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ABSTRACT: 
The object classification can play an important role in a lot of applications of airborne laserscanning data. The filtering process and 
the subsequent DTM generation using airborne laserscanning data can be significantly improved by classification of non-terrain 
objects (e.g. vegetation, buildings etc.). On the other hand classification can be also the first step of object-specific modelling, like 
vegetation or building reconstruction for 3D city models, design of telecommunication networks, urban planning or disaster 
management.  
A pixel-wise classification – especially when using laserscannning data - is limited in terms of reliability of its results. Therefore, the 
first step of this approach will be a segmentation of 3D objects. For each segment object-specific features (e.g. height texture, shape 
etc.) are extracted and used for subsequent classification process. In this phase the method is based on  raster data. 
For segmentation a normalised DSM (nDSM) is generated by subtracting the original laser data (DSM) from a rough DTM (created 
by a strong filtering of the DSM). Now 3D objects can be segmented by means of specific a region growing algorithm on this nDSM. 
Different kind of object-oriented features are calculated for each segment, like height texture, border gradients, first/last pulse height 
differences, shape parameters or laser intensities. For classification two methods have been applied, on one hand a fuzzy logic 
classification, on the other hand a statistical method (maximum likelihood). The fuzzy logic approach resulted in an overall 
classification rate of about 95% for test site ‘Salem’ (hilly terrain) and about 90% for test site ‘Karlsruhe’ (flat terrain). The 
confusion matrix for ‘Salem’ show that buildings were erroneous classified as trees (5%) resp. trees as buildings (4%). The most 
errors can be observed at terrain objects which are confused mainly with trees (7%). Investigations concerning the statistical 
approach are currently done. Results and a comparison with fuzzy logic approach will be presented in this paper. 
 
 

1. INTRODUCTION 

 
During the last years airborne laserscanning has become one of 
the standard data acquisition methods in the field of surveying. 
Starting from the extraction of digital surface and terrain models 
(DSM, DTM) a great variety of applications has been 
developed, like creation of 3D city models, determination of 
tree parameters in forestry or control of power lines, e.g. in 
Lohr (1999). At our institute we use laserscanning data in two 
different projects. On one hand detection and modelling of 
buildings is based on these data to recognize and classify rough 
damages after strong earthquakes. On the other hand a high 
resolution terrain models including the determination of 
vegetation areas (position, size, density and height of trees etc.) 
has to be extracted from airborne laserscanning data to model 
hydrologic processes, e.g. runoff models to simulate floods. 
 
For these purposes it is necessary to classify all 3D objects on 
the surface of the earth, i.e. mainly buildings and trees/bushes, 
in some cases also terrain objects like rough rocks which may 
be additionally included in the detected objects. Such a 
classification is the precondition for a class-specific modelling 
of buildings as well as vegetation objects. On the other hand the 
knowledge about the object type can be used for a significant 
improvement of the extraction of  terrain models by a class 
dependent filtering of the original laser point cloud. 
 
The first step of this approach is a segmentation of the 
laserscanning data for detecting 3D objects on the terrain. 
Inside these segments object-specific features will be extracted 

which are used in the subsequent classification process. Two 
classification methods has been used, fuzzy logic and a 
stochastic approach (maximum likelihood). The influences and 
dependences on different feature combinations as well as a 
comparison of the results of different classification 
schemes/schemata is the main topic of these investigations. 
 

2. DATA 

 
At this state of our approach all features are derived exclusively 
from laserscanning data itself without additional information 
like spectral images or GIS data. This is caused by specific 
restrictions in context of disaster management - as mentioned 
above - where data acquisition has to be carried out also during 
night time and poor weather conditions. On the other hand the 
potential as well as the limitations of analysing airborne 
laserscanning data should be investigated.  
 
For this approach data of TopoSys II sensor in raster format 
(grid size=1.0m) for two different test areas are used, Karlsruhe 
(urban environment, flat terrain, size: approx. 2km x 2km) and 
Salem - near Lake Constance (rural environment, hilly terrain, 
size: approx. 2km x 1km). Both areas were captured in first and 
last pulse mode while for test site Salem additionally laser 
intensity was registered. Figure 1 and 2 show an subset of these 
test sites. Salem data set was used by kindly permission of 
TopoSys (Germany).  
 
