
EXTRACTION OF SPATIAL OBJECTS FROM LASER-SCANNING DATA USING A
CLUSTERING TECHNIQUE

Bin Jiang

Division of Geomatics, Dept. of Technology and Built Environment, University of Gävle, SE-801 76 Gävle, Sweden -

bin.jiang@hig.se

Commission III, WG III/3

KEY WORDS: DEM/DTM, LIDAR, Laser-scanning, Algorithms, Classification

ABSTRACT:

This paper explores a novel approach to the extraction of spatial objects from the laser-scanning data using an unsupervised
clustering technique. The technique, namely self-organizing maps (SOM), creates a set of neurons following a training process based
on the input point clouds with attributes of xyz coordinates and the return intensity of laser-scanning data. The set of neurons
constitutes a two dimensional planar map, with which each neuron has best match points from an input point cloud with similar
properties. Because of its high capacity in data clustering, outlier detection and visualization, SOM provides a powerful technique for
the extraction of spatial objects from laser-scanning data. The approach is validated by a case study applied to a point cloud captured
using a terrestrial laser-scanning device.

1. INTRODUCTION

Laser-scanning has been proven to be as an effective 3D data
acquisition means for extracting spatial object models such as
digital terrain models and building models and it has been
widely used nowadays in geospatial information industry
(Ackermanm 1999). However what the laser-scanning can
acquire is a digital surface model, which captures all points
from treetops, buildings and ground surface depending on the
circumstance. For many practical applications, we often expect
spatial object models such as digital terrain models (DTM) of
the bare earth surface and 3D building models. To this end,
various research efforts have been made over the past years in
an attempt to processing the original captured datasets for the
derivation of various spatial objects. For instance, in order to
get a DTM of the bare earth surface, we have to remove those
non-terrain and undesired points.

This process of deriving spatial objects involves a range of
operations such as filtering, interpolation, segmentation,
classification, modelling and possible human interaction if no
complete automatic way is reached (Tao and Hu 2001). Most
filtering algorithms are targeted to the derivation of DTM, thus
assumptions on the spatial distributions of points or geometric
characteristics of a point relative to its neighbourhood in a
terrain surface are used to construct various filtering strategies.
For instance, through using TopScan, Petzold et al. (1999) used
the lowest points found in a mowing window to create a rough
terrain model. And it is used to filtering out those points higher
than a given threshold. Then repeat the procedure several times
with smaller sizes of moving window, and finally lead to a
DTM. Kraus and Pfeifer (1998) used an averaging surface
between terrain points and vegetation points to derive residuals
of individual points, and then use the residuals to determine the
weights of individuals to be selected or eliminated. Maas and
Vosselman (1999) adopted approaches based on the ideas of
moment invariants and the intersection of planar faces in
triangulated points for extracting building models. The slope-
based filter (Vosselman 2000) considers an observed fact that a
large height difference between two nearby points is unlikely to

be caused by a steep slope in the terrain. These algorithms
together with many others as reviewed in a recent comparison
study (Sithole and Vosselman 2003) are proven to be effective
and efficient in the studies, noting that they sometimes require
interpolation of a point cloud into regular grid format in order
to carry out the post-processing. When it is too complex to
distinguish different object points, additional information is
needed for classification or to achieve better results (e.g. Haala
and Brenner 1999, McIntosh and Krupnik 2002). However,
these filtering algorithms are all based one way or another on
supervised classifications with prior knowledge or assumptions
about different spatial objects. The supervised classification
solutions show various constraints in the sense of efficiency,
e.g. sensitivity to varying point densities, limited applicability
for certain kinds of spatial objects or under a certain
circumstance, and difficulty in dealing with stripe etc.

The supervised classification solutions rely much on the human
understanding or prior knowledge of the point geometric
characteristics of spatial objects. However, it is very difficult in
reality to get a true understanding, in particular when many
objects are involved in a point cloud. It also depends on our
specific task: e.g. to derive one single object or all objects with
one point cloud. It is probably an easy task to derive one object
rather than to distinguish all objects from an input point cloud.
For the case of single object, we can investigate the point cloud
and try to figure out the characteristics of its point distribution
and further design an appropriate algorithm. Furthermore, many
assumptions about the point characteristics do not always hold
true, and they depend on the circumstances of laser-scanning.
When come to the situation where all objects should be derived,
we believe unsupervised clustering seems a more appropriate
way.

