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ABSTRACT: 
 
This paper summarizes a preliminary progress made in our ongoing R&D project concerned with developing a new paradigm for 
orientation and registration of SAR images. The basic idea is to replace traditional orientation procedures that use only point features 
with methods accommodating higher level features in general, and one-dimensional features in particular within the employed 
optimization frameworks of SAR-imagery orientation. Our major strands in this paper are first, to motivate the use of Feature-Based 
Photogrammetry (FBP) methods particularly as they pertain to support autonomous orientation and registration of SAR images and 
secondly to present a mathematically and stochastically rigorous adjustment model to accommodate such features explicitly. While 
this project is just at its very preliminary stages, the new ideas it brings will definitely open the door for FBP techniques, originally 
developed for frame imagery, to evolve and have a great impact on other remote sensing technologies. 

 
 
 

1. INTRODUCTION 
 
Feature-Based Photogrammetry (FBP) has been a tremendously 
active field of research for almost two decades. It differs from 
(traditional) analytical photogrammetry in the types of 
primitives employed in a variety of its fundamental tasks. While 
in traditional photogrammetry zero-dimensional entities, i.e., 
points are exclusively used as a driving power in its various 
orientation and exploitation procedures – in feature-based 
photogrammetry as the name suggests linear, or rather one-
dimensional features often corresponding to elongated man-
made features in the object space are employed. Of course, that 
means that no prior correspondence between distinct point in 
object space and its projection in the image is required and the 
entire linear feature (with arbitrary geometry) is accommodated 
in an appropriate mathematical model. Moreover, such a 
correspondence is simply obtained as a trivial by-product of the 
employed feature-based triangulation. 
 
Over the years many researchers have argued in favor of 
accommodating linear features instead of points for different 
photogrammetric tasks (Kubic, 1988; Mikhail, 1993; Forstner, 
2000, Zalmanson, 2000; Habib et al, 2001; Schenk, 2004). With 
their vision aimed at making the photogrammetric processes 
more accurate, robust and as autonomous as possible, their 
central arguments were based on the observation that in 
autonomous environment one-dimensional features are more 
easily and reliably detected and matched than points. In 
addition, typical aerial scenes contain many linear features (e.g., 
roads, buildings, creeks, etc.) which are also most likely to 

appear in some readily available geographic information system 
that can be used to provide control information for image 
orientation. Also, as traditional point-to-point correspondences 
between image and object features are not required, virtually as 
many points as necessary (on respective linear features) can be 
used. That increases the redundancy budget of the system and 
ultimately leads to increased robustness and precision. 
 
It is therefore very surprising that such a widespread and 
promising research filed with virtually unlimited practical 
applications had been so far very much limited to frame 
geometries and has not been extended to accommodate 
orientation and analysis procedures of other remote-sensing 
sensors with different geometries. In fact, only few publications 
(e.g. Lee et al, 2000), have attempted to utilize FBP methods to 
address orientation problems of push-broom sensors and 
essentially none (to our best knowledge) have tried to carry-out 
similar ideas on Synthetic Aperture Radar (SAR) sensors. 
 
In an attempt to fill the aforementioned gap this paper first aims 
at motivating the employment of FBP techniques specifically as 
they pertain to registration/orientation of SAR imagery. We 
then follow by presenting a general framework for the recovery 
of the orientation of SAR sensors combining any prior 
information on the sensor trajectory along with a 
mathematically rigorous incorporation of 3-D free-form curves. 
The proposed model does not address any existing imaging 
system specifically, but rather, provides a generic framework to 
solve the orientation problem for a general SAR sensor.  
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The remainder of this paper consists of four sections and is 
structured as follows. After briefly describing the physical 
principles and geometry of a generic SAR sensor section 2 
proceeds with formally stating the problem to be addressed and 
reviews the current state of the art on SAR registration. Section 
3 and 4, then present the proposed general framework for SAR 
parameters determination using linear features represented 
either analytically or in free-form. Finally, in section 5 the status 
of an ongoing research project on the subject is presented and 
future work is outlined. 
 

