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ABSTRACT: 
This paper proposes a new filtering method of non-ground measurements from airborne LIDAR data through a Simultaneous 
AutoRegressive (SAR) analytical model and exploiting a Forward Search (FS) algorithm (Atkinson and Riani, 2000, Cerioli and 
Riani, 2003), a newly developed tool for robust regression analysis and robust estimation of location and shape. 
In SAR models, with respect to classical spatial regression models, the correlation among adjacent measured points is taken into 
account, by considering two quantities for the measured dataset: a coefficient of spatial interaction and a matrix of point adjacency 
(binary digits for regular grids or real numbers for irregular ones). 
FS approach allows a robust iterative estimation of SAR unknowns, starting from a subset of outlier-free LIDAR data, suitably 
selected. The method proceeds in its iterative computations, by extending such a subset with one or more points according to their 
level of agreement with the postulated surface model. In this way, worse LIDAR points are included only at the ending iterations. 
SAR unknowns and diagnostic statistical values are continuously estimated and monitored: an inferentially significant variation of 
the surface coefficients reveals as points included from now on can be classified as outliers or “non-ground” points. 
The method has been implemented using Matlab® language and applied either to differently simulated LIDAR datasets or really 
measured points, these last acquired with an Optech® ALTM 3033 system in the city of Gorizia (North-East Italy). For both kinds of 
datasets the proposed method has very well modeled the ground surface and detect the non-ground (outliers) LIDAR points. 
 
 

1. INTRODUCTION 

Airborne Laser Scanning technique is extremely efficient to 
fulfil increasing demand of high accuracy Digital Terrain or 
Surface Models (DTM or DSM) for civil engineering, 
environment protection, planning purposes, etc. But, if standard 
procedures for acquiring Airborne Laser Scanning data have 
already come nowadays a long way, on the other hand, the 
choice of appropriate data processing techniques for different 
particular applications is still being investigated. For this last 
essential topic of research, several algorithms have been 
developed for semi automatically/automatically extracting of 
objects from bare terrain. But in general, their filtering 
efficiency seems to vary very much with local conditions. In 
fact, the quality of nearly all procedures too often depends on an 
appropriate setting or determination of thresholds and control 
values (Jacobsen et al., 2002, Kraus, 1997, Voelz, 2001). 
Moreover, another important task not yet completely solved is 
to simultaneously proceed to both filtering and generation of 
DTM. For this last requirement, the filtering algorithm 
presented throughout this paper manages not only to “remove” 
additional features on ground such as buildings, vegetation etc., 
but even to generate DTMs with points classified as “ground”. 
Looking thought the recent literature in LIDAR data filtering, a 
significant number of techniques has been developed to remove 
man-made “artefacts” on the territory, in order to obtain the true 
Digital Terrain Model. Unfortunately, in order to completely 
remove non-terrain data points, these techniques often require 
interactive editing. This leads to increasing the production 
times. Thus, there is yet great interest in developing effective 
and reliable tools and algorithms on this topic. 
Our research starts from the analysis of the most significant 
techniques and algorithms present in literature; that is: 
• Least squares interpolation (Kraus e Pfeifer, 1997): filter 

out trees in forested areas by fitting an interpolating surface 
to the data and using a weighted ground iterative least 
squares scheme to bring down the contribution of points 

above the surface, so that it gets closer and closer to the 
lowest data points. A similar approach is used to filter out 
also buildings (Rottensteiner et al., 2002). 

• Erosion/dilatation functions in mathematical morphology 
(Zhang et al., 2003): starting from an initial subset of points 
and by gradually increasing the window size of the filter 
using elevation difference thresholds, data of vehicles, 
vegetation, and buildings are removed, while ground data 
are preserved. Such points are then included in a DTM. 

• Slope based functions (Vosselman, 2003): slope based 
filtering operates using mathematical morphology, and 
fixing a slope threshold. This, being the maximum allowed 
height difference between two points, is expressed as a 
function of the distance between different terrain points. 

• TIN densification (Axelsson, 2000): an adaptive TIN model 
born to find ground points in urban areas. Initially seed 
ground points within a user defined grid of a size greater 
than the largest non ground features are selected to compose 
an initial ground dataset. Then, one point above each TIN 
facet is added to the ground dataset at each iteration if its 
parameters are below specific threshold values. Different 
thresholds have to be given for various land cover types. 