One of the major reasons why unsupervised methods are so
important in the post-processing is that it is very difficult to
assume some characteristics of a certain object. Instead of
figuring out the assumption, unsupervised methods put these
characteristics aside and adopt a simple assumption, i.e. same
objects should have the same similarities in terms of their xyz

coordinates and intensity. This assumption seems to apply to all
kinds of circumstance. In this paper, we attempt to use self-
organizing maps (SOM) (Kohonen, 2001), an unsupervised
clustering technique to make a classification of points with a
point cloud. We adopt SOM training algorithm to group all
points into different categories according to their xyz
coordinates and intensity. Through the trained SOM – a two
dimensional grid of neurons, the similarity of points can be
interactively explored and visualized. Thus we are able to
distinguish different points belonging to different objects.

As a well-developed technique, SOM has found many
applications in various fields such as data classification, pattern
recognition, image analysis, and exploratory data analysis (for
an overview, see Oja and Kaski 1999). In the domain of GIS,
Openshaw and his colleagues have used the approach in spatial

data analysis to carry out the classification of census data
(Openshaw 1994, Openshaw et al. 1995). It has been applied to
cartographic generalization for building typification (e.g.
Højholt 1995), street selection (Jiang and Harrie 2004), and line
simplification (Jiang and Nakos 2003). All these studies rely on
the SOM’s ability in data clustering and pattern recognition.
This paper will look at how it can be used for filtering laser-
scanning data in deriving spatial object models from laser-
scanning datasets. The remainder of this paper is structured as
follows. Section 2 introduces the basic principle and algorithm
of SOM. Section 3 presents a SOM-based approach for deriving
different clusters within a laser scanned point cloud. Section 4
presents a case study for validation of the approach. Finally
section 5 concludes the paper and points out future work.

2. SELF-ORGANIZING MAP

SOM is a well-developed neural network technique for data
clustering and visualization. It can be used for projecting a large
data set of a high dimension into a low dimension (usually one
or two dimensions) while retaining the initial pattern of the
dataset. That is, data samples that are close to each other in the
input space are also close to each other on the low dimensional
space. In this sense, SOM resembles a geographic map
concerning the distribution of phenomena, in particular
referring to first law of geography: everything is related to
everything else, but near things are more related to each other
(Tobler 1970). Herewith we provide a brief introduction to the
SOM; readers are encouraged to refer to more complete
descriptions in literature (e.g. Kohonen 2001).

2.1 Basic principle

Let’s represent a d-dimensional dataset as a set of input vectors
of d dimensions, i.e. },...,{ 21 nxxxX = , where n is the size of

the dataset or equally the number of input vectors. The SOM
training algorithm involves essentially two processes, namely
vector quantization and vector projection (Vesanto 1999).
Vector quantization is to create a representative set of vectors,
so called output vectors from the input vectors. Let’s denote the
output vectors as },...,{ 21 kmmmM = with the same dimension as

input vectors. In general, vector quantization reduces the
number of vectors, and this can be considered as a clustering
process. The other process, vector projection, aims at projecting
the k output vectors (in d-dimensional space) onto a regular
tessellation (i.e., a SOM) of a lower dimension, where the
regular tessellation consists of k neurons. In the vector
projection each output vector is projected into a neuron where
the projection is performed as such, “close” output vectors in d-
dimensional space will be projected onto neighbouring neurons
in the SOM. This will ensure that the initial pattern of the input
data will be present in the neurons.

The two tasks are illustrated in figure 1, where both input and
output vectors are represented as a table format with columns as
dimension and rows as ID of vectors. Usually the number of
input vectors is greater than that of output vectors, i.e. kn � ,
and the size of SOM is the same as that of output vectors
without exception. In the figure, the SOM is represented by a
transitional color scale, which implies that similar neurons are
being together. It should be emphasized that for an intuitive
explanation of the algorithm, we separate it as two tasks, which
are actually combined together in SOM without being sense of
one after another.

