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ABSTRACT: 
 
Recent developments in sensor technology make possible Earth observational remote sensing systems with high spectral resolution 
and data dimensionality. As a result, the flow of data from satellite-borne sensors to earth-stations is likely to increase to an 
enormous rate. This paper investigates a new on-board unsupervised feature extraction method that reduces the complexity and costs 
associated with the analysis of multispectral images and the data transmission, storage, archival and distribution as well. Typically in 
remote sensing a scene is represented by the pixel-oriented features. It is possible to reduce data redundancy by an unsupervised 
object-feature extraction process, where the object-features, rather than the pixel-features, are used for multispectral scene 
representation. The proposed algorithm partitions the observation space into exhaustive set of disjoint objects. Then, pixels 
belonging to each object are characterized by object features. Illustrative examples are presented, and the performance of features is 
investigated. Results show an average compression more than 25, the classification performance is improved for all classes, and the 
CPU time required for classification is reduced by a factor of more than 25, and some new features of the scene have been extracted. 
 
 
 

1. INTRODOCTION 

On-line data redundancy reduction is especially important in 
data systems involving high resolution remotely sensed image 
data which require related powerful communication, archiving, 
distribution and scene analysis. A complex scene is composed 
of relatively simple objects of different sizes and shapes, each 
object of which contains only one class of surface cover type. 
The scene can be described by classifying the objects and 
recording their relative positions and orientation. Object-based 
scene representation can be thought of as a combined object 
detection and feature extraction process. The object extraction 
is a process of scene segmentation that extracts similar groups 
of contiguous pixels in a scene as objects according to some 
numerical measure of similarity. Intuitively, objects have two 
basic characteristics: they exhibit an internal regularity, and 
they contrast with their surroundings. 
 
Because of the irregularities due to the noise, the objects do not 
exhibit these characteristics in an obvious sense. The ambiguity 
in the object detection process can be reduced if the spatial 
dependencies, which exist among the adjacent pixels, are 
intelligently incorporated into the decision making process. The 
proposed multispectral image compression algorithm is an “on-
line pre-processing algorithm that uses unsupervised object-
feature extraction” to represent the information in a 
multispectral image data more efficiently. This algorithm 
incorporates spectral and contextual information into the object-
feature extraction scheme. The algorithm uses local spectral-
spatial features to describe the characteristics of objects in the 
scene. Examples of such features are size, shape, location, and 
spectral features of the objects. The local spatial features (e.g., 
size shape, location and orientation of the object in the scene) of 
the objects are represented by a so-called spatial-feature-map; 

the spectral features of an object are represented by a d-
dimensional vector. The technique is based on the fundamental 
assumption that the scene is segmented into objects such that all 
samples (pixels) from an object are members of the same class; 
hence, the scene’s objects can each be represented by a single 
suitably chosen feature set. Typically the size and shape of 
objects in the scene vary randomly, and the sampling rate and 
therefore the pixel size are fixed, it is reasonable to assume that 
the sample data (pixels) from a simple object have a common 
characteristic. A complex scene consists of simple objects; any 
scene can thus be described by classifying the objects in terms 
of their features and by recording the relative position and 
orientation of the objects in the scene. 
 
We introduce the basic components that make up the structures 
of an analytical model for scene representation in an efficient 
measure space. This process is carried out through a specific 
feature extraction method which maps the original data (pixel 
observation) into an efficient feature space, called the object-
feature-space. This method utilizes a new technique based on a 
so-called unity relation which must exist among the pixels 
within an object. The unity relation among the pixels of an 
object is defined with regard to an adjacency relation, spectral 
features, and spatial features in an object. The technique must 
detect objects in real-time and represent them by means of an 
0bject-feature. The unity relation, for on-line object-feature 
extraction, can be realized by the path-hypothesis. The path-
hypothesis is based on the fundamental assumption that pixels 
from an object are sequentially connected to each other by a 
well-defined relationship in the observation space, where the 
spatial variation between two consecutive points in the path 
follows a special rule. By employing the path-hypothesis and 
using an appropriate metric for similarity measure, the scene 
can be segmented into objects. 