• Application of Spline functions (Brovelli et al., 2002): 
through a least squares approach with Tikhonov 
regularization, non-terrain points are filtered out by 
analyzing residuals from a spline interpolation. 

This paper proposes instead a new stochastic approach for 
filtering, based on the following spatial regression model. 

2. SIMULTANEOUS AUTOREGRESSIVE (SAR) 
MODELS FOR SPATIAL FILTERING 

The analytical models called as SAR (Simultaneous Auto 
Regressive, Whittle, 1954) belong to a class of algorithms 
largely used in many fields for describing spatial variations. 



 

Their nature is rather different from models usually 
implemented in time-series analysis. This is mainly due to the 
fact that, while the natural flow of time from past to present to 
future imposes a natural ordering or direction on patterns of 
interaction, a two-dimensional model generally possesses no 
such equivalent ordering. 
Hence, our filtering algorithm works under the hypothesis that 
LIDAR measures of terrain/objects height can be rightfully 
represented by means of SAR models. At this step of research, 
first order isotropic SAR models have been employed. 
To introduce SAR models, one can start from the very simple 
expression of a n-dimensional measurement (observation): 

 ��z +=  (1) 

where (specialising it for LIDAR data): 

• z is the [n x 1] vector of LIDAR height values (being n the 
total number of points to be filtered), 

• � is the [n x 1] vector of “true” terrain height values, 

• �  is the [n x 1] vector of independent and normally 

distributed errors (noise) with mean 0 and variance 2
εσ . 

Considering now for height errors, the effect of a global 
interaction and the spatial dependence among points, height 
values (1) can be rewritten as: 

 ( ) �WI�z 1−ρ−+=  (2) 

where: 

• I is the [n x n] identity matrix, 

• � is a value (constant for the whole dataset) that measures 
the mean spatial interaction between neighbouring points, 

• W is a [n x n] spatial weight (binary) matrix defined as: 
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where 1w ij =  if the points are neighbours, 0w ij =  otherwise. 

In a regular grid scheme (lattice), a common definition of a 
neighbourhood structure is that 1w ij =  if the j-th point is 

immediately North, South, East or West of the i-th point. 
But, since to grid LIDAR data for a lattice scheme leads to a 
loss of information, we preferred operate with raw data, that is 
non-lattice displacement points. In such a non-regular case, W 
can be computed by means of one of the following methods: 

• Distance functions: each LIDAR height measure is linked to 
all others within a specified distance; 

• Nearest neighbor approach: each LIDAR measure is linked 
to its k (k = 1, 2, 3, …n) nearest neighborhoods; 

• Gabriel’s graph: two generic LIDAR measures i and j are 
said to be contiguous if and only if all other measures are 
outside the i-j circle, that is, the circle whose circumference 
i and j are at opposite points; 

• Delaunay triangulation: all LIDAR measures which share a 
common border in a Dirichlet partitioning of the area are 
joined by an edge. 

This last option was chosen, so obtaining a matrix W with no 
more binary digits but real numbers (Pace, Barry and Sirmans, 
1988); furthermore, a row standardization of W is applied by: 
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For (2) to be meaningful, it is assumed that 1)�( −− WI  exists; 
this condition leads to restrain the range of values of � in the 
interval 0 ≤ � < 1. 
An important task is given from the modelling of µµµµ, containing 
the “true” height terrain values of (1) by means of some 
polynomial function of East-North coordinates, in such a way to 
analytically define the so-called “trend surface”: 

 A�� =  (3) 

where: 

• A is a [n x r] matrix, with [ ]s
i

s
iiii NE...NE1=A  

as rows and where s = (r-1)/2, 

• [ ]T1r10 �...�� −=�  is a [r x 1] vector of coefficients. 