ID
DIM DIM

1

1

2

2

i

n

d

SOMInput vectors

ve
ct

or
 q

ua
nt

iz
at

io
n

ve
ct

or
 p

ro
je

ct
io

n

. . .

.

.

ID

1

2

. . .

.

.

c

Output vectors

K

(d-dimension) (d-dimension) (2-dimension)

1 2 d

Figure 1: Illustration of SOM principle

2.2 The algorithm

The above two steps, vector quantization and vector projection,
constitute the basis of the SOM algorithm. Vector quantization
is performed as follows. First the output vectors are initialized
randomly or linearly by some values for its variables. Then in
the following training step, one sample vector x from the input
vectors is randomly chosen and the distance between it and all
the output vectors is calculated. The output vector that is closest
to the input vector x is called the Best-Matching Unit (BMU),
denoted by mc:

||}{|||||| min i
i

c mxmx −=− , [1]

where ||.|| is the distance measure. Second the BMU or
winning neuron and other output vectors in its neighbourhood
are updated to be closer to x in the input vector space. The
update rule for the output vector i is:

(t)Nitmtm

(t)N itmtxhttmtm

cii

cciii

∉=+
∈+=+

for)()1(

for])(-)((t)[)()()1(iα [2]

where)(tx is a sample vector randomly taken from input
vectors, mi(t) is the output vector for any neuron i within the
neighbourhood Nc(t), and)(tα and)(thci

 are the learning rate

function and neighbourhood kernel function respectively.

The algorithm can be described in a step-by-step fashion as
follows.

Step 1: Define input vectors in particular their multiple
variables that determine an attribute space.

The input vectors are likely to be in a table format as shown in
Figure 1, where d variables determine a d-dimensional attribute

space. Based on the input vectors space, an initialized SOM will
be imposed for training process (c.f. step 3).

Step 2: Define the size, dimensionality, and shape of a SOM to
be used.

The size is actually the number of neurons for a SOM. It can be
determined arbitrarily, but one principle is that the size should
be easy enough to detect the pattern or structure of SOM
(Wilppu 1997). The number of neurons can be arranged in a 1-
or 2-dimensional space (dimensionality). Three kinds of shape
are allowed, i.e. sheet, cylinder or toroid, but usually sheet as
default shape.

Step 3: Initialize output vectors m randomly or linearly.

At the initialisation step, each neuron is assigned randomly or
linearly by some values for the d variables. Thus an initial SOM
is imposed in the input vectors space for the following training
process.

Step 4: Define the parameters that control the training process
involving map lattice, neighbourhood, and training rate
functions.

The number of neurons defined can be arranged in two different
map lattices, namely hexagonal and rectangular lattices.
However, hexagonal lattice is usually preferred because of
better visual effect according to Kohonen (2001).
Neighbourhood function has different formats such as ‘bubbs’,
‘gaussian’, ‘cutgauss’ and ‘ep’ (see Vesanto et al. 2000, pp. 10),
but gaussian function is usually adopted and it is defined by:

22 2/)(tcid
ci eth σ−= [3]

where tσ is the neighbourhood radius at time t, cid is the

distance between neurons c and i on the SOM grid. It should be
noted that the size of the neighbourhood Nc(t) reduces slowly as
a function of time, i.e. it starts with fairly large neighbourhoods
and ends with small ones (see figure 2).

The training rate function can be linear, exponential or inversely
proportional to time t (see Vesanto et al. 2000, pp. 10). For
instance,)/1001/()(0 Ttt += αα is the option we adopted in the

following case study, where T is the training length and 0α is

the initial learning rate. Usually the training length is divided

into two periods: t1 for the initial coarse structuring period and
t2 for the fine structuring period.

Step 5: Select one input vector x, and determine its Best-
Matching Unit (BMU) or winning neuron using equation [1].

Although Euclidian distance is usually used in equation [1], it
could be various other measures concerning ‘nearness’ and
‘similarity’. Depending on the form of data measurement, other
measures are allowed as long as they represent the distance
between input and output vectors.

Step 6: Update the attributes of the winning neuron and all
those neurons within the neighbourhood of the winning neuron,
otherwise leave alone (c.f. equation [2]).

Step 7: Repeat steps 5 to 6 for a very large number of times
(training length) till a convergence is reached.