 

 
 

Figure 1. MSS image Object-Based scene representation 
 

2. MODELLING AND DEFINITIONS 

The scene (in this work this is assumed it to be part of the 
Earth’s surface) is the target of the remote sensing system, 
which is under investigation and the interest is to extract 
information about the scene’s structure and content (Tso and 
Mather, 2001). The desired information is assumed to be 
contained in the spectral, spatial, and temporal variation of 
electromagnetic energy coming from the scene which is 
gathered by the sensors (Hapke, 1993). Typically a complex 
scene is composed of relatively simple objects of different sizes 
and shapes, each object of which contains only one class of 
surface cover type. The scene is often described by classifying 
the objects and recording their relative positions and orientation 
in the scene in terms of tabulated results and/or a thematic-map. 
 
In a remote sensing system, primary features of a scene are 
formed by multispectral observations, which are accomplished 
by spatially and spectrally sampling the scene. A multispectral 
sensor samples several spectral dimensions and one spatial 
dimension from the scene at a given instant of time. The second 
spatial dimension can be provided by the motion of the platform 
which carries the scanner over the region of interest, generating 
a raster scan; alternately, the raster can be provided by area 
array detector. Thus, through the data acquisition system, the 
scene may view in an image from taken at each of a number of 
electromagnetic wavelengths. This image can be thought of as a 
multi-layer matrix whose elements are called pixels (Tso and 
Mather, 2001). One of the important characteristics of such data 
is the special nature of the dependence of the feature at a lattice 
point to that of its neighbours. The unconditional correlation 
between two pixels in spatial proximity to one another is often 
high, and such correlation usually decreases as the distance 
between pixels increases. 

 
One of the distinctive characteristics of the spatial dependence 
in multispectral data is that the spectral separation between two 
adjacent pixels is less than two non-adjacent pixels, because the 
sampling interval tend to be generally smaller than the size of 
an object; i.e., two pixels in spatial proximity to one another are 
unconditionally correlated with the degree of correlation 
decreasing as the distance between them increases. The results 
of study on measurement of different order statistical spatial 
dependency in image data, specially the measurement of first, 
second and third order amplitude statistics along an image scan 
line show considerable correlation between adjacent pixels. 

Seyler concluded, from the measurement of the distribution of 
the difference between adjacent pixels, that the probability that 
two adjacent pixels have the same grey level is about 10 times 
the probability that they differ by the maximum possible 
amplitude difference. Kettig (Kettig and Landgrebe, 2001) by 
measuring the spatial correlation of multispectral data showed 
that the correlation between adjacent pixels is much less when 
conditional upon being with an object, as compared to 
unconditional correlation. High correlation among adjacent 
pixels in the observation space represents redundancy in scene 
data. When such redundancy occurs, reducing the size of the 
observation space should be possible without loss of 
information. 
 
As previously stated the scene is assumed to consist of 
relatively simple objects of different sizes and shapes (see 
Figure 1). The resolution of the spatial representation depends 
on both pixel size and the interval between samples, which are 
usually equal. By under-sampling information is lost; however, 
over-sampling will cause increased redundancy. Typically the 
size and shape of objects in the scene vary randomly, Figure 1, 
and the sampling rate, and therefore the pixel size, is fixed; it is 
inherent in image data that data-dimensionality (the number of 
spatial-spectral observation for scene representation) increases 
faster than its intrinsic-dimensionality (the size of the smallest 
set which can represent the same scene, numerically, with no 
loss of information). Because the spatial sampling interval is 
usually comparable to the object size, it follows that each object 
is represented by an array of similar pixels. Therefore, scene 
segmentation into pixels is not an efficient approach for scene 
representation; however, a scene can be segmented into objects, 
and since the shape and size of objects match the scene 
variation, scene representation by simple-objects is more 
efficient. 
 
Object detection refers to finding the natural groups among the 
contiguous pixels. In other words, the data is sorted into objects 
such that the “Unity Relation” holds among members of the 
same object and not between members of different adjacent 
objects. Object extraction and clustering are similar in the sense 
that they both are methods of grouping data; however, spatial 
considerations make clustering and object extraction different. 
Because an object can be textured, the pixels within an object 
might not form a compact cluster in the measurement 
(observation) space. Also, because there can be several 
instances of a particular class of entities in a single image, 
nonadjacent objects might be nearly identical in observation 
space. Another difference is that in object extraction, the 
existence of a partition that completely separates objects is 
guaranteed. However, in clustering, if we allow underlying 
classes with overlapping density functions, the classes can 
never be completely separated in the observation space. Object 
extraction can be thought of as transforming the original image, 
which is a pixel-description of a scene into an arrangement of 
object-description. 
 