Equation (3) represents the classical autoregressive problem: 
the estimation of trend coefficients �  by the measured points. 
Substituting (3) in (2), the general SAR model finally arises: 

 ( ) �WIA�z 1−ρ−=−  (4) 

This form shows the main characteristic of SAR models: they 
require/permit the simultaneous autoregressive estimation of 
both trend �  and interaction ρ process parameters. 
Moreover, writing (4) explicitly, we obtain: 

 � −+ε+=
iN

j
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with iN  number of sites joined to i by an edge (its neighbours). 
Following equation (5), the i-th measured height value can be 
understood as the algebraic sum of two terms: the stochastic 
surface modelling on i-th point ( ii ε+µ ) and the global effect 
of errors of such a stochastic modelling on its surrounding 
points ( jj �z − ) via the spatial interaction ρ. 

3. ESTIMATION OF SAR UNKNOWNS AND OUTLIERS 

Estimation of a spatial autoregressive process with dependent 
variables can be taken over through different approaches. 
A first problem related to this task is due to the computational 
dimension: dealing with millions of LIDAR measures, requires 
great amount of memory storage. For our method, 
computational counts for operation, such as determinants and 
inverses seen in (4), grow with the cube of n. For this 
computational problem, the acquired strip laser data has to be 
suitably shared in sub-zones of about 15.000 points each. 
Moreover, as an analytical problem, traditional maximum 
likelihood techniques require non-linear optimization processes 
using either analytic derivatives or finite difference 
approximations. Unfortunately these can fail to find the global 
optimum and do so without informing the user of their failure. 
Hence summarising, an ideal spatial estimator would: 

• handle large datasets, 

• handle point estimation and inference quickly, 

• not rely on local non-linear optimization algorithms. 



 

In order to deal with the last requirement, in the following 
section, the so-called Maximum Likelihood (ML) method for 
estimate unknown parameters within SAR model is presented. 

3.1 Maximum Likelihood computations 

For our purposes, a maximum likelihood approach for the 
estimate of unknown SAR parameters has been chosen. Let us 
start from the general likelihood function: 
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where: 

 )�()�( T WIWI� −−=  

is the weight matrix, symmetric and positive definite; 
unfortunately and differently with respect to ordinary 
estimations, here the weight matrix contains an unknown term 
as ρ. It is then necessary to maximize (6) not only with respect 

to � and 2σ , but also with respect to �. 
It can be performed in stages (Pace, Barry and Sirmans, 1998) 
by selecting a vector of length f of values over [0,1] labelled as: 

[ ]f21v ���� =  

and considering the log-likelihood function: 
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where: 

• 0e  are the residuals from an Ordinary Least Squares (OLS) 
regression of z on A, 

• de  are the residuals from an OLS regression of Wz on A. 

Thus, to maximize (6), the following m terms are evaluated: 
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and the value MLρ  giving the maximum log-likelihood value L 

among those in (7) is assumed as the ML estimation �̂  of ρ. 
The use of a finite set of � will cause some small granularity in 
the chosen values MLρ , but it should not prove difficult to 
make the granularity small relative to the statistical precision of 
estimated MLρ . While this approach may suffer a small loss of 
precision relative to non-linear maximization, the evaluation of 
log-likelihood function over an interval ensures robustness, the 
main property of this approach (Griffith and Layne, 1999). 
Once so obtained �̂ , it is possible to ML estimate SAR 

unknowns and also a new weight (optimised) matrix �̂ : 

 �zA�AA�
T1T )(ˆ −=  (8.1) 

 )ˆ()ˆ(nˆ T12
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 )�̂()�̂(ˆ T WIWI� −−=  (8.3) 

3.2 Spatial outliers searching 

A spatial outlier is defined as “an observation which is unusual 
with respect to its neighbouring values” (Haining, 1990). For 
our purposes, the way to assess spatial outlyiness is to compute 
individual departure from the fitted polynomial trend surface. 

To accomplish this goal, starting from (4), the vector εεεε1−σ=e  
of standardised residuals is estimated as: 

 )ˆ)(ˆ(�̂
1

�AzWIe −ρ−= −  (9) 

where ,�̂ �̂ , �̂  are the unknown parameters of the SAR model 
just simultaneously estimated by means of (7) and (8). 
Afterwards, its n components are inferentially evaluated to find 
which measures do not fit the estimated surface: vector e 

defines in fact the lack of fit statistic eeT . 
Standardised residuals e over residuals �  have been thus 
preferred, since they allow a robust spatial autocorrelation 
estimation, which we believe is a sensible property for the 
purpose of detecting spatial outliers. 
From the methodological point of view, the main property of 
our algorithm allowing to detect LIDAR outliers is to perform 
estimations (7), (8) and (9) on different subset of the whole 
dataset. In particular, we start from an initial subset of LIDAR 
data up to include all the dataset of the sub-zone to be filtered. 