The convergence is set like this, ∞→=+ tfortmtm ii),()1(. In

practice, the training length in epochs is determined by the size
of SOM (k) and the size of training data (n), for instance for
coarse period

n
k

t
×= 4

1

.

After the above steps, all output vectors are projected on to a 1-
or 2-dimensional space, where each neuron corresponds to an
output vector that is the representative of some input vectors. A
2-dimensional hexagonal map lattice grid is shown in Figure 2
where each hexagonal cell has a uniform neighbourhood.

a ten-by-ten (one hundred neurons) lattice space

winner neuron
or BMU

neighbouring
neurons at t3

neighbouring
neurons at t2

neighbouring
neurons at t1

Figure 2: The characteristics of a 10x10 SOM (t1<t2<t3 with

)(thci
 in equation 3)

3. SOM-BASED CLUSTERING ANALYSIS FOR LASER

SCANNED POINT CLOUDS

3.1 Principle and overall procedure

Laser scanned point clouds are usually defined in a four
dimensional space with xyz coordinates and the return intensity.
For a given point cloud, all points constitute input vectors
which can be used for clustering analysis in order to distinguish
different points belonging to different objects. Depending on
the size of input cloud, an appropriate SOM will be decided
together with other parameter settings. Once all these are
determined, a SOM will be derived to represent the pattern or
structure of a point cloud. The SOM is organised in a grid in
which nearby neurons are more similar to those which are

widely separated. With the SOM, various clusters can be
identified and they in essence represent different sets of points
with a certain similarity in terms of their coordinates and the
intensity. The process of the clustering analysis can be
described as follows. For a given point cloud, all the points
constitute input vectors in a four dimensional space. This space
is defined by three coordinates and the return intensity. These
vectors then are used to train a SOM as described in the above
section. With the SOM, points with similar attributes will
correspond to neurons that are grouped together. Various
clusters can be identified from the SOM, and finally the
derivation of various spatial object models is based on these
clusters.

From a more practical perspective, the points and their
corresponding attributes are used for creating input vectors in
Matlab. Then training process is performed on SOM Toolbox

with Matlab 6 (Vesanto et al. 2000). Although the number of
output vectors (neurons) of a SOM can be arbitrarily
determined, usually we choose a number that is smaller than
that of the input vectors. Through the training process, each
point is supposed to have a BMU from the set of neurons within
the SOM. It helps to set up a linkage between a SOM and the
corresponding point cloud. The specific procedure for setting
up such a linkage in ArcView GIS platform is as follows
(Figure 3):

• Create a polygon theme in which each polygon has a
hexagonal shape, representing a neuron with output
vectors as attributes in a table (SOM table)

• Create a link table (LINK table) with two fields,
namely BMU and point ID

• Link the SOM table and LINK table (note fields
SOM-ID and BMU are equivalent)

• Link the LINK table and NETWORK table through
the common field street-ID

Through the above procedure, a linkage that is set up between a
SOM and corresponding point cloud will help to select points
belonging to different spatial objects.

1

2

.

.

c

m

1

2

i

n

.

.

SOM-ID BMU
1

2

i

n

c

SOM table LINK table

c

c

POINT CLOUD table

point-ID point-IDX XY YZ ZI I

Figure 3: Linkage between a SOM and point cloud

3.2 An interactive environment for clustering and selection

Based on the above procedure, an interactive environment for
clustering and selection can be built in a GIS platform. The
trained SOM is imported into a GIS to setup a linkage to the
point cloud that is represented as both 2D theme and 3D scene.
In order to detect various clusters with the SOM, a unified
distance matrix between a neuron and its neighbouring neurons
(Ultsch and Siemon 1990) is computed. The distance matrix
reflects the level of similarity between a neuron and its
neighbouring neurons. With color scales for representing the
distance matrix, we can easily detect clusters, i.e. those neurons
tied closely. From the view entitled as SOM4029 in figure 4, we
note that those neurons with light colors are supposed to be
clusters, while those neurons with dark colors are neurons that
are far from various centres of clusters. With the same figure, a
cluster is selected with yellow, and the corresponding set of
points is highlighted in both 2D view and 3D scene, from which
we note the points are those from forest rather than from the
ground.

