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ABSTRACT:

A novel system for automatic building reconstruction from multiple aerial images is presented. Compared to previous works, this
approach uses a very generic modeling of buildings as polyhedral shapes with no overhang, in which external knowledge is introduced
through constraints on primitives. Using planes as base primitives, the algorithm builds up an arrangement of planes from which a 3D
graph of facets is deduced. In a so-called “compatibility graph” where the nodes are the initial facets of the 3D graph and edges between
two nodes state that both facets belong to at least one common hypothesis of building, it is shown that maximal cliques supply all the
hypotheses of buildings that can be deduced from the arrangement of planes. Among these hypotheses the choice is done through a
bayesian formulation that balance data adequacy and caricature needs. Results are provided on real images and show the validity of the
approach that remains very generic on the contrary to model-based methods while bringing external architectural information through
geometric constraints, which generally lacks in data-driven algorithms.

1. INTRODUCTION

1.1 Context

Building reconstruction is of primary importance in many appli-
cations such as virtual tourism, fighting simulations, urban en-
vironment management. Unfortunately, manual reconstruction
through usual photogrammetric techniques is a heavy burden and
a lot of research tend towards automated solutions. Automatic
building reconstruction from multiple aerial images is however
a difficult problem due to the complexity of the roof structures
present in urban or suburban areas and the presence of occlusions
such as vegetation. Most automatic approaches have to deal with
antagonistic aspects: on the one hand handling the tremendous
complexity of roof structures and thus supplying a very generic
modeling of building and on the other hand allowing simplifi-
cations of shapes when needed, which is often done in manual
reconstruction for dormer windows, chimneys but also for small
building recesses. The goal of an automatic algorithm is thus to
provide an “acceptable” caricature of generic building; accept-
able meaning that it meets some specifications. Furthermore,
systems have to face errors of primitives detectors: under or over-
segmentation, geometrical inaccuracy. To overcome these errors
and to deal with mandatory simplifications, external knowledge
must be introduced, either as models of buildings, which reduce
the generality of the approach, either as constraints on primitives,
which is the choice made in this article.

1.2 State of the Art

In the context of building reconstruction from multiple aerial im-
ages, systems can be classified as data-based or model-based. In
the former one, authors (Baillard and al., 1999; Heuel and al.,
2000; Ameri and Fritsch, 2000; Scholze and al., 2002) have
chosen not to restrict the set of available shapes for roof struc-
tures. They often use only one kind of primitives (3D segments
for (Baillard and al., 1999; Scholze and al., 2002), corners in
(Heuel and al., 2000) and planar patches in (Ameri and Fritsch,
2000)) and handle under-segmentation or primitives errors with
difficulty. On the contrary, the latter ones (Fuchs and Le-Men,
1999; Fischer and al., 1998) use some models of buildings to
restrict the set of possible shapes. This external knowledge en-
ables to overcome lack of detection and over detection. Although

these two approaches use different method to search for the best
model, they both try to solve for the lack of generality inherent in
these strategies either through heuristic rules in (Fischer and al.,
1998) or through graph grammars in (Fuchs, 2001). They both
provide promising results but, despite obvious efforts, are still
limited to simple forms and thus can not handle all the shapes
available in urban or suburban areas. Besides, the robustness of
the approaches lies intrinsically in the small amount of models.
Increasing the library of models would result in a increased com-
plexity and a least robustness.
In another context, with cadastral limits, (Jibrini, 2002; Flamanc
and al., 2003) searches, from a set of planes for the best contin-
uous polyhedral surfaces enclosed in the cadastral limits. This
very generic modeling handles over-detection of planes. Our
strategy inherits form this method with extensions to deal with
vertical planes and to integrate external knowledge through ge-
ometric constraints in the choice of model representation and in
the reconstruction step.

1.3 Global Algorithm
We decide to model a building as any polyhedral surface with no
overhang whose external border is constituted of vertical planes.
This definition remains very general and can represent almost any
building seen from aerial images in urban area with exception of
curved building. The algorithm focuses on individual building
reconstruction with a focusing zone manually selected through a
threshold on altitude, although automatic methods could be used
instead. Multiple calibrated images (with a resolution of 25cm in
our case) or products computed from these images such as DEM
(Baillard and Dissard, 2000) are used. Figure 1 summaries the
general scheme of the system that can be subdivided in three main
steps: primitives detection, hypotheses extraction and choice of
the best representation together with geometric refinement. In
the primitives detection step, starting from correlation DEM and
a rough focusing zone, the algorithm extracts planar patches and
oriented portions of facades that represent the base primitives
(Figure 7(a)). In a second step, from the arrangement of planes
deduced from these base primitives, it builds up a 3D graph of
facets and then a so-called “compatibility graph” where the nodes
are the initial facets of the 3D graph and edges between two nodes
state that both facets belong to at least one common hypothesis of