4. IMPLEMENTATION OF AN ITERATIVE 
SEARCHING PROCEDURE 

4.1 Block Forward Search for SAR models 

An interesting algorithm to perform iterative SAR estimations 
on increasing datasets is the so-called “Block Forward Search” 
(BFS) proposed by Atkinson and Riani (2000) and Cerioli and 
Riani (2003) for econometric purposes. 
It makes possible to proceed to the joint robust estimation �̂  

and �̂  at each step of the search, starting from a partition of 
datasets in n blocks of contiguous spatial location, and 
considers these blocks as its elementary unit. In the general case 
of grid data, each block is a set of cells, while handling raw data 
is difficult to univocally create the blocks and so the block 
dimension is merely unitary (UFS, Unitary Forward Search). 
The basic idea of the BFS approach is to repeatedly fit the 
postulated model A�� =  to increasing subsets size, selecting 
for any new iteration the observations z best fitting the previous 
subset, that is having the minimum standardised residuals e 
computed by (9). It must to be stressed as in equation (9), �̂  

and �̂  are estimated on the subset outlier free only, while z, A, 
W and � terms are referred to the whole dataset with outliers. 
Thanks to the strategy of block growing, the outliers present 
into z values are included only at the end of the BFS procedure. 

4.2 SFS implemented algorithm 

The proposed algorithm, called simply SFS (Spatial Forward 
Search), implements the Forward Search approach, but, since 
raw LIDAR data are irregularly located, unitary blocks to 
increase the subset size were chosen: in other words, only one 
measured point enlarges the subset at each iteration. 
The SFS algorithm has been implemented as a software tool 
using Matlab® language. Its main steps are (see Figure 1): 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Work-flow of the SFS filtering algorithm. 

1. Selection of the initial subset of size)nn( 0 −<< : this is 
meant to be outlier free, containing then terrain (ground) 
points only. Many automatic criteria could be implemented 
for this purpose, mostly evaluating data variations statistics 
(e.g. least median), but as a general statement, a user 
defined graphic selection has to be preferred. 

2. Selection of trend surface type: for modelling the subset 
ground surface by (3), the user chooses a redundant k-
degree polynomial (e.g. cubic k = 3) (see Figure 2). 

 Figure 2: Selection of trend surface type in SFS: 3D-view of 
(simulated and noisy) LIDAR points and initial subset. 

3. Estimation of meaningful subset trend surface parameters: 

Once estimated �̂  by (8), the assessment of a reduced s < k 
degree, describing with plenty sensitivity the trend, is 
performed by an inferential F-Fisher Test, so skipping not 

meaningful (k-s) parameters in �̂ . In such a way, r = 2s+1 
is the size of the engaged polynomial coefficient vector. 

Once steps 1.÷3. are accomplished, the program goes on 
iteratively enlarging the initial 0n -size subset up to the n-size 

dataset. For each m-th iteration, �̂ , �̂ , subsetdataset �̂,�̂ , ê  are re-
estimated by (7), (8) and (9). Furthermore, also other statistical 

quantities are computed, allowing to diagnostically monitor 
either the trend surface modelling (see Figures 3. & 4.) or the 
outlier searching (see Figure 5). 
4. Enlarging of subset: its size grows from m to (m+1) adding 

the point with smallest absolute standardised residual be  
given by (9). This point is called “best possible point”, since 
it best fits the trend surface although it does not (yet) belong 
to the subset; anyway, it can be classified as “ground” point. 

5. Estimation of SAR unknowns and the best point detection is 
iteratively computed by (7), (8) and (9), on the (m+1)-th 
subset of (m+1)-size composed with ground points only. 

