) is accommodated in the appropriate mathematical model. However, despite a great effort in that field, only the 
resection problem, i.e. the solution of the exterior orientation from linear features' correspondences has been thoroughly investigated 
so far. Two additional fundamental photogrammetric problems - space intersection and relative orientation, completing a triple of the 
most basic photogrammetic procedures needed to support feature-based triangulation have not been adequately addressed in the 
literature. This paper provides that missing link by presenting a procedure for relative orientation parameters estimation from linear 
features. We restrict our attention in this paper to planer curves only. We start with the simple idea of optimization procedure using 
ICP algorithm and proceed to the recovery of the homography matrix induced by the plane of the curve in space.  
 
 

1. INTRODUCTION 
 
Line Photogrammetry (LP) has been a tremendously active field 
of research for almost two decades. Over these years many 
researchers have argued in favor of accommodating linear 
features instead of points for different photogrammetric tasks. 
Some of their central arguments are set forth as follows: 
1. In many typical scenarios, linear features can be detected 
more reliably than point features (Mikhail, 1993). 2. Images of 
urban and man made environment are rich of linear features 
(Habib, 2001). 3. Close range applications employed in 
industrial metrology often lack an adequate amount of natural 
point features, thus requiring a costly use of artificial marks for 
automating the involved mensuration tasks. (Kubik, 1989) 4. 
Matching linear features is easier and more reliable than 
matching point features (Zalmanson, 2000).  
This paper presents possible solutions for the classic problem of 
determining the relative orientation parameters. The procedures 
proposed here are based on using free form 3-D planar curves 
instead of conjugate points. 
In the resent years we are witnessing the entrance of more and 
more digital photogrammetry workstations. Developing 
automatic processes for photogrammetric applications has 
attracted a large body of research in the photogrammetry and 
computer vision communities. The natural step towards 
automatic aerial triangulation would be to adopt higher level 
entities for determining orientation parameters. Autonomous 
solutions for relative orientation with linear features employing 
Hough search techniques have been proposed by Habib (2003, 
2001). Solutions for relative orientation using a subclass of 
linear features, namely, planar curves and conic sections have 
been introduced by Shashua (2000) who dealt with 3rd degree 

algebraic planar curves, Ma (1993) who used planar conics and 
Petsa (2000) who worked with straight coplanar lines.  
 
 
2. USING PLANAR FREE FORM CURVES 
 
We represent free form curves in image space by a sequence of 
2-D points. Trying to represent such curves in polynomial or 
parametric form would yield a more simplified mathematical 
modeling but at the same time would result in some loss of 
information due to inherent generalization process being 
involved.  
The procedures shown here are valid for planar curves. We start 
with the simple idea of recovering the relative orientation 
parameters from free form planar curves. Every planar curve 
adds 3 parameters to the overall solution. The redundancy and 
the minimum number of planar curves needed for recovering 
the R.O.P will be discussed later. 
 
2.1 Simplest idea  
 
First we have to determine initial parameters. Since we try to 
recover the relative orientation, we can refer to the model space 
as the object space in exterior orientation. Initial parameters for 
the relative orientation can be determined in the classical way, 
assuming aerial photos, most likely near-vertical and highly 
correlated. Dependent relative orientation model had been 
chosen, which defines the model coordinate system parallel to 
the first (left) image's coordinate system. As for the plane in the 
model space, horizontal plane can be used to determine initial 
parameters. 
After determining all initial parameters needed, one can project 
the curve from both images to the plane in the object/model 
space and get the intersections of the surfaces created by the 



correspondences curves from the images with the plane. Those 
intersections must be identical to get the full overall solution. 
When applying this procedure with initial parameters we will 
get two separated curves. Now in order to bring the two curves 
closer ICP algorithm is proposed.  
 