 



 

 
 

Figure 1. ‘Salem’ test area subset 
 

 
 

Figure 2. ‘Karlsruhe’ test area subset 
 

 
3. CLASSIFICATION OF 3D OBJECTS 

 
3.1 Definition of object classes 

As mentioned above, two test sites have been investigated, 
Salem and Karlsruhe. In this project, the most important aspect 
was to investigate classification quality obtained by analysing 
laserscanning data with fuzzy logic methods. Therefore, the use 
of all main classes necessary for the applications defined above 
were included: buildings, vegetation and terrain. At test site 
Karlsruhe the amount of classes had to be restricted to buildings 
and vegetation because only one (man-made) terrain object 
occurs due to an extremely flat surface of the earth.  
 
3.2 Segmentation of 3D objects 

Although this approach analyses raster data not the commonly 
used pixel based classification was preferred but an object 
oriented method based on the segmentation of 3D objects. Some 
other  works in this direction can be found e.g. in (Hofmann,  

 
 

Figure 3. Segmented objects of ‘Salem’ test site 
 

 
 

Figure 4. Segmented objects of ‘Karlsruhe’ test site 
 

Maas, Streilein, 2002; Schiewe, 2001, Lohmann, 2002). In most 
cases the image processing system eCognition (Definiens, 2001) 
is used. In opposite to these our approach is not based on 
general standard features but on the a-priori knowledge about 
the characteristic of the relevant 3D objects, i.e. about their 
specific appearance in laserscanning data (Voegtle, Steinle 
2003).  
 
In a first step of this approach a so-called normalised digital 
surface model (nDSM) is created to exclude the influence of 
topography (e.g. Schiewe 2001). For this purpose a rough 
filtering of the original laserscanning data (DSM) is performed 
to extract exclusively points on the ground (DTM). This 
filtering is based on our convex concave hull approach (von 
Hansen, Voegtle 1999) which results – by an accordant choose 
of the filter parameters - in a rough trend surface of the terrain 
(rough DTM) without vegetation or building points.  Now the 
resulting nDSM is calculated by subtracting this DTM from the 
DSM. In this data set all 3D objects on the surface of the terrain 
remain, in some cases also a few terrain objects are included 
caused by  rough rocks or sharp terrain edges. It is evident that 
this result hasn’t to be perfect because non-relevant objects – in 



 

this case the terrain objects – can be excluded after subsequent 
classification process.  
 
Favourably, the segmentation our relevant 3D objects is carried 
out in such a normalised surface model (nDSM) by a special 
region growing algorithm which extracts and separates 3D 
object areas. Starting point (crystallisation point) is a user-
defined neighbourhood of a point (e.g. N8) in this data set 
where all points exceed the minimal object height above ground 
(e.g. 2.0m). During an iterative process all new neighbouring 
points are included in this segment which have a height 
difference smaller than the maximal acceptable one 
(homogeneity criterion). This procedure results in separated 
areas of 3D object while very small and low objects are 
excluded. Fig. 3 and 4 shows the segmented objects of test site 
Salem and Karlsruhe. 

 
3.3 Feature extraction 

Inside the segmented object areas specific features for 
distinction of the relevant classes buildings, vegetation and 
terrain are extracted:  
 

• Gradients on segment borders  
• Height texture  
• First/last pulse differences  
• Shape and size 
• Laser pulse intensities  

 
The formerly tested feature direction of normal vectors was 
excluded, because of ambiguous results at smaller objects. 
 
Significant gradients along the border of segments contribute 
mainly to a discrimination of buildings/vegetation on one hand 
and terrain objects on the other hand. While buildings and trees 
generally show a high amount of border gradients in 
laserscanning data (70% - 100%) most segmented terrain 
objects – even if sharp relief edges are included – have at least 
at some parts of the segment borders smooth transitions to the 
surrounding terrain model. Therefore, the amount of significant 
border gradients decreases below 50% in these cases.  
 