building. In our scheme, buildings are modeled, in a very generic
way, as polyhedral volumes with no overhang and it is shown
that maximal cliques in the compatibility graph supply all the hy-
potheses of buildings that can be deduced from the arrangement
of planes. It thus extends the work of H. Jibrini to the cases where
vertical planes may be present. Before effectively computing all
the solutions by brute force search, some simplifications in the
initial 3D and compatibility graphs are made, based on DEM and
focusing mask, in order to reduce the crippling combinatory that
arise from the maximal cliques problem. Finally, in the set of all
the hypotheses extracted from the compatibility graph, the choice
of the final model is done through a bayesian formulation that en-
ables different kinds of observations to be taken into account (for
instance 3D segments, images, focusing zone). Model complex-
ity and a priori constraints on base primitives such as orthogo-
nality, parallelism, symetry, horizontality are also naturally intro-
duced to balance caricature needs and data adequacy. Geometric
refinement and constraints enforcement are finally performed on
the reconstruction to provide the final result.
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Figure 1: General overview.

2. 3D PRIMITIVES RECONSTRUCTION

As stated above, a focusing mask is provided to the algorithm
along with a horizontal “ground” facet FS that lies on a plane
z = zg (where zg defines the altitude of the ground) and whose
borders delineates the zone on which reconstruction takes place.
Non vertical Planar patches extraction is performed on a DEM
through a region growing algorithm whose details are given in
(Taillandier and al., 2003). The main characteristic of the algo-
rithm is its ability to integrate image constraints as well as 3D
segments to better delineate the patches.
Vertical planar patches (facades) detection is then performed
from the planar segmentation obtained at the previous step. Im-
age and 3D segments constraints enable indeed to obtain a much
better delineation of planar patches which is used as follows: each
border between two patches that represent an important altitude
gap is considered as a potential facade and polygonised. In the
same way, the borders close to the focusing mask are considered
as potential facades and polygonised. All facades are then ori-
ented, normals pointing towards the outer part of the building.
Whereas previous primitives are considered as base primitives,
3D segments are important in the final choice of the best repre-
sentation for the building thanks to their capabilities to enhance
the structure of the scene. The algorithm used is detailed in (Tail-
landier and Deriche, 2002). Its main characteristic lies in the

use of a true multi view technique for matching between 2D seg-
ments and the propagatation of uncertainty to validate matching
hypotheses. These 3D segments suffer from few errors and some
under-segmentation (roughly 30%) but are very precisely located.
Planar hypotheses (vertical and non vertical) are base primi-
tives for the following. For these primitives, emphasis is put
on exhaustivity and geometric precision. During the generation
of all building hypotheses, it is indeed essential that all impor-
tant planes equations (non vertical and vertical ones) be present
whereas planar delineation is of less importance.

3. MODELS GENERATION

3.1 Hypotheses

In the following, we will assume that all principal non vertical
and vertical planes are detected with emphasis put on geometry.
Erroneous planes are not critical insofar as this condition is met:
they will be filtered out in the model choice step. Furthermore,
all planes are oriented: normals pointing upward for non vertical
planes and normals pointing towards the outer part of the volume
for vertical planes.
Main steps of hypotheses generation and filtering as well as
model evaluation are illustrated on a real exmaple in figure 7.

3.2 3D Graph

A plane arrangement is deduced from the plane z = zg and all
detected non vertical planes and facades, it builds up a 3D graph
of facets. This graph is enclosed in a prismatic volume whose
base is FS , delimited by zg and a maximum altitude. All facets
of the graph are oriented from the planes they lie on (Figures 3(a)
and 3(b)).
Two adjacent facets are coherent along their common edge s if,
with the notations of figure 2(a):

[s,v1,n1].[s,v2,n2] < 0 (1)

where [a,b, c] stand for the triple scalar product. Intuitively, two
facets are coherent if, assuming the normal points towards the
“exterior” of a volume, the normal direction remains coherent
when switching from one facet to the other one. Figure 2 shows
some counterexamples.
We call admissible surface a continuous polyhedral surface made
of coherent facets, whose horizontal projection on z = zg com-
pletely cover FS . An edge is said to be locally admissible if either
it belongs to the borders of FS either there are at least two facets
coherent along it. A facet is locally admissible if it is locally
admissible along its bordering edges. A facet is admissible if it
belongs to at least one admissible surface. Two facets are com-
patible if they belong to at least one common admissible surface.
It is obvious that admissible facets are locally admissible. Once
again, intuitively, an admissible surface keeps a coherent normals
direction along its facets. It can also be shown that, given our
context and especially normals orientations (normals pointing up-
wards for non vertical planes), an admissible surface is a contin-
uous polyhedral surface with no overhang.