2. SAR OVERVIEW 
 
Synthetic Aperture Radar (SAR) is a rapidly emerging 
technology with a central role in a wide range of civilian and 
military applications. Interferometry (IFSAR), Differential 
Interferometry (DIFSAR) and Stereo SAR are the three leading 
SAR-based techniques extensively employed in topographic 
mapping, targeting, deformation analysis, geological and 
metrological exploration and other geospatial fields. Similarly 
to optical sensors, a prerequisite for generating accurate 
geospatial products from SAR imagery is accurate SAR payload 
orientation. For optical imagery this entails determining sensor 
position and attitude, here, an accurate knowledge of sensor 
position and velocity is required. Traditional methods of 
obtaining position and velocity of SAR sensors either entirely 
rely on the available on-board navigation telemetry or aim to 
improve the accuracy of such telemetry using ground control 
points (GCPs) manually identified on SAR images (Curlander, 
1982; Mohr et al, 2001; Goncalves, 2002). Unfortunately, quite 
in contrast to a relative simplicity of    manual identification of 
control points in optical imagery, such a task is far from being 
simple for SAR images, due to their inherent "speckled" nature. 
Moreover, that difficulty is considerably increased when 
autonomous extraction and matching procedures are sought. A 
promising direction to address the task at hand is to modify the 
dimension of the primitives with which the registration is 
carried out. Instead of using zero-dimensional GCPs, we may 
use one-dimensional linear features, often corresponding to 
elongated man-made objects (e.g., roads, rail-roads, hydrologic 
features, etc,), that have a distinct appearance in SAR images. 
What makes the returned EM signal from such features rather 
distinct is the fact that these features are usually 
(topographically) smoother than their immediate environment 
and their dielectric properties are also quite different. In fact, the 
problem of extracting such features both manually and even 
automatically has been successfully addressed in the literature 
(e.g. Li et al, 1995). However, so far, even when linear features 
have been successfully detected and matched with their 
counterparts from some GIS network, the subsequent 
orientation procedures have remained point-based. Also, as 
we'll be motivated in the following feature-based orientation 
procedures may be helpful It is therefore this particular gap that 
the project reported herein is trying to close. 
 
Before presenting our general framework that deals with 
orientation of SAR images with linear features, we briefly 
summarize, following (Mikhail et al., 2001) the geometry model 
of a generic SAR sensor and make explicit a few central 
arguments addressed in the sequel of the paper. 
 
Each pixel in a preprocessed SAR image is associated with two 
measurements that are made for a given scatterer, being its 
range and its Doppler frequency shift. The range is determined 
by the amount of time it takes for the EM pulse to make a 
round-trip between the sensor and the scatterer. The Doppler 
parameter is established from the well-known physical 

phenomenon entitled the "Doppler Effect", according to which 
frequency shift occurs when two objects are moving towards 
each other. In three-dimensional space, the Doppler parameter 
constraints the scatterer to reside on the cone with an apex at the 
sensor position, its axis coincident with SAR velocity vector 
and with cone angle being equal to the angle between the range 
vector (to the scatterer) and the SAR velocity vector as shown 
in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Doppler cone condition.  
(Adopted from Mikhail et al. (2001)) 

 
Formally, the two SAR measurements are: 
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where: 
 

RfD ,  are the Doppler shift and range measurements 

respectively, ss ���
,  are the 3-D position and velocity of the 

sensor, λ  is the radar wave-length and P
�

 corresponds to the  
3-D coordinates of the scatterer position on the ground. 
 
The problem of SAR orientation is thus, to accurately determine 
the sensor trajectory ss ���

,  using SAR observables and some 
ground control. Traditionally, that is done by applying a simple 
correction (in most cases polynomial) model to the trajectory 
state vector and using a set of ground control points to estimate 
the coefficients of the correction polynomial. However, apart 
from the fact that these techniques required a well-defined set of 
control points which, as has been stressed earlier, cannot be 
easily and reliably detected (even manually) there is another 
problem associated with the rather simplistic solution of the 
orientation problem. Qualitatively speaking, the traditionally 
applied "correction" models only account for systematic errors 
in the sensor trajectory. In real scenarios, however, especially, 
for highly maneuvering airborne SAR systems, undergoing 
rough platform perturbations and instabilities, that simplistic 
trajectory modeling may not be adequate. Here, faithfully 
modeling both the systematic as well as random effects in the 
trajectory may be necessary. One way of doing it is to take 
advantage of highly accurate on-board positioning systems (e.g., 
dual frequency GPS receivers with high sampling rates) which 
would directly yield an accurate trajectory. Another way, of 
course, is to use a large and very densely distributed set of 
control points. But in the absence of such 
positioning/navigations systems and practical difficulties 
associated with collecting sets of ground control points with the 
above mentioned characteristics, other indirect methods 
employing ground information have to be devised.  