Figure 4: An interface with three connected visual components:
SOM, 2D view and 3D scene of a point cloud

4. A CASE STUDY

To validate the approach, we carried out a case study applied to
a dataset that consists of 9072 points (figure 5). The dataset was
a part of a larger dataset captured using a terrestrial laser
scanner by the GIS institute at the University of Gävle. The
reason why we choose the dataset is that the GIS institute has
already manually filtered the dataset. Different spatial objects
such as clay-road, stones, spruce and ground are extracted. Thus
it provides a base to validate the model.

Using a heuristic way, we decided a SOM with the size of

2940× to train the dataset. The process is performed in the way
as follows with reference to the description in section 2. The
1160 neurons are initialised by randomly giving some values of
xyz coordinates and the return intensity; and each of the
neurons compares to the individual points with the point cloud
to determines its best match unit using equation [1]; Then the
winning neurons and its neighbourhood are adjusted their
values of xyz coordinates and the intensity according to
equation [2]. Details on parameter settings for the training
process are shown in table 1. Once a pre-determined
convergence is reached, the training process is finished with a
trained SOM. The trained SOM is supposed to retain the initial
structure of the point cloud. Figure 6 is the component
visualizations of the SOM, and the smooth color transitions
reflect the fact that similar neurons are being closer than those
dissimilar.

Table 2: Parameter settings for the SOM training

Parameter Value
Size (m) 1160
Dimensionality 2

���������	����������	

������	�

Neighbourhood Gaussian
Learning rate (α))/1001/()(0 Ttt += αα

Initial learning rate (
0α) 0.5 for the coarse period

0.05 for the fine period

Training length in epochs
(T)

0.51 epochs for the coarse
period
2.05 epochs for the fine
period

Initial neighbourhood
radius (

0σ)

20

Final neighbourhood radius 5 for the coarse period
1 for the fine period

Figure 5: The original point cloud consisting of 9072 points

(a)

(b)

(c)

(d)

Figure 6: Component visualizations of the SOM: (a) x

coordinate, (b) y coordinate, (c) z coordinate, and (d) intensity

Figure 7: Five clusters detected from Umatrix of the SOM

In order to detect different spatial objects, we derive a unified
distance matrix (U-matrix) between the adjacent neurons
(Ultsch and Siemon 1990). Figure 7 illustrates the distance from
each neuron to its neighbouring neurons. We can note those
neurons that are surrounded by darker colours tend to be
clusters. We tried to select those points that best match to the
clusters in the SOM, and it ends up with 5 meaningful clusters
as indicated in figure 7. The cluster 0 match to the stones quite
well, while the rest four clusters match to clay-road. Figure 8
illustrates those points associated with clusters 1-4 (a) and
points representing clay road (b). Visual inspection suggests the
model is a useful tool for filtering scanning datasets. In the
meantime, cautious should be taken for the model, as other
spatial objects such as spruce and ground are not clearly shown
with the clusters in the umatrix of the SOM. This suggests
further work is needed with the training process, probably by
introduction of a weight among xyz coordinates and return
intensity.

(a)

(b)

Figure 8: Points associated with detected clusters 1-4 (a) and
points representing clay road

5. CONCLUSIONS

This paper explores a new approach to filtering laser-scanning
dataset for the extraction of spatial objects based unsupervised

clustering technique. It presents an advantage in the sense that
there is no prior knowledge is needed for such learning
processes, i.e. data samples group themselves in terms of
similarity. We develop an interactive environment integrated a
SOM view, 2D and 3D views of the dataset, thus it facilities
detections of clusters associated with different spatial objects.
Despite the preliminary nature of the case study, it does
illustrate the powerfulness of unsupervised methods in general
and SOM in particular in extracting spatial objects from a laser-
scanning dataset. It is important to note that SOM training
process is much dependent on the parameter settings as reported
in table 1. This issue deserves further research, in particular in
terms of how the parameter settings have impact on the
extraction of spatial objects from a point cloud.

ACKNOWLEDGEMENTS

The author would like to thank Mikael Östlund from the GIS
institute at the University of Gävle who provides the datasets for
the case study.