 
 

Figure 5. Grey coded height texture (Laplace operator) 
 
In contrast height texture and first/last pulse differences allow 
the distinction of vegetation and buildings. Taking the shape of 
building roofs into account exclusively those height texture 

parameters seem to be useful that model the deviations from 
oblique planes which fits very well to the characteristics of 
buildings in laserscanning data. Suitable results can be obtained 
by the Laplace operator (Maas, 1999) or by local curvature 
(Steinle, Voegtle, 2001), i.e. the difference of subsequent 
gradients in the four directions across a raster point. Inside the 
roof planes of buildings small height texture values will be 
obtained while vegetation objects causes significant higher 
values (Fig. 5.). The differences of first and last pulse 
measurements show a similar characteristic. Building roofs 
normally consist of solid material, so - dependent on the slope 
of the roof plane - no or only smaller differences between first 
and last pulse measurements can be observed. In contrast at 
vegetation objects with its canopy partly penetrable for laser 
beams larger differences will occur. Additionally, a new 
parameter was developed and tested, the local variance 
differences of first and last pulse measurements. But this 
parameter contains nearly the same information as height 
texture and first/last pulse differences and, therefore, was 
excluded for the further investigations.  On principle high 
texture values as well as high first/last pulse differences can be 
observed at the border of both, buildings and vegetation. 
Therefore, only the interior part of the segment areas can be 
used for determination of these parameters to avoid 
disturbances by this effect.  

 

 
 

Figure 6. Grey coded first/last pulse differences  
 
The shape of segmented object areas may contribute to the 
discrimination of artificial (man-made) objects (e.g. buildings, 
bridges etc.) and natural ones (e.g. trees, groups of trees, rough 
terrain or combination of both). For determination of shape 
parameters the contour lines of each segment has to be 
extracted. Because working with segments of uniform (pixel) 
values and clearly defined borders a simple edge tracking 
algorithm can be applied to provide the 2D contour lines. After 
smoothing these lines, e.g. by the well-known Douglas-Peucker 
method (Douglas & Peucker 1973), shape and size of these 
polygons can be analysed. Former investigations have shown 
that commonly used standard parameters like roundness, 
compactness etc. don't fulfil the requirements which are 
necessary to distinguish between the object shapes in this 
application. Therefore, alternative parameters had been 
developed like geometry of the n longest lines, where at first the 
n longest lines of a contour polygon are selected (e.g. n=4). 
These lines are analysed in terms of parallelism and 
orthogonality. A measure is calculated which is 100 for perfect 



 

parallel or orthogonal lines and decreases proportional to 
increasing deviations from that. This shape parameter has 
proved to be suitable to distinguish artificial and natural objects 
in most cases, if their area is large enough. Small object sizes 
lead to ambiguities. Fig. 7 and 8 show examples of filtered 
contour polygons of typical building and vegetation objects 
respectively.  
 

 
 

Figure 7. Contour polygons of typical building segments 
 
 

 
 

Figure 8. Contour polygons of typical vegetation segments 
 
 

For one test site (Salem) laser intensities were available which 
are recorded by the new TopoSys II sensor. This additional 
information was also included in the test program. The intensity 
of   laser pulses depends highly on the characteristic of the 
reflecting material. In most cases buildings with commonly used 
rooftiles cause much higher or in the other case nearly the same 
intensity values than vegetation. An example of typical intensity 
characteristics of buildings and vegetation can be seen in Fig. 9. 
Some statistical values like minimum, maximum, average and 
RMS was determined for all features mentioned above. In every 
case the average value was selected for classification purposes 
as it has proved to be the most suitable one. 
 