 
It is therefore the purpose of this paper to present a 
mathematically and statistically rigorous model for SAR geo-
referencing using general linear-features in objects space. In the 
next two sections we will show that the proposed model indeed 
provides the solution for the major two difficulties associated 
with point-based-methods mentioned above. 
 

 
3. ORIENTAION USING PARAMETRIC CURVES 

 
In this section we derive a rigorous mathematical model for 
determining the orientation (trajectory) parameters of a SAR 
image from 3-D analytical curves represented parametrically. In 
what follows we will assume that our control information is 
given in the form of a class of 3-D curves, called regular 
curves. A regular curve is defined as the locus of points traced 
out by the end point of a vector [ ]TtZtYtXt )()()()( =Γ  as 
the curve parameter ℜ∈t  ranges from a to b.  Further, )(tΓ  
must have continuous second derivatives and its first derivatives 
must not vanish simultaneously anywhere in the 
interval bta ≤≤ . We now modify (1) to express that a 
measured pixel on the SAR image corresponds to )(tΓ  as 
follows: 
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As stressed earlier, at this stage we are just interested to support 
a generic auxiliary orientation mechanism. Thereby, we model 
the dynamic trajectory parameters as some implicit vector-
valued process of stochastic onboard measurements β  (e.g., 

GPS, etc.) and non-random factors ξ  (e.g., systematic 
calibration parameters, etc.). We now rewrite (2) to result with 
the following pair of condition equations written for each pixel 
on the image that corresponds to )(tΓ : 
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 (3) 
In M  two groups of quantities are identified. The first consists 
of elements that are “observed”. These include SAR 
measurements RfD ,  and auxiliary (trajectory) measurements β , 
collectively denoted by χ , hereafter. The second group consists 
of non-random factors including those originating from the 
auxiliary mechanism, i.e., ξ , and the new parameter t, 
associated with )(tΓ . What’s interesting is that this, apparently 
naive introduction of the curve parameter t, allowing free 
motion along the tangent direction 

[ ]TtZtYtXt )(')(')(')(' =Γ  of )(tΓ  in object space, is in 
essence a central foundation of our feature-based orientation 
solution. 

 
To arrive at the set of linear equations, (3) must be linearized. 
Linearization requires initial values 0ξ  for the non-random 

parameters ξ as well as an estimate 
0t  for the curve parameter 

t . The simplest way to estimate 
0t  is to find the closest point 

on )(tΓ  to the circle of intersection of the range sphere and the 

Doppler cone (Figure 2). The computation of the closest point 
and its associated parameter 

0t  requires, in general, an iterative 

minimization scheme, such as Newton method.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Finding the closest point. 
 
With the initial estimates, system (3) is linearized to yield the 
following Gauss-Helmert model: 
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With 00 , Rf

�

 we denote the evaluation of  RfD ,  at the 

measurement vector χ  and the initial estimates of the 
parameters. The partial derivatives of RfD ,  with respect to the 

parameter vector ξ are contained in 1
y

1
x A,A , and those with 

respect to the measurement vector χ  in yx B,B , respectively. 

2
xa  and 2

ya  are the partial derivatives of RfD ,  with respect to 

the curve parameter s, requiring a continuous first derivative of 
)s(Γ . Finally, ,ds,dξ and de  are the increments to the 

parameters ξ , and t , and the “measurements” error vector e, 
respectively.  
 
For N pairs of image measurements, system (4) is generalized 
to: 
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and with a combined error vector containing both SAR 
observation errors and auxiliary trajectory errors as follows: 
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The least-squares solution of system (5), minimizing ee 1
e

T −Σ , 
is given by 
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and (6) 
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Since the original system (3) is not linear, the solution (6) 
requires an iterative approach ultimately yielding the best (in 
the least-squares sense) estimates for the orientation parameters.  
 
