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ABSTRACT: 
 
Recently, it has become much easier to obtain commercial high-resolution satellite imagery (HRSI), and application of IKONOS 
satellite imagery to 3D positioning has recently been investigated, with sub-meter accuracy being achieved.  Image matching is one 
of the most fundamental processes in geopositioning from multi-image HRSI.  Least squares matching and cross correlation 
matching are the most basic and popular techniques applied by photogrammetrists.  These techniques, however, have most often 
been used independently.  This paper presents the initial results of a comparative analysis of these two image matching techniques.  
Initially, the relationship between the two techniques is described.  Maximising the cross correlation coefficient is equal to 
minimising the sum of squared distances between observed points and a regression line in feature space. This interpretation leads to 
principal component regression.  By using principal components, the cross correlation coefficient can be maximised in the same way 
as in least-squares estimation.  Accordingly, we develop a cross correlation matching which includes not only translation but also 
deformation (affine and projective transformation).  The least squares matching and cross correlation matching are applied to an 
IKONOS stereo pair, and the characteristics and results of applying the matching techniques are discussed.  
 
 

1. INTRODUCTION 

Recently, it has become much easier to obtain commercial high-
resolution satellite imagery (HRSI), and application of 
IKONOS satellite imagery to 3D positioning has recently been 
investigated, with sub-meter accuracy being achieved (e.g. 
Fraser et al, 2002 and Fraser & Hanley, 2003). 
 
Image matching is one of the most fundamental processes in 
geopositioning from multi-image HRSI.  So far, various 
techniques have been developed in order to automatically match 
multiple images (Brown, 1992).  These techniques can also be 
applied to camera stabilization, object detection, the tracking of 
moving objects, camera motion determination, image 
compression, and so on.  Least-squares matching and cross 
correlation matching, as area-based approaches, are the most 
basic and popular techniques applied by photogrammetrists.  
These techniques, however, have most often been used 
independently.   
 
Least-squares matching is a mature development and it has 
proven to be a most powerful matching technique (Gruen, 1985, 
Gruen and Baltsavias, 1988).  The method can deal with scene 
deformation.  On the other hand, cross correlation matching 
includes only translation.  Accordingly, cross correlation 
matching has an obvious limitation.   
 
This paper presents the initial results of a comparative analysis 
of these two image matching techniques. Initially, the 
relationship between the two is described.  Based on this 
relationship, the cross correlation coefficient can be maximised 

in the same way as in least-squares estimation.  Accordingly, 
we develop a cross correlation matching which includes not 
only translation but also deformation.  It is important to point 
out here that our final goal is a contribution to the matching of 
multi-temporal and multi-resolution images, be they IKONOS, 
QuickBird or aerial images. 
 
 

2. LEAST-SQUARES MATCHING 

2.1 Least-Squares Approach 

Assumed are two image windows given as discrete functions 
f(x, y), g(x’, y’), where f is a master image, g is a slave image 
and x, y, x’, y’ are the image coordinate with window size of M 
x N pixels.  Objective function of the least squares matching is 
as follows: 
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Affine transformation is applied with respect to coordinates 
(x, y) and (x’, y’) (Gruen, 1985, Gruen and Baltsavias, 1988): 
 
 x’ = ax + by + c,  y’ = dx + ey + f. (2) 
 
Projective transformation is also applied (Szeliski, 1996): 
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2.2 Optimization Method 

The Gauss-Newton method has been widely used to perform the 
minimization of Equation 1, since the equation represents an 
unconstrained nonlinear optimization problem. The method, 
however, does not display good convergence properties when 
the functions have inflection points. The Levenberg-Marquardt 
method works very well in practice and has been becoming a 
standard for nonlinear least-squares routines (Press et al, 1988).  
The method requires computation of the partial derivatives of ei 
with respect to the unknown parameters pi (affine: i = 1 – 6, 
projective: i = 1 – 8), 
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When the affine transformation is applied, the partial 
derivatives are derived as follows: 
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In the case of projective transformation they become: 
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where 1i i iD px qy= + + . 
 