REFERENCES

Ackermanm, F. (1999). Airborne laser-scanning - present status
and future expectations. ISPRS Journal of Photogrammetry and
Remote Sensing, 54: 64-7.

Axelsson P. (1999), Processing of Laser Scanner Data –
Algorithms and applications, ISPRS Journal of
Phtotogrammetry & Remote Sensing, 54, pp. 138 – 147.

Haala N. and Brenner C. (1999), Extraction of buildings and
trees in urban environments, ISPRS journal of photogrammetry
& remote sensing, 54, pp. 130 – 137.

Højholt P. (1995). Generalization of build-up areas using
Kohonen-networks, Proceedings of Eurocarto XIII, 2-4
October, Ispra, Italy.

Jiang B. and Harrie L. (2003), Selection of streets from a
network using self-organizing maps, ICA Generalization
Workshop, Paris, 28 – 30 April 2003 (a revised version of this
paper is to appear in Transactions in GIS, Blackwell Publishers,
Vol. 8, No.3)

Jiang B. and Nakos B. (2003), Line simplification using self-
organizing maps, a working paper presented at ISPRS workshop
on spatial analysis and decision making, 3 – 5 December 2003,
Hong Kong.

Kohonen T. (2001), Self-Organizing Maps (third edition),
Springer, Berlin, Heidelberg, New York.

Kraus K. and Pfeifer N. (1998), Determination of terrain models
in wooded areas with airborne laser scanner data. ISPRS
Journal of Photogrammetry & Remote Sensing, 53:193-203.

Maas H. and Vosselman G. (1999), Two algorithms for
extacting building models from raw laser altimetry data, ISPRS
journal of photogrammetry and remote sensing, 54, pp. 153 –
163.

McIntosh K. and Krupnik A. (2002), Integration of laser-
derived DSMs and matched image edges for generating an
accurate surface model. ISPRS Journal of Photogrammetry &
Remote Sensing, 53(3):167-176.

Oja E. and Kaski S. (editors. 1999), Kohonen Maps, Elsevier.

Openshaw S., Blake M. and Wymer C. (1995), Using
Neurocomputing Methods to Classify Britain's Residential
Areas, (html paper), available at
http://www.geog.leeds.ac.uk/papers/95-1/ (accessed on
2002-11-15).

Openshaw, S. (1994), Neuroclassification of spatial data, in
Hewitson, B. C. and Crane, R. G. (eds), Neural Nets:
Applications in Geography, Dordrecht: Kluwer Academic
Publishers, 53-70.

Petzold B., Reiss P., and Stössel W. (1999), Laser-scanning -
surveying and mapping agencies are using a new technique for
the derivation of digital terrain models. ISPRS Journal of
Photogrammetry & Remote Sensing, 54(2-3):95-104.

Sithole G. and Vosselman G. (2003), Report: ISPRS
Comparison of Filters, Department of Geodesy, Faculty of Civil
Engineering and Geosciences, Delft University of Technology,
available at
http://www.geo.tudelft.nl/frs/isprs/filtertest/Report05082003.pd
f (accessed on 2003-11-12)

Tao C. V., Hu Y., 2001: “A review of post-processing
algorithms for airborne LIDAR Data”. Proceedings ASPRS
conference April 23-27, 2001. St. Louis Missouri. CD-ROM,
14 pages.

Tobler W. R. (1970), A Computer Movie Simulating Urban
Growth in Detroit Region, Economic Geography, 46, pp. 234-
240.

Ultsch A. and Siemon H. P. (1990), Kohonen’s self organizing
feature maps for exploratory data analysis, In Proc. INNC’90,
int. neural network conf., page 305-308, Dordrecht,
Netherlands, Kluwer.

Vesanto J. (1999), SOM-based data visualization methods,
Intelligent data analysis, Elsevier Science, Volume 3(2), pp.
111-126.

Vesanto J., Himberg J., Alhoniemi E. and Parhankangas J.
(2000), SOM toolbox for Matlab 5, Report A57, Helsinki
University of Technology, Libella Oy, Espoo.

Vosselman, G., 2000. Slope based filtering of laser altimetry
data, International Archives of Photogrammetry and Remote
Sensing, Volume XXXIII, Amsterdam, pp. 935-942.