As shown, it rigorously combines prior information (from any 
positioning system, e.g., GPS/INS) and geometric relations 
between parametric curves in object space and their realization 
in SAR image. 

 
 

4. GENERALIZATION TO FREE-FORM CURVES 
 

In this section we formalize the orientation determination 
problem when some elongated objects, represented as free-form 
curves are known in object space and can be extracted in the 
image. A 3D free-form curve fΓ , is represented by a sequence 
of vertices }{ iVV = . The set of vertices V induces an ordered set 

of line segments }{ ilL
�

= where segment }{ il
�

connects the two 
vertices }{ iV and }{ 1+iV  (Figure 3).  
 

 
 
 Figure 3: Representation of a 3-D free-form curve. 
 

Let �
R

r
r

1=

Ψ=Ω  (  =ΨΨ Ø sr� ) be a partial projection of fΓ , 

represented by a disjoint set of W  components }{ WΨ , each 

comprising a connected set of 
Wn  2-D pixels in SAR image 

with 
Wnj ≤≤1 . As before, we assume that there is no point-to-

point correspondence between features in object space and their 
(partial) projections in SAR image.  
 

Then, the problem is to come up with the parameters that would 
describe the relationships between object and image features in 
the best (in least-squares sense) way. 
 
First, we select a subset Ω⊂Λ of image pixels that belong to 
the projected control feature. Subsequently, given V and Λ , 
together with approximated auxiliary trajectory, we follow a 
similar procedure employed for parametric curves, but now 
using piecewise linear features in object space. Hence, in each 
iteration a temporary association between every pixel in Λ  and 
some line segment }{ il  with a corresponding segment 
parameter t, is established. Note, that the correspondence 
between a given pixel location and its associated line segment is 
dynamic, and may change from iteration to iteration. 

 
The proposed orientation method with free-form curves is based 
on the parametric formalism introduced in the previous section. 
There are some important differences, however. As has been 
already mentioned the parametric model has been developed for 
space curves having first order continuous derivatives. Clearly, 
this is not the case for free-form curves with singularities at the 
vertices of fΓ . At these singular locations none of the equations 

of system (5) that require object space derivatives can be 
formed. Hence, it is important to discuss how to address these 
singular cases when encountered. A simple way to circumvent 
this problem is not to estimate the curve parameter t  at the 
vertices. In this case, the closest point on the corresponding line 
segment will be kept fixed, that is, the degree of freedom to 
move along the otherwise unique tangent direction is removed. 
This solution is plausible in situations where the object space 
curve consists of relatively long segments, thus reducing the 
chance for the closest point to coincide with a vertex. For the 
opposite case, with many short vertices it is recommended to 
approximate the set of vertices in the neighborhood of the 
closest point by an analytical curve, e.g. cubic spline, to 
eliminate singularities. This strategy will allow us to employ the 
parametric model developed in the previous section without any 
change. 

 
 

5. SUMMARY AND FUTURE WORK 
 
This paper has reported several preliminary results from an 
ongoing R&D research project on registration of airborne and 
space-borne SAR images employing feature-based 
photogrammetry techniques. In particular, ERS-2 and 
RADARSAT space sensors along with some airborne SAR 
systems will be studied in the near future. For each particular 
sensor, the proposed mathematical model will be examined with 
respect to the quantity of linear features available, their shape as 
well as their distribution (spatial configuration) within the SAR 
image. 
Apart from being an elegant solution to the problem of 
accurately identifying control feature in SAR images, our 
proposed stochastic model should yield more accurate estimates 
for instantaneous position and velocity vectors, being a crucial 
factor particularly for SAR air-borne platforms often being 
subject to unstable atmospheric conditions yielding non-smooth 
variations in their navigation parameters. Obtaining the same 
performance with traditional methods would either require 
using highly accurate on-board positioning and navigation 
equipment or alternatively an extremely dense distribution of 
GCPs across the entire image - practically impossible 
requirement for typical SAR mages.  
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While by no means, the work done so far and reported herein 
may be considered complete, this paper has provided the 
motivation for employing FBP techniques for orienting and 
subsequently registering SAR imagery and by doing that has 
paved the way for a new paradigm in SAR processing. 
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