3.4 Fuzzy classification 

The subsequent classification and its results depend on the 
preceding segmentation process because only segmented objects  

 
 

Figure 9. Laser pulse intensities with extracted building 
boundaries 

 
are classified. The fuzzy logic classification is based on the 
extracted features which have been described above. Fuzzy 
logic presents an opportunity to get answers to questions with a 
truth value in a range of 0 and 1. Fuzzy logic has been used in a 
wide range of applications, mainly in system controlling, and 
supports classification processes as well. The uncertain and 
often contradictory information can be handled and quite 
accurate results may be obtained. The fuzzy theory tries to blur 
the boundary between membership and non-membership. 
Therefore the elements can be members, non-members and 
partially members as well. The basic idea is to model this 
uncertainty of classification parameters (features) by so called 
membership functions. A user has to define such a membership 
function for every parameter and every class (fuzzification). 
They may be built up by straight line sections in order to make  
computation easier, but also functions of higher degree can be 
defined dependent on the respective application. But in practice 
it has been proved that different approach don’t effect the 
results too much. Normally, membership functions are defined 
in an empirical way by means of training samples visually 
selected and interpreted by an operator. In this case about 25 
segments have been chosen for each class. Histogram analysis 
may help to determine the parameters of membership functions, 
but a control and – if necessary – an improvement of these 
functions should be done in every case. These membership 
functions have proved to be quite stable and robust independent 
on different locations (Voegtle, Steinle 2003).  
 
A concrete value of feature i leads – by means of the 
corresponding membership function – to the related degree of 
membership µi,j for every class j, in this project j=3 
(buildings/vegetation/terrain). All membership values for the 
same class j have to be combined for a final decision (inference 
process). The original Zadeh-type operators are used, such as 
minimum, maximum and product, besides this a weighted sum 
was tested also. The minimum, maximum and product operator 
for a class can be defined as:  
 
 

µ (A∧B∧C) (x) = min (µ A (x), µ B (x) , µ C (x)) 
µ (A∨B∨C) (x) = max (µ A (x), µ B (x), µ C (x)), 

µ (ABC) (x) = µ A (x) * µ B (x)* µ C (x), 



 

 
where  A, B, C = extracted features 
 µ A, µ B, µ C = degree of membership of the features 
  
For the minimum operator the truth value of the result is 
defined by the minimum truth value of the used features which 
is the logical AND implementation in fuzzy environment. 
Similarly, the maximum truth value of all used features 
determine the truth value of a class by the maximum operator. 
This operator is used in fuzzy as logical OR. For these two 
operators, the fuzzy sets of the classes should constitute 
complementary membership functions, so the sum of the 
degrees of membership for every feature value should be 1. 
Therefore, the elements are classified into non-correlated 
classes and all features are taken into consideration with the 
same importance. In cases where the sum of the degrees of 
membership is more than 1, the accordant feature plays a more 
important role in the calculation. Using the product operator 
this is of lower importance, since only the differences between 
the truth values of the classes for a feature cause differences in 
the final result. For calculation of a weighted sum, an individual 
weight is assigned to each feature. This weight may be constant 
to express the reliability of a certain feature in general, but also  
variable depending on another feature. For example, the shape 
parameter geometry of n longest lines expresses the parallelism 
and orthogonality of these lines. However, the reliability of this 
feature depends on the size of the object. It can be observed that 
this feature provides more reliable values if larger segments are 
concerned while at smaller segments only short contour lines 
can be extracted which leads – due to noise and rastering effects 
– to increasing deviations from parallelism and orthogonality.  
 
The inference procedure results in a crisp value for each 
segment and class. In every case the final decision is based on 
the maximum method, i.e. the class of highest probability will 
be assigned to the corresponding segment. As an example the 
confusion matrix for the product operator in shown in Table 1. 
In Table 2 the results obtained by different inference operators 
are assembled for both test sites. It is obvious that the results are 
not independent on the respective operator. Using a 
combination of all available features the minimum and 
particularly the maximum operator provide results of lower 
classification rates. For test site Salem this tendency is more 
significant than for Karlsruhe. Product and weighted sum 
method achieve higher classification rates of similar dimension. 
Other combinations where not all features were included lead to 
increasing differences. 
 