 
 

 
2.2 ICP – iterative closest point  
 
The ICP algorithm, first introduced in (Besl and McKay, 1992) 
can be used with several representations of geometric datasets, 
such as point sets, line segments set, implicit curves, surfaces 
etc. The geometric datasets used in this paper are point sets, 
representing the free form curves. The datasets we deal with are 
the projected curve from the first (left) image and the second 
(right) image of the photogrammetric model. As mentioned 
before the data sets are point sequences, Xl and Xr for left and 
right projected curves respectively. 
ICP steps: 

1. Compute the closest points: Yk=C(Pk,X)   where C is 
an operator for finding the closest point between P 
and X.  

2. Compute the registration to minimize the sum of 
square distance between the closest points found. 
(qk,dk)=Q(Po,Yk). 

3. Apply the registration: Pk+1=qk (Po). 
4. Stop the iteration when the change mean squares error 

small then threshold. 
with X being the model shape, P the data shape and Y 
representing the closest points found. In our case there is no 
model shape and data shape, both shapes are data changing with 
the refinement of the parameters (R.O.P + plane parameters). 
Point sequences are obtained by computing the planar curves as 
intersections of cones having the perspective center of the 
images as their origin with image space curves and the plane.  
The plane equation is represented by 3 parameters for instance: 
ax+by+cz=1. Any point from the point sequence could be 
computed by multiplying the vector, starting with the 
perspective center through the point from image plane, by scale 
factor. The scale factor can easily found using plane parameters. 
Full description of  ICP algorithm can be seen in Besl and 
McKay work(1992). 
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where R = rotation matrix 

             T= displacement vector 
             f = focal length 

 
Projecting all the points in both images through equation (1) 
yields the planar curves shown in figure 1. The Euclidean 
distance d(xp,l) between the point xp and the line segment l is 
computed using equation (2) where x1 and x2 are points 
determining the line segment l. 
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with the first equation being a 3-D vector equation with 3-D 
point vectors x1, x2 and xp, and with the second equation 
corresponding to 2D image coordinates.  
 
The closest point xo is the point satisfies the equality d (xp, xo) 
=min d (xp, li) {i=1...n}. With the resultant corresponding point 
sets the registration is computed using least squares 
optimization. 
 
2.3 Experiments with synthetic curves 
 
Synthetic planar curves were projected from model/object space 
to the images using relative orientation parameters as exterior 
ones. ICP algorithm was performed for the recovery of the 
relative parameters of the photogrammetric model and the plane 
parameters. High sensitivity has been observed to initial values 
of the 3D plane parameters. 
The primary reason for these unsatisfying results and the 
numerical problems confronted is a possible high correlation 
between the plane parameters and the bending angles of the 
model images. The plane representation could lead to numerical 
problems because the multipliers of X and Y are nearly 
negligible compared to Z multiplier. We therefore suggest a 
different representation for the plane. 
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where :    �-angle from XY plane 

� -turning angle around Z axis 
n – unit vector of plane normal 
D – the distance of the plane from origin  

Figure 1. Projection of correspondences curves 



 
The last representation changes the sought parameters to �, � 
and D, but leads to another problem. If the plane is horizontal so 
� = 0, the derivative according to � is infinite, because it does 
not change the normal vector when multiplying with 0. 
Therefore, when dealing with planes close to horizontal, 
numeric problems are expected. 
 
 
 
 

3. FINDING FUNDAMENTAL MATRIX 
USING HOMOGRAPHY MAPPING 

 
3.1 Homography mapping 

 
Homography mapping transfer points from one image to the 
second image as if they were on the plane in the object space 
(Hartley 2000). As seen in figure 2. points on a plane are related 
to correspondences point on the images of the photogrammetric 
model. In fact this is a projective, having 8 free parameters. The 
8 parameters can be obtained from the 5 relative orientation 
parameters and the 3 planar parameters.  
 

 
 
The homography induced by the plane is unique (see Tsai 
(1982)), meaning that every planar curve can contribute one 
homography. The homography transfer operator is linear for 
homogenous coordinates and the mapping from one image to 
the other is unique up to a scale factor.  
The homography matrix: 
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and the mapping from right to left image vectors are readily 
given by 
 

rl UHU ⋅=        (5) 

where Ur, and Ul are homogenous coordinates in right and left 
images respectively. 
 