Steps 4. & 5. are then iteratively repeated until Chi-square Test 

on 2σ̂  variation and F-Fisher Test on �̂  variation (with respect 
to the initial ones) do not reveal that best possible point is really 
an outlier. In fact, as known, the presence of outliers among 

observations damages the estimation of 2σ̂  and �̂ , as can be 
easily view in the right sides of Figures 3. & 4. Moreover, any 
new point included from now on up to the whole dataset, can be 
classified as outlier or “non-ground”. 
As last consideration, it has to stress how the same classification 
of points as ground/non-ground would be impossible 
considering instead the whole dataset for masking effect on 
components of e (see Figure 6 for last iteration/abscissa). 

 Figure 3: Values of datasetσ̂ (green), subsetσ̂  (blue), �̂  (red). 

 Figure 4: Values of 0θ (red), 1θ (blue), 2θ (green). 

Figure 5: Values of n components of e along the iterations. 

Once the SFS program has been carried out, the trend 
parameters of the ground are those relating to the maximum 
subset outlier-free and every point is binary classified as 
“ground” (0, green in Figure 11) or “non-ground” (1, red in 
same Figure 11). Starting now from this classification, could be 
possible to repeat whole SFS processing on outlier points only, 
to find other small surfaces, e.g. building roofs; the developing 
and implementation of this idea is currently in progress. 

 Loading of raw 
LIDAR data of sub-

zone 
1. Selection of initial 

(outlier-free) n0-size subset 
2. Selection of trend 

surface type 

3. Estimation of meaningful trend 
surface parameters 

4. Enlarging of subset with 
“best possible point” 

5. Estimation of SAR unknowns 
and outliers 

Classification of points: 
 “ground” and “non-ground” 

F-Fisher Test 

F-Fisher & Chi-
Square Tests 



 

5. APPLICATIONS OF SFS FILTER ON LIDAR DATA 

The SFS program has been tested both on differently simulated 
LIDAR datasets and really measured points acquired with an 
Optech® ALTM 3033 airborne system. 

5.1 Testing on simulated data 

As far as simulated datasets are concerned, a lot of experiments 
has been carried on, here reporting 6 tests differing for surface 
type (plane and quadratic), for value of spatial interaction � and 
for mean noise |�|. In each dataset, with irregularly spaced 
points, the presence of some buildings (outliers of the ground 
surface) has been simulated. The number of ground and non-
ground points is then exactly known, so that the efficiency of 
the algorithm could be easily verified. 
General characteristics of these 6 examples, simulating real 
survey conditions, are reported in Table 6. 
 

Surface type Plane (r=3) 2nd Order (r=5) 

Polynomial coefficients 
�0=1,000 
�1=0,050 
�2=-0,010 

�0=1,000 
�1=+0,005 
�2=-0,001 
�3=+0,0015 
�4=-0,002 

Plan-1: 0,10 m Quad-1: 0,10 m 
Plan-2: 0,20 m Quad-2: 0,20 m 

Uncorrelated noise εσ  
over surface Plan-3: 0,25 m Quad-3: 0,25 m 

Plan-1: 0,0 Quad-1: 0,0 
Plan-2: 0,1 Quad-2: 0,1 Spatial interaction ρ 
Plan-3: 0,2 Quad-3: 0,2 

Number of points (n) 1.886 
Raw data (not grid) Yes 

Points sampling 1 point/m2 (mean)  
Dataset area  1.760 m2 

∆z 13,6 m 
Number of “building points” 413 (mean) 

Courtyard closed areas Yes 

Table 6: Summary of simulated LIDAR data. 

Processing such datasets by SFS (Figures 3÷5 relate to Plan-3) 
has given very satisfactory results: ground trend surface and 
building/outlier have been well detected (see Table 7). 
 

Detection of surface type Correct 
Coefficient estimation Correct within 5% 

Statistical errors on classification: 
1st kind (false outlier) 
2nd kind (false ground) 

 
0,0% 
1,7% 

� estimate Correct within 10% 

Table 7: SFS filtering of the simulated data: general results. 

The performance of the SFS for classification can be 
significantly validate by applying onto same datasets the 
program TerraScan® (Soininen, 2003), a very well known 
software for LIDAR data processing developed by Terrasolid 
Ltd. A binary classification (ground/non-ground) was obtained 
by suitably exploiting the following routines: 
1. “Classify ground”: classifies ground points by iteratively 

building a triangulated surface model. 
2. “Low points”: classifies points that are lower than other 

points in the vicinity. It is often used to search for possible 
error points that are clearly below the ground. 