To compute partial derivatives 
'

g
x
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, a consistent 

gradient operator (Ando, 2000) is applied.  When the window 
size is set as 3 x 3, the gradient operator with respect to x and y 
is represented as follows: 
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From these partial derivatives, the Levenberg-Marquardt 
algorithm computes an approximate Hessian matrix A and the 
weighted gradient vector b with components  
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and the following linear equation is obtained: 
 

 ( )λ δ+ =A I p b , (9) 
 
where λ  is a time-varying stabilization parameter, and I is the 
identity matrix.  As λ  approaches 0, Equation 4 goes over to 
the Gauss-Newton method.  On the other hand, when λ  is very 
large, it corresponds to the steepest descent method.  Normally, 
an initial value of λ  is given as around 0.001 and the parameter 
estimate p is updated by an amount  
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3. CROSS CORRELATION MATCHING 

3.1 Relationship between Least-Squares Matching and 
Cross Correlation Matching 

The function of Equation 1 can be expanded as follows, 
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Since the first term is constant, it can be ignored for the moment.  
The third term depends upon (x’, y’).  If it is constructed such 
that the value depending upon it is not to change, the 
normalized cross correlation can be obtained. 
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and f , g  are the means of the intensity of the master and 
slave image, respectively.  When the evaluation value for 
optimization is set as per Equation 9, we can apply cross 
correlation matching.   
 
3.2 Signal-to-Noise Ratio 

Consider the cross correlation between f and g, with white noise 
n: 
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The signal-to-noise ratio (SN ratio) R is computed as follows: 
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The maximum SN ratio means that optimal matching is 

accomplished.  From 0R∂
=

∂f
, optimal matching is achieved 
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If the slave image g is equivalent to the master image f, the SN 
ratio becomes a maximum.  The cross correlation is then 
optimal in the sense of the SN ratio, and is robust against noise. 
 
3.3 Expansion of Regression Model 

So far, since it has been assumed that the errors exist only in the 
slave image (g-axis), a minimization of the sum of squared 
differences from a regression line in the g-axis has been 
performed (Figure 1).   
 

 
Figure 1. Errors only in slave image 

 
However, it is plausible that the errors exist in both the master 
and slave image.  In such a case, we have to minimize the sum 
of squared distances from observed points to the regression line 
(Figure 2).  
 

 
Figure 2. Errors in both master and slave images 

 
This kind of regression model is known as principal component 
regression (Greene, 2000).  The principal component regression 
is applied to the intensity values of both master and slave 
images: 
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where, z is the principal component vector, 11 12

21 22
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an orthogonal matrix consisting of the eigen vectors of XXt.  
Since only the z2-axis is related to minimization of 2d∑ , the 
objective function of the principal component regression is 
formulated as follows: 
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To perform the minimization, the Levenberg-Marquardt method 
is again applied:  
 
 ( )λ δ+ =A I p b , (20) 
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The optimization can be carried out in the same way as 
described in Section 2.2.   
 
3.4 Matching Process 

The results obtained using both methods, least-squares 
matching and cross correlation matching, will very much 
depend on the initial values of parameters.  In order to assign 
initial values, a matching process is followed: 
 

1. roughly specify conjugate points at the four corners of 
the images by manual means; 

2. transform the master image to slave image by using 
affine transformation; 

3. set the image patch at the feature points in the master 
image; 

4. apply cross correlation matching, including only 
translation to search for the initial location; 

5. apply least squares matching or cross correlation 
matching (including deformation); and 

6. continue the iterative procedure of the Levenberg-
Marquardt method until the solution converges or a 
given number of iterations is reached. 

 
 

4. EXPERIMENT 

4.1 Comparison of least-squares and cross correlation 
matching 

Least-squares matching and cross correlation matching have 
been evaluated using an IKONOS Geo panchromatic stereo 
image pair covering an area of 7 x 7 km over central Melbourne 
(Figure 3).  Figure 4 shows an enlarged portion of the stereo 
image with feature points, these having been selected to as 
clearly image identifiable points.   