An object-description is often better than a pixel-description, 
for two basic reasons: 
1- More information about the scene entity is available from a 

collection of pixels associated with the object than from an 
individual pixel associated with the scene. This fact has 
been exploited by “object" classification algorithms that 
make a classification decision for each group of image 
points, for example by sequential classification (Tso and 
Mather, 2001). The potential advantages of object 
classification are especially great when class probability 



 

densities differ in shape but exhibit a high degree of 
overlap. Classifying objects instead of pixels also allows the 
measurement and use of spatial characteristics such as size, 
shape and texture, which have been found to be useful in 
classification. 

2- An object representation is often more compact than a pixel 
description. This savings in storage space or transmission 
speed occurs if objects contain enough points so that 
specifying the locations and essential properties of the 
objects takes fewer bits than specifying the collection of 
individual pixel properties. 

 
In the analysis and processing of multispectral images one 
encounters a large amount of data. To enable efficient 
processing of this data, it would be preferable to have an 
underlying model that explains the dominant characteristics of 
the given image data. Subsequent processing of the images can 
be efficiently accomplished by using the models fitted to the 
data. With the above scheme, a scene is segmented into 
spatially disjoint objects (Ghassemian & Landgrebe, 1987). 
 
Objects in imaged scenes are describable by sets of relevant 
attributes or features (Ghassemian & Landgrebe, 1988). These 
features represent distinct measurements or observable 
properties. The object’s initial measurements, which are 
encoded as pixel-features, are subsequently subjected to an 
object-feature transformation. Each of the objects contains a 
union of similar pixels, and the union of the simple objects 
represents the whole scene. All pixels of an object, whose 
pixels satisfy the unity relation, can be represented by an 
object-feature set (Ghassemian, 1990). 
 
The accuracy of this system (the information content in the 
object-feature-set) is dependent on the parametric primitives 
who are used in object- feature construction; however, this 
accuracy has an upper bound which is controlled by the level of 
noise which exists in the acquired data. In the analysis of a set 
of data points in multidimensional space, the need to choose the 
most relevant features frequently arises. Feature selection 
techniques are used to find properties of objects in the scene 
which can serve as the strongest clues to their identification.  
 
One way to characterize this dependency, among the 
neighbouring pixels, is to represent it by a unity relation. The 
unity relation among the pixels of an object means that an 
object consists of contiguous pixels from a common class where 
their features are statistically similar. The keys to the unity 
relation among the pixels of an object are the adjacency relation 
and the similarity criterion. Mathematically it can then be said 
that the unity relation exists between two pixels if they satisfy 
two criteria simultaneously (Ghassemian & Landgrebe, 2001): 
1- They have an adjacency relation with each other, in the 

sense that they are spatially contiguous or their spatial 
distance is filled by a sequence of contiguous pixels from the 
same class. The subset of L (spatial-feature) whom their 
corresponding pixels having an adjacency relation with the 
pixel Xk is represented by the set Ak, called neighbourhood 
set. 

2- They have the same attributes, or they carry equivalent 
useful information about the scene, in the sense that their 
features are similar to each other. This means that the 
distance between these attributes, in an appropriate metric-
space, is less than unit, ds(Xr, Xk)<1. 

 
Let R (.) be a relation on pixel-feature-set P. When the relation 
exists it is represented by R(.)=1, otherwise by R(.)=0. Then 

R(.) is a unity relation provided that it satisfies the following 
properties for all Xr, Xk, Xm belonging to pixel-feature-set P: 
 
I- Similarity and Adjacency Properties: 
                    R(Xr, Xk)=1 if and only if ds(Xr, Xk)<1 and r ∈  Ak 

II- Reflexive Property:                                 R(Xk, Xk) = 1  

III- Symmetric Property:                     R(Xr, Xk) = R(Xk, Xr) 

IV- Transitive Property: 
                       Xr, Xk) = 1 and R(Xr, Xm) = 1 ⇒  R(Xm, Xk) = 1 

 
The unity relation is defined by a property between two 
individual pixels in an object, can be extended to the property 
between a pixel and an object. We had pointed out that, the 
unity relation in the observation space is defined by an 
adjacency relationship together with a similarity criterion 
among the pixels’ attributes. The similarity between the pixels’ 
attributes is of basic importance in attempting to test the 
existence of the unity relation. This is evident since the 
existence of two adjacent objects, is a consequence of the 
dissimilarity of features from neighbouring pixels where two 
adjacent objects differ in at least one of the spectral or 
contextual features. 
 