3. “Below surface”: classifies points that are lower than other 
neighbouring points in the source class. This routine was 
run after ground classification to locate points that are 
below the true ground surface. 

4. “By height from ground”: classifies points that are located 
within a given height range when compared with ground 
point surface model. 

Comparison among true, SFS and TerraScan classification 
results is shown in Figure 8. As a general statement, we can say: 

• SFS provides about 2% of errors of second statistical kind 
(false ground), so that some outlier has not been detected; 

• TerraScan® seems to commit more than 10% of first kind 
errors (false outlier), so that many points were “rejected”, 
although they belong to the ground (but noisy) surface. 
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Figure 8: True vs. SFS vs. TerraScan classification of points. 

5.2 Testing on really acquired data (city of Gorizia) 

To evaluate LIDAR technology for DTM production, millions 
of points were acquired in October 2003 over the city of Gorizia 
with an airborne Optech® ALTM 3033 laser scanning system. 
Data strips have been split into different sub-zones, in order to 
avoid heavy computations with huge quantities of memory 
storage, but anyway still being capable to test the efficiency of 
the SFS method for real cases. General characteristics of sub-
zones are reported in Table 9. 
 

Surface type Urban area 
Data type First & Last pulse 

Number of points (n) 15.000 (mean for sub-zone) 
Raw data (not grid) Yes 

Points sampling 1 point/m2 (mean) 
Dataset area 15.000 m2 (mean) 

�z 44,3 m 
Vegetation Yes 
Buildings Yes 

Courtyard closed areas No 

Table 9: Summary of Optech® LIDAR data on Gorizia. 

The sub-zone submitted to test is the downtown square, mainly 
constituted of quasi-horizontal plane terrain; furthermore 
different types of building were present, together with high and 
low vegetation and a lot of parked cars. No power-lines or other 
structures were present. 
LIDAR points were processed either by SFS or by TerraScan: 
with this last software, firstly objects are classified in two 
classes: ground and non-ground points. Successively, other 
classes such as buildings and vegetation were detected yet. 
The difference among SFS/TerraScan classifications regards 
679 points (4,5% on 14.953 total points), ranked as “ground” 



 

with SFS and “non ground” with TerraScan (see Figure 10): 
this is in agree with results obtained for simulated data. 
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Figure 10: SFS vs. TerraScan classification of Gorizia points. 

About the location of the two classifications, while they 
substantially correspond for building and vegetation zones, the 
disparities mainly occur for roads and parking areas. 

 Figure 11: LIDAR DSM of the city of Gorizia (Italy). 

Figure 11 shows the DSM obtained with such LIDAR data. The 
results of filtering/classification by SFS algorithm are painted 
over with green spots when ground classified, red spots 
otherwise (outliers). They seem to be very truth, so the SFS 
correctness is qualitatively proved, being very hard to exactly 
evaluate it quantitatively (cars positions are unknown/variable). 

6. CONCLUSIONS AND FUTURE PERSPECTIVES 

This paper illustrates a new robust technique for the filtering of 
non-ground measurements from airborne LIDAR data. The 
algorithm represents an efficient method for automatic 
classification of LIDAR data, mainly based on a newly 
developed tool for robust regression analysis and robust 
estimation of location and shape. The main advantage of using 
SAR models and BFS algorithm relies not only on its accuracy 
but also on its statistical robustness. It makes possible to 
efficiently and simultaneously detect either trend surface or 
outlier points by suitably enlarging a data subset. 
Through a significant number of examples, the paper shows 
how the proposed SFS method is a valuable tool for the purpose 
of filtering LIDAR height measures and terrain modeling. Here, 
examples of rough terrain were processed, showing that the 
method can deal with dataset containing many break lines. 
Besides the Gorizia dataset shown in this paper, the method is 
currently being applied to other large urban datasets of 
increasing point density, for the goal of building extraction also. 
In a near future, to improve the efficiency of the SFS algorithm, 
other space interaction models will be tested, as second order 
SAR models and Conditional AutoRegressive models (CAR). 
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