One should notice that the mapping can be from the right image 
to the left image and vice versa. In this paper we have chosen 
the one from right image to the left image.  

The homography matrix can be computed directly from the 
relative orientation parameters and the plane parameters. The 
common  way to compute the homography matrix is by 
determining the coordinate system of the model parallel to the 
coordinate system of the left image. By choosing this coordinate 
system the rotation matrix of the left image is the identity 
matrix and the translation vector is zero. The rotation matrix 
and the translation vector of the right image can be obtained 
from the relative orientation parameters.  
The homography matrix can be computed with rotation matrix 
R and the displacement vector T according to equation (6). 
 

]/'[ DnTRH ⋅+=   (6) 
where : R – rotation matrix 
 T - displacement vector 
 n – unit vector of the plane normal 
 D – distance from the origin 
 
The homogenous coordinate are obtained by dividing the image 
coordinate by focal length as follows: 
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Using homogenous coordinate makes the homography mapping 
correct up to scale. Multiplying the homogenous coordinate 
with the homography matrix H is simply linear procedure, but 
getting the right scale requires a determination of a scale factor. 
Dividing the outcome vector by the 3rd coordinate can answer 
this question so the transformation from one image to the other 
can be written as follows:  
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where: x", y" – right image coordinate 

x' y' – left image coordinate 
 h1 . . h8 component of the homography matrix 
 
Equations (8) remind the collinear equations, but one should 
remember that the collinear equations transform from 3D object 
space to 2D image space while those equations transform from 
2D image space to another 2D image space. 
 
3.2 Fundamental matrix  
 
Yet another well-known relation between two images is the 
epipolar geometry. One point from first image determines line 
in the second image. The fundamental matrix defines this 
relation with the constrain x't F x'' = 0, obeying the coplanar 
condition. Using the homography matrix we can write the 
constrain (Hx")t F x" = xt Ht F x = 0 for any point on  the plane 
that induced the specific homography. Hence, the matrix (Ht F) 
must be skew-symmetric, namely 
 

0=+ HFFH tt         (9) 
 

Figure 2 .  homography mapping 



Note that equation (9) shows that in fact two homography 
matrices provide sufficient set of linear equations for the 
fundamental matrix.  
 
3.3 Finding the homography matrix using ICP 
 
In this section we describe procedure to find the homography 
matrices of free form planar curves using ICP algorithm. This 
time the ICP algorithm is carried out in image plane. The 
chosen image is the first (left) image of the photogrammetric 
model. Every curve in the right image that was digitized and 
matched to curve from the left image is transformed to the left 
image using initial homography matrix. The initial component 
of the homography can be computed using regular assumption 
for initial relative orientation parameter and applying equation 
(6). One possible value set for initial components of H is 
simply: 
   Ho = {1,0,0,0,1,0,0,0,1}. After we determine the initial 
component of the homography matrix we transform the curve 
from right image plane to the left image plane and compute the 
closest points between the two corresponds curves. The 
registration is computed using least square adjustment and 
Levenberg-Marquardt (Fitzgibbon 2001) algorithm is tested as 
well.  
The proposed algorithm is sketched as follows: 
 

• find the corresponding curves in both images 
• set the initial homography matrix to 

H={1,0,0,0,1,0,0,0,1}. 
• Transform the curve from right image to left 

image using the initial matrix. 
• Find the closest points between the curves. 
• Compute the design matrix A and the error 

vector e for the current components of the 
homography matrix. 

• Compute the update vector x for the current 
components. 

• Update the homography matrix H = H + x 
• Continue to transfer the curve and update the 

homography matrix until maximum distance 
between closest points smaller than tolerance. 

 
Compared to the algorithm presented in the previous section, 
the current procedure reduces the dimension of the problem 
from 3D to 2D. In addition, here, only one transformation from 
right image plane to left image plane is required.  
 