The accuracy of the similarity measure is dependent on the 
selected metric space used for functional construction and has 
an upper bound which is controlled by the amount of noise in 
the system. The uncertainty in the similarity measure is 
significantly reduced using the within object regularities. This 
property is used in the path-hypothesis for unity relation 
construction. The path of sequential association, which pixels 
follow in the spectral space, from a continually evolving 
hypothesis regarding the object definition. Elements in this path 
are determined on a spectral basis relative to the current status 
of all other adjacent objects by the spectral variation between 
two consecutive points in the path, using a specific metric to be 
defined presently. Elements in the path are also determined 
based upon the spectral separation between the current and the 
most recently preceding pixel of that object in spatial space, 
thus incorporating both spectral and spatial information in that 
association of pixels with objects. 
 
It should be realized that the path-object Pi is defined in the 
spectral space and it is different from a spatial path in the scene. 
A path-object Pi is represented by its spectral- feature Si , 
spectral variation regularity Vi , and  the path end point  Xki+1. 
The path hypothesis thus determines a possible sequence of 
points in the observation space for each object, which implies 
that each object forms a well-defined sequence in observation 
space, called the path-object. The succession of consecutive 
observations describes a particular trajectory in the observation 
space. Any change in the behaviour of two consecutive points 
(the end point of the  path-object Xki+1 and the current pixel Xi ) 
in this trajectory can define a start point of a new object. 
 
 

3. FEATURE EXTRACTION 

In theory, decision about class membership for a noisy object 
should be based upon as many observations of the object as 
possible and preliminary decisions concerning subsets of 
object-features can provide less than maximally reliability 
recognition. Thus theoretically, the most reliable decision 
should be based upon all the pixels in the object. Also in theory, 
every result achievable with d variables can also be achieved 



 

with d+1 variable, but the converse is not true. Thus one might 
expect that by increasing the number of features the object 
recognition error rate should decrease or at least stay the same, 
but in practice quite often the performance of the features will 
improve up to a point , then begin to deteriorate as further 
attributes are added. This is referred to as the Hughes’ 
phenomenon (Hughes, 1968). The existence of an optimal set of 
features is indicated for the representation of the objects, 
relative to feature selection and feature reliability problem. An 
object can be described by a set of parametric primitives. Such 
primitives may be based on observation as well as knowledge 
about the object. Typically in remote sensing the important 
primitives, for recognition of an object, are spectral feature and 
/ or contextual features. But since it is usually presumed that the 
shape and the size of natural objects in a scene (ground cover 
types) are random and unrelated to the ground cover classes, 
these features are often ignored in feature extraction and pattern 
recognition of the ground cover types. However in this work, 
the objects’ geographical features are preserver in the spatial-
feature-map L, and can be used by an appropriate pattern 
recognition system, if it be necessary. It is assumed that two 
adjacent objects differ in a measurable way relative to the 
spectral or contextual features. In this system, a set of points 
representing similar patterns are represented with the same 
features. Thus the attributes of P can be refined by observation 
which is given by a set of three parametric primitives: 
 

),,( iiii LVSY =  (1) 
 
Where S is estimated within-object spectral feature 
representation, V is the estimated contextual feature, and L is 
the spatial-feature-map or the object geographical shape and 
location in the scene. Let n be the number of pixels in the object 
P, and L be the corresponding spatial-feature- map, then the 
object spectral feature S is estimated by averaging the spectral 
response of pixels within the object P. Then the contextual 
feature, V, is estimated by averaging the spectral variation of 
pixels within the object P. 
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Notice that the spatial variation can be horizontal, vertical, 
diagonal, and any other possible spatial direction. The objects 
with small area, whose number of pixels within the object is not 
sufficient for contextual feature estimation, will be represented 
only by the spectral feature. This is done by adjusting the 
degree of uncertainty in the feature extraction process: the 
uncertainty about the feature is inversely dependent on the 
number of pixels that are contained within the object P. 
 
Although the contextual feature is dependent on the sensor 
resolution as well as the sensor altitude from the scene, the 
intra- object spatial variation between adjacent pixels can be a 
significant factor for on-line object extraction. A metric for 
testing the unity relationship between the pixel-feature Xr and 
object-feature Yi is introduced. This metric normalizes the 
spectral distance by their spectral gradient vector: 
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T
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where α=(wni/ni+w) and β=(w2/ni+w), ni is the number of 
pixels in the current object, w is the size of observation 
window, and Si, Vi, X and Y are the same vectors as defined 
before.  