3.3 Graph simplifications

In the 3D graph, facets that are locally non admissible are recur-
sively suppressed. These are facets hanging on the lateral and top
parts (not the base that is part of the 3D graph) of the virtual pris-
matic volume. Non vertical facets touching the plane z = zg are
then also recursively removed.
From this point, on any admissible surface, all connected sets of
facets that are not included in plane z = zg are one building
as defined previously. the search for all building models derived
from data boils down to the search for all admissible surfaces. An
admissible surface can however include more than one building



(a) Planes (b) Initial 3D Graph (c) Initial simplifi-
cations
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Figure 3: Main Steps of graph simplification. Schematic view.
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(a) two coherent facets (b) some non coherent facets

Figure 2: facets coherence.

which may be interesting to overcome focusing errors.
Before exhaustive search of all solutions, which will be shown to
be NP-hard, it is necessary to reduce the number of facets. All
facets of the 3D graph non included in a volume defined by a
tolerance band around a DEM are suppressed. In the same way,
some simplifications are made using a tolerance band around the
focusing mask. Main steps of graph simplifications are recalled
in Figure 3.

3.4 Solutions

In this section, one focuses on search of admissible surfaces,
which gives the solution to our problem as mentioned above. The
principle of maximal stable or independent set is used as in (Jib-
rini, 2002). Thus it is necessary to derive a compatibility graph
Gc from the filtered 3D graph G. The procedure used to derive
the graph Gc on which all computations are made are described
in the next paragraphs and illustrated in Figure 4 but proofs are
not detailed for readability. However most of the demonstrations
rely on the property already mentioned that an admissible surface
is a polyhedral surface with no overhang.
For each non vertical facet f of G, all facets whose projection on
the plane of f intersects f are virtually recursively suppressed. if
the resulting virtual graph G̃ is non empty, then it can be proven
that f is admissible and that all admissible facets remaining in G̃
are compatible with f .
Then for each vertical facet v, all non vertical facet non com-
patible with v as computed before are recursively and virtually
removed. One can thus determine whether v is admissible and
which facets are compatible with v.
At the end of this process, on can derive a compatibility graph
Gc in which each node is an admissible facet of G and each edge
links two compatible facets. As in (Jibrini, 2002), the admissible
surfaces of G are the maximal cliques of Gc or in an equivalent
way, the admissible surfaces of G are the maximal independent
sets of Ḡc. We recall that a clique is a set of nodes of a graph that
are all pairwise connected. A maximal clique defines a clique for
which no node can be added while keeping this property. Con-

Figure 4: Compatibility computations. All admissible facets in
hatched areas are compatible with the blue facet.

versely, an independent set is a set of nodes such that for any
pair of nodes, there is no edge between them. It is maximal if no
more node can be added and it still be an independent set. The
equivalence between admissible surfaces and maximal cliques is
therefore natural: each facet of an admissible surface Σ is com-
patible with all the other facets of Σ and no facet can be added
since an admissible surface, by definition, covers the whole sur-
face of FS .
The search for admissible surfaces boils down to a search for
maximal cliques, which is unfortunately a NP-hard problem. One
can however find efficient algorithms to solve for these solutions
(Bron and Kerbosch, 1973) and enable a deep study in our pecu-
liar graphs. Figure 5 illustrates the relation between G, Ḡc and the
search for admissible surfaces.
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Figure 5: 3D simplified graph G (top-left) and its incompatibility
graph Ḡc (bottom-left) along with all the solutions, as graphical
representation or as maximal independent set.