Product Buildings Vegetation Terrain 
Buildings 95 5 0 
Vegetation 4 96 0 

Terrain 0 7 93 
 

Table 1. Confusion matrix for the product operator (Salem) 
 

 
Operator Karlsruhe Salem 
Product 90 95 

Weighted sum 90 94 
Minimum 88 64 
Maximum 87 74 

 
Table 2. Classification results by different operators in fuzzy 

logic 
 

 
 

Figure 10. Classified segments (red- building, blue- terrain, 
green- vegetation) 
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+ + + + + 95 96 93 95 
+  + + + 93 96 80 92 
+ +  + + 84 79 87 84 
+ + +  + 96 88 93 94 
+   + + 85 67 73 80 
 + + + + 93 96 80 92 
  + + + 83 96 93 87 

+ + + +  89 79 93 88 
+ + +   93 38 93 81 

 
Table 3. Feature combinations for test area Salem 
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+  + + 93 85 89 
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  + + 90 89 90 

 
Table 4. Feature combinations for test area Karlsruhe 

 
Due to this quality assessment of different inference operators  
product has been selected as standard operator for subsequent 
investigations. To compare the reliability of the defined features 
and to demonstrate the influence of each of them 9 different 
feature combinations have been calculated and the influence of 
missing features has been observed, whereas the independence 
of the features was assumed. These feature combinations and 
their results can be seen in Table 3 and 4. Besides the individual 
class-related values also an overall classification rate has been 
included. The results show that the amount of significant border 



 

gradients which should separate terrain objects has evidently no 
influence on the results in test site Karlsruhe. Comparing 
first/last pulse differences and height texture which both 
contribute to discriminate buildings and vegetation, it is 
obvious that height texture is of less importance because the 
averaged improvement of classification rate is only about 1% to 
3%. For first/last pulse differences this value is about 7% to 
10%. Adding the shape parameter to the feature combination 
only at test site Karlsruhe a slight improvement of the results 
(about 2%) can be observed due to the higher amount of larger 
buildings compared to rural region of Salem. The intensity 
values – only available for test site Salem – contribute 
significantly to the classification success. An increase of about 
7% was achieved.  

 
3.5 Maximum-likelihood classification 

Besides the fuzzy logic approach with different inference 
operators also a statistical classification method has been 
applied to be able to compare the fuzzy logic results with a well 
proven standard approach and to discuss the differences. A 
maximum likelihood classification was chosen for this purpose. 
To obtain reasonable results exactly the same training and 
control objects has been used in this classification.  
 
The results for both test sites Karlsruhe and Salem - based on 
the combination of all parameters - are assembled in Table 5. 
For reasons of comparison also the main classification rates of  
fuzzy logic are included in this table.    
 

 Test site Class. 
rate 

buildings 

Class. rate 
vegetation 

Class. 
rate 

terrain 

Overall 
class. 
rate 

Salem 95 96 93 95 Fuzzy 
logic Karlsruhe 89 90 - 90 

Salem 96 96 93 95 Max.- 
lik. Karlsruhe 92 86 - 89 

 
Tab. 5 Comparison of main classification rates between fuzzy 

logic and maximum-likelihood method 
 
It is obvious that classification rate of vegetation in test site 
Karlsruhe is higher for fuzzy logic than for maximum likelihood 
but contrary for building while the total classification rate is the 
same. These differences are caused by the influence of the 
definition of membership functions in the fuzzy logic approach. 
Even a modification of the related membership functions in 
order to increase the classification rate of buildings would 
inevitably lead to an accordant decrease of classification rate for 
vegetation, so the resulting overall classification rate would 
remain nearly the same. The results of both methods are in the 
same dimension if all available features are used. If 
combinations of only a few features are applied no definite 
assessment can be made. For test site Karlsruhe fuzzy logic 
seems to provide better results while it is a contrary situation for 
Salem. The advantage of fuzzy logic may be that the 
transferability to other locations seems to be easier especially 
for applications where only a few training areas/objects are 
available due to its robust membership functions.  
 
 

4. CONCLUSION  

Using a priori knowledge about the characteristics of 3D objects 
in laserscanning data for definition and extraction of object-

relevant features suitable results can be achieved using fuzzy 
logic or maximum likelihood classification. An improvement 
may be possible by introducing a hierarchical classification 
scheme based on a set of rules. Such a logical decision structure 
will be implemented in the next phase of this project to 
overcome some disadvantages of standard inference operators 
like they were used in these investigations. Additionally a post-
segmentation has to be integrated in this approach to separate 
different object types which are erroneously combined to one 
segment, e.g. vegetation objects which are located directly 
beside a building.  
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