4. FEATURE EVALUATION 

The performance of a feature extraction process is measured in 
terms of the information-bearing quality of the features versus 
the size of the data set. Classification accuracy is an important 
quantitative measure of feature quality in applications where the 
data is automatically interpreted. The comparative performance 
results for the various feature configurations between the 
original pixel-features X and compacted object-features Y. The 
features’ reliability and quality are measured in terms of overall 
misplacement error in the scene (OME), feature classification 
performance (FCP), and subjects' appearance (SOA).  
 
The first evaluation is a simple quantitative criterion which has 
a conventional mathematical form to measure the number of 
pixels assigned to an incorrect neighbouring object based on the 
object classification, relative to the total number of pixels in the 
scene (overall misplacement error). Let GTM represent the 
ground-truth-map of original data, and let CPM represents the 
classification-pixel-map result of feature classification. Then 
the overall misplacement error can be computed by comparison 
of the CMP and the GTM. The feature classification 
performance (FCP) measures the number of pixels classified 
into the correct class relative to the total number of pixels in 
that particular class. This criterion is used to evaluate the 
object-feature performance when the effects of classifier 
decision rule and training samples on the class feature 
performance should be considered. Good ground truth 
information is a very important parameter in feature evaluation 
to minimize the unrelated error in the feature extraction. 
However, obtaining a valid ground-truth-map (GTM) and 
registering the multispectral image data with this map is often 
costly and very time consuming. Thus among the available real 
data those subsets which have a relatively reliable ground-truth-
map should be selected and used for the OME and FCP feature 
evaluations. 
 
The subjective appearance is an appropriate criterion when the 
ground-truth-map is not accurate enough to be used by other 
feature evaluators, or when some objects in the scene are more 
important than the others regardless of the size of the objects. In 
such cases it is often too difficult to define a mathematical 
expression for a feature quality adequate for quantitative 
evaluation. In this case visual assessment will be used for this 
kind of qualification. This criterion is used to evaluate the 
spatial quality of the spatial-feature-map, for prediction of more 
information about the scene, by using more complex features, 
which should be extracted from the training samples. In other 
words, by incorporating the object appearance in the spatial-
feature-map into the feature selection strategy, more complex 
objects in the scene can be detected. For example some 
significant within-class variation shows that more information 
about the complex objects (perhaps soil type covered by 
vegetation) in the scene might be extracted by using even more 
complex features. 
 
The proposed feature extraction technique is applied to several 
set of image data. As previously stated, the objective of this 
experiment is to demonstrate the validity of the unity 
relationship and the path-hypothesis, and to show that the 
performance of object-feature is better than the performance of 
pixel-feature regardless of the choice of classification decision 
rule and the training set. To establish the unity relation, the 
system learns about the functional coefficients simultaneously 
with the data acquisition process by measuring the object 
spectral gradient which, is then, normalized within a window.  



 

  
Figure 2. Pixel-Feature Performance and the class map (right) 

  
Figure 3. UnsupervisedECHO performance and its feature map 

  
Figure 4. Ssupervised-ECHO performance and the feature-map 

   
Figure 5. AMICA2 performance and the feature-map (right) 

Classification accuracy is dependent on both the classification 
algorithm and the training sample set, furthermore, it is slightly 
dependent on the window size. The performance of the object-
feature is compared with the performance of the original pixel-
features from the same scene, when the M.L. Bayes Gaussian 
decision rule is selected. 
 
Spectral information of surrounding pixels is correlated with the 
centred pixel under consideration. In object detection the 
spectral features of adjacent pixels are considered using 
neighbouring information; thus the object-feature which we 
represent them in this experiment only by (S <L) built upon 
both spectral and contextual information. Therefore, it is 
expected that the classification accuracy to be higher by using 
object-feature rather than the individual pixel-feature (notice 
that we did not consider effect of V in the classification of 
object-feature using M.L. decision rule). Tables 1 and 2 show, 
by using the object-feature, for example, the wheat field 
classified better than when the pixel-features are used for its 
classification. A test for robustness of the path hypothesis and 
accuracy of the unity relation shows that the functional based 
on path-hypothesis, can detect a single randomly selected pixel 
in a relatively large soybean field which is replaced by a pixel 
from some other ground cover types, see Figure 5. 
 