4. MODEL SELECTION AND GEOMETRIC REFINING

4.1 Bayesian Formulation

The preceding section exhibits a set of possible hypotheses of
surfaces M. Consider a set of observations D that will be used to
choose the “best” model for the focusing zone. Using a bayesian
formulation, one looks for the model M̂ such that:

M̂ = argmax
M∈M

P (M | D) (2)



Using Bayes theorem, it comes:

P (M | D) =
P (D | M) · P (M)

P (D)
(3)

where P (D) does not depend on the model M , thus

M̂ = argmax
M∈M

P (D | M) · P (M) (4)

We use images I , 3D segments S and focusing mask Ma as
observations D although any additional observation could be
used (laser points clouds, manual selection, cadastral maps for
instance). Assuming independence between these observations
leads to

M̂ = argmax
M∈M

P (S | M) ·P (I | M) ·P (Ma | M) ·P (M) (5)

The model probability P (M) depends on the model complexity.
As recalled in section 1.1, one looks for the simplest model, given
the observations. The model probability is linked to the minimum
description length through:

P (M) = C exp
−L(M)

β (6)

where C is a normalization factor common to all models of M
that will be omitted in the following. β tunes the level of carica-
ture desired. A study on the influence of this parameter is done in
section 5.

4.2 Model Formulation

Constraints Inferring As stated above, constraints on prim-
itives represent the external knowledge brought in the decision
process to guide the choice of M̂ . That way, we can also inte-
grate architectural knowledge to favor some types of architecture
when ambiguities remain in the choice of the model.
Constraints are first inferred on normals of the base primitives.
We adopt the principles of the system described in (Grossmann,
2002) since this system is used for enforcing constraints in the re-
construction. The algorithm uses one threshold σ^. Normals are
first clustered by angular proximity, thus grouping approxima-
tively parallel normals. For each cluster, a direction, average of
the clustered normals, is defined. This process ensures that mini-
mum angular distance between two directions is σ^ and handles
parallelism constraints in the model.
A constraint graph is then deduced from these directions that are
nodes of the graph, whereas edges represent constraints between
directions: orthogonality, horizontal cross product (stating that
the intersection of both planes is horizontal, which is usual in ur-
ban environment) and vertical symmetry. An edge is created if
the relation is verified in the angular tolerance σ^. Each edge q is
valued with a weight C(q) related to the number of degree free-
dom that the constrain suppress on normal coordinates (Figure 6).
This will be of primary importance to integrate constraints in the
choice process (see next).

Notations FM , EM and VM define respectively the number
of facets, edges and vertices for a given model M . PM , RM

represent the number of non-vertical directions and vertical di-
rections used in the models (after the clustering process) and
DM = PM + RM the total number of directions. Finally CM

is the number of constraints on directions in the model (the num-
ber of edges in the constraints graph related to M ). The basic
idea for complexity computations follows the principles edicted
in (Kolbe, 1999) based on the transmission of information related
to the model: topological, geometrical and constraints.
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Figure 6: Constraints graph. The 4 facades have been grouped
into only 2 directions. Valuations on edges depend on the type of
constraints.

Topological description Topological description for a facet f

consists of the enumeration of its | f | points V
i
f and its direction

Df , leading to:

Lt(f) =| f | log(VM ) + log(DM ) (7)

When summed on all the facets, it simplifies to

Lt(M) = 2 · EM log(VM ) + FM · log(DM ) (8)

Geometrical description Assuming each coordinate can be
coded on 12 bits (which gives a 1cm precision for point, given
a building of roughly 40 meters and a largely enough precision
on angular measures), we can enumerate directions and points
coordinates. Each facet brings also | f | −1 planarity equa-
tions such as Df

T · (Vi
f − V

j

f ) = 0, thus reducing the number
of degrees of freedom and therefore coordinates that need being
coded. Finally, it comes:

Lg(M) = (2 ∗ PM + RM + 3VM −
∑

f

(| f | −1)) ∗ 12

= (2 ∗ PM + RM + 3VM − 2EM + FM ) ∗ 12

(9)

Constraints Each admissible surface uses some directions and
thus defines a subgraph of the initial constraints graph. Each edge
in this subgraph represents a constraint inferred on the model.
This constraint is coded with its type (orthogonality, vertical sym-
metry for instance), directions it links and the value C(q) related
to the type of the constraint q. Noting | c | the number of types
of constraints (3 in our case) and assuming constraints are inde-
pendent bring

Lc(M) =
∑

q

(log(| c |) + 2 log(DM ) − C(q) ∗ 12) (10)

Global Model Global model L(M) sums up the three previous
terms and thus takes into account topogical, geometrical com-
plexity as well as external information brought by constraints.
Complex models are penalized by this function whereas sim-
ple, symmetrical models and models embedding some usual con-
straints are conversely favored.

4.3 Observations

Images As for observations related to image, the model score
is given by correlating in all images the set H(M) of non vertical
facets that do not belong to z = zg . Let us note SP (M) the
surface of H(M) projected on z = zg and | SP (M) | its area.