 

We applied the following methods to the IKONOS stereo 
image: 

a) Least-squares matching including affine transformation, 
b) Least-squares matching with projective transformation, 
c) Cross correlation matching with affine transformation,  
d) Cross correlation matching with projective transformation. 

The window size and search area to set the initial position were 
determined through trial and error: 

• Window size: 15 x 15 pixels, 
• Search area: 30 x 30 pixels. 
 

 
 

 
Figure 3. IKONOS Geo panchromatic nadir image of Melbourne 

 
 

     
                                                    (a) master image                                                      (b) slave image 

Figure 4. Area within the IKONOS stereo image pair. 
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Table 1. Results using least-squares matching 

 
Table 2. Results using cross correlation matching 

 
 
The experimental results are summarized in Tables 1 and 2 for 
the example shown in Figure 4.   
 
The results obtained using the cross correlation matching, all of 
which accomplished sub pixel accuracy, are better than those 
achieved using least-squares matching.  It was initially assumed 
that projective function would result in the best improvement,  
however affine transformation was more effective in some cases.   
 
 

5. CONCLUSIONS 

The conclusions of this paper are as follows: 
 
• An improvement to the standard method of least-squares 

matching is possible, in regard to optimization. 
• The relationship between least-squares matching and 

cross correlation matching has been confirmed. 
• Cross correlation matching can be formulated to include 

image deformations. 
• An experimental comparison between least-squares 

matching and cross correlation matching by using 
IKONOS stereo imagery has been demonstrated. 

 
Geometrically constrained matching could be expected to 
further improve accuracy, though this paper has not dealt with 
geometric constraints.  Nevertheless, the cross correlation 
matching yielded positive results.  It indicated that the method 
has potential to be a powerful matching strategy. 
 
Verification of the stability of the method needs to be further 
investigated by applying various conditions (illumination and 
location, including central city with high buildings, suburbs, 
mountain area, etc.). So far, this application has been relatively 
restricted.   
 
As mentioned above, our final goal is to make a contribution to 
the matching of multi-temporal and multi-resolution images, 
including IKONOS, QuickBird and aerial imagery. It will 
require a combination with other techniques, especially those 
related to change detection and resampling. 
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 Coordinates 
(master) 

Coordinates 
(slave) 

Affine  
ransformation 

Discrepancies
(pixels) 

Projective 
transformation 

Discrepancies 
(pixels) 

1 (381, 220) (379, 238) (379.6, 238.4) 0.69 (379.2, 238.0) 0.24 
2 (205, 350) (205, 369) (206.7, 367.7) 2.10 (208.3, 367.6) 3.62 
3 (91, 285) (91, 304) (94.9, 303.8) 3.88 (93.7, 303.8) 2.73 
4 (112, 107) (111, 125) (110.2, 123.1) 2.07 (109.7, 123.4) 2.04 
5 (246, 39) (237, 55) (237.1, 55.6) 0.65 (237.1, 56.6) 1.61 

Average    1.88  2.05 

 Coordinates 
(master) 

Coordinates 
(slave) 

Affine  
ransformation 

Discrepancies
(pixels) 

Projective 
transformation 

Discrepancies 
(pixels) 

1 (381, 220) (379, 238) (379.1, 238.3) 0.33 (379.0, 238.2) 0.22 
2 (205, 350) (205, 369) (205.3, 368.7) 0.48 (205.0, 369.0) 0.00 
3 (91, 285) (91, 304) (91.0, 304.0) 0.00 (91.0, 303.8) 0.24 
4 (112, 107) (111, 125) (110.5, 125.1) 0.54 (110.4, 125.2) 0.64 
5 (246, 39) (237, 55) (237.5, 54.9) 0.51 (237.2, 53.9) 1.10 

Average    0.38  0.44 