3.4 Design matrix for registration  
 
The error is actually the distance computed between the closest 
points obtained. The optimal situation is that all the distances 
are zero. The design matrix is computed by the taking 
derivatives of the distance function with respect to any 
component of the homography matrix. The distance is 
computed between every point that was transformed from right 
to left image and the closest point to it from the correspond 
curve. When the curve is a free form curve then the distance is 
actually computed between the point and the closest segment to 
the point. The segment from the left image curve is for now 
considered as fixed.  
The derivative of equation (2) for xp and yp (the transformed 
point from right image) is: 
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where: L12 is the distance between points 1,2 of the closest 
segment from left image curve. 
 
Now for the derivatives of equation (8) for h1..h8 we rewrite 
equation (8) as: 
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so :  
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where: xr, yr are the right image coordinates of the specific  
 point. 
 
3.5 Experiments  
 
The proposed procedure has been tested on synthetic data 
showing good converging between the curves as shown in 
figure 6. The initial homography matrix component for this 
experiment was H={1,0,90/f,0,1,0,0,0,1} where f is the focal 
length and the value 90 is given to keep the model scale close to 
the image scale. Figure 4 describes the synthetic images of the 
curves. For example, one of the curves is transformed from right 
image to the left one using initial values for the homography 
matrix. After two iteration of ICP algorithm we get close to the 

(13) 



original curve as can be seen in figure 6. Figure 6 shows 
enlargement of a part from the specific curve where the points 
indicated by 'o' are the points transferred from right image using 
the computed homography matrix. 
 
 
 

 

 
In figure 5 we can see the curve transformed from the right 
image using initial homography matrix. 
 

 
 
 

 

 
 
Further to the advantages of the homography-based algorithm 
mentioned above, i.e., fewer transformations required and a 
reduction of the problem dimension from 3-D to 2-D, probably 
the most significant one pertains to its insensitivity to the plane 
parameters associated with our planar curves. This unlike the 
algorithm presented in section 2 being subject to singularities 
associated with nearly horizontal planar curves. 
 
3.6. Recovering rotation matrix and translation vector 
directly from homography matrix. 
 
From equation (9), we need 2 homography matrices to recover 
the fundamental matrix. As shown in Tsai(1982) the 
homography matrix can be decomposed using  SVD and the 
rotation matrix, the translation vector and the plane parameters 
can be recovered. Two possible solutions for the recovering of 
the relative orientation parameters are obtained using Tsai 
recovering. The possibility of two different solutions using 
direct recovering from the homography matrix is well suited the 
need of two curves providing two homography matrices for the 
recovery of the fundamental matrix (Shashua 2000). 
Computing the rotation matrix and the translation vector from 
the homography matrix is as follows: 
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where: U3 U1 are the 1st and 3rd vector of U 
 �1..�3 are the singular values of H  

Figure 5. Curve transformed with initial values 

Figure 3. 3D model space  

Figure 4. left and  right images 

Figure 6. Enlargement of the converged curve 

Original left image curve 

Initial curve 
transformed  

Curve after 
two iteration 
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Two options to obtain the epipolar geometry of the stereo model 
have been shown. While the first one requires two homography 
matrices for the recovery of the fundamental matrix and the last 
require only one, but provide two different solutions. Both 
options lead to the need of at least two planar curves to get 
unique solution. Equation (9) provides 6 linear equations for 
each homography matrix so Least squares adjustment has to be 
performed having two or more homography matrices. Equations 
(14) provide two solutions for R and T for each homography 
matrix. When having more than one homography matrix we 
need some elimination procedures to get the right solution. 
 

4. SUMMARY 
 
Two methods for recovering the relative orientation parameters 
from free-form planar curves have been presented and tested. 
While both perform quite well in most cases, the homography-
based algorithm exhibited more robust behavior in terms of not 
being sensitive to some singular configurations observed for the 
alternative method. A forthcoming paper on the subject will 
present a more thorough analysis of the aforementioned 
methods including experiments with real data. 
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