By noting f(x, y) the altitude given by a facette f ∈ H(M) at
location (x, y), the score is:

P (I | M) =
∑

f∈H(M)

∑

(x,y)

C(x, y, f(x, y))

| SP (M) |
(11)

where, in multi-image context, the correlation score is the one
proposed in (Paparoditis and al., 2000) normalized by the number
of images n:

C(x, y, z) =
Var
(
∑

i
vi(ui, vi)

)

n ·
∑

i
(Var (vi(ui, vi)))

∈ [0..1] (12)

where each correlation window centered on (ui, vi) in image Ii

is represented by a vector vi(ui, vi). (ui, vi) is the projection of
(x, y, z) through known projection matrix from image Ii. Note
that the cube of correlation scores can be precomputed which
speeds up evaluations.

3D segments 3D segments bring important information on
structure of the scene. Being reconstructed independently of the
planes, they can give very good evidence on presence of some
edges. For each 3D segment s, an edge a is matched if angular
deviation is lower than a threshold θs and if distance deviation is
lower than another threshold ds, it will be noted aRs. For each
matched edge, the overlap score r(a, s) of s by a is used for prob-
ability computation: but errors of the 3D segment detector must
be taken into account and thus a default value for fake matching
(which is assumed to be the case when a 3D segment is matched
to no edge) εs is thus attributed, leading:

P (s | M) = min

(

max

(

∑

aRs

r(a, s)

‖s‖
, εs

)

, 1

)

(13)

For the set of 3D segments, assuming they are independent, it
follows:

P (S | M) =
∏

s∈S

P (s | M) (14)

Focusing mask One measures the mask overlap by H(M)
compared to the union of mask and planimetric surface, which
leads to

P (Ma | M) =
| SP (M) ∩ Ma |

| SP (M) ∪ Ma |
(15)

4.4 Building Extraction and Geometric Refining

From the chosen admissible surface, it is trivial to extract con-
nected sets of facets not touching the plane z = zg , thus extract-
ing only roofs structures. Let us emphasize that several buildings
can be present on one focusing area as well as roofs integrating
altimetric discontinuities.
The set of all admissible surfaces hypotheses is build up from an
arrangement of planes in which it is difficult to handle 4 planes
intersection. As a post-processing step, topological inconsisten-
cies are corrected by a simple snapping algorithm.
Another post-processing step enables also to enforce constraints
in the real reconstruction so as to give a much more regularized
shape. This important step based on (Grossmann, 2002) will not
be detailed here due to lack of space.

5. RESULTS AND DISCUSSIONS

Figure 7 shows the main steps of th algorithm on an example. The
projection of the result with and without enforcing constraints
proves the gain of this step in the reconstruction. Figure 8 shows
the results on 45 buildings with 6 images at resolution 25cm and
β = 75. By visual inspection, 75% of reconstructions are “ac-
ceptable”, meaning they perfectly fit the reality or the given cari-
cature is an acceptable generalization of the reality. Right part of

(a) Focusing mask, facades, planar patches and 3D segments.

(b) arrangement of planes and filtered 3D Graph.
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(c) Exhaustive search of solutions.

(d) The final solution in 3D and projected on an orthophoto, before and after
enforcing constraints.

Figure 7: Main steps on an example.



Figure 8: Some results projected on an orthophoto.

Figure 9: Influence of β.

the figure proves the ability of the algorithm to reconstruct com-
plex buildings.
β is a critical parameter. It tunes the ratio between data adequacy
and caricature needs. Figure 9 shows the influence of beta on the
model given by the algorithm. This parameter is to be set accord-
ing to the degree of caricature desired for an application.

6. CONCLUSION AND PERSPECTIVES

We have presented a novel algorithm for automatic building re-
construction from multiple aerial images. Compared to model-
based methods, it uses a very generic modeling of buildings, not
restraint to a small number of shapes. Compared to data-driven
approaches, external knowledge is introduced through favored
constraints on primitives. Some promising results are presented
that show the validity of the approach. Future work will include
integration of cadastral maps in the system and evaluation of the
relative importance of each type of observation in the choice of
the final model. The need for heuristics to counter combinatorial
explosion of brute force search will also become mandatory when
dealing with bigger and more complex buildings.
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264, Zürich.

Taillandier, F. and Deriche, R., 2002. Reconstruction of 3D linear
primitives from multiple views for urban areas modelisation. In
PCV’02, volume 34:3B, pages 267–272.

Taillandier, F., Guigues, L., and Deriche, R., 2003. A framework
for constrained multi-scale range image segmentation. In ICIP,
Barcelona.