 

5. SUMMARY AND CONCLUSION 

In order to reduce data redundancy in multispectral imagery we 
have proposed a model, based on a scene object- description, 
for multispectral image representation. We have developed an 
on-line unsupervised object-feature extraction algorithm (called 
AMICA) which detects the objects by using the unity relation 
based on the path-hypothesis. The unity relation among the 
pixels of an object can be defined with regard to the: adjacency 
relation, spectral-feature and spatial-feature characteristics in an 
object. Based on the path-hypothesis the data read sequentially 
into the system. The unity relation between a current pixel and 
the path-segments (objects in the observation space) are 
examined, the current pixel may be merged into an appropriate 
object or it will initiate a new object. An object is represented 
by a relevant object-feature set. AMICA is implemented to real 
multispectral image data. The performance of the object-
features is compared with the performance of the original pixel-
feature. Three different evaluation strategies (overall 
misplacement error, feature classification performance and 
subjective object appearance) are selected for comparative 
feature evaluation using the pixel-features and the object-
features. The experimental results indicate that data volume is 
reduced by a significant amount (the size of the feature-space 
for scene representation is reduced by a factor more than 25 
which is data dependent). In addition, the accuracy of 
information extracted from the object-features (as measured by 
classification accuracy) is greater than obtained when using the 
original pixel-features. 
 
The correlation among the adjacent pixels in the image data 
appears in the form of redundancy in the spectral-spatial 
features. Spectral information of surrounding pixels is 
correlated with the centred pixel under consideration. In object 
detection the spectral features of adjacent pixels are considered 
using neighbouring information. Therefore, it is expected that 
the classification accuracy to be higher by using object-feature 
rather than the individual pixel-feature. The improvement of the 
classification performance is consequence of incorporation of 
the spatial information in the object-feature extraction decision 



 

rule; however, in addition to that, it could be also a 
consequence of complexity reduction by data compaction 
(Hughes, 1968). 
 
Since the classification process is performed in the feature-
space (rather than in the observation-space) the algorithm is 
much faster than conventional ones. The object appearance in 
the feature-map can be incorporated (by visual assessment) into 
the feature selection strategy for extraction of more complex 
objects in the scene. In summary, it appears that the proposed 
object-feature extraction process has several advantages over 
most of the conventional techniques. 
 
 
REFERENCES 
 
Ghassemian, H. and D. Landgrebe. 1987. An Unsupervised 
Feature Extraction Method for High Dimensional Image Data. 
IEEE Proc. on System, Man and Cybernetics, vol.2, pp.540-
544, Oct. 1987. 
 
Ghassemian, H. and D. Landgrebe, 1988. On-Line Object 
Feature Extraction for Multispectral Scene Representation. 
NASA_TR_EE 88-34, Aug. 1988. 
 
Ghassemian, H. and D. Landgrebe, 2001. Multispectral Image 
Compression by an On-Board Scene Segmentation. Proc. Of 

IEEE Int. Geoscience and Remote Sensing 2001 Symposium. 
Scanning the Present and Resolving the Future, July 2001. 
 
Ghassemian, Hassan, 1990. Adaptive Feature Extraction for  
Multispectral Image Data Representation. IASTED Control and 
Modelling Conf. pp.277-282, July 1990. 
 
Hapke, B., 1993. Theory of Reflectance and Emittsnce 
Spectroscopy. Cambridge, U.K.: Cambridge Univ. Press, 1993. 
 
Hughes, G., 1968. On the mean accuracy of statistical pattern 
recognizers. IEEE Trans. Information Theory,  vol. IT-14, no. 
1, pp. 55-63, 1968. 
 
Kettig, L. and D. Landgrebe, 2001. Classification of Remotely 
Sensed Multispectral Image Data by Extraction and 
Classification of Homogeneous Objects. IEEE Transactions on 
Geoscience and Remote Sensing, Vol. GE-39, No.1, pp.4-16, 2001. 
 
Landgrebe, David, 2004.  Hyperspectral Image Data Analysis. 
Dept. of EE, Purdue University. http://dynamo.ecn.pur-due.edu 
/biehl/Mulyispect. 
 
Tso, B. and P.M. Mather, 2001. Classification Methods for 
Remotly sensed Data, Taylor & Francis printed in London and 
New York, 2001.  

 
 
 

Number of Features=369600 Bytes 

Classifier results True Class 
%Corrct Totals Nonfarm Hay Pasture Oats Sudex Wheat Woods Soybeans Corn  
88.5% 10104 721 22 0 22 1 149 145 102 8942 Corn 
90.8% 12910 488 14 0 87 8 108 482 11717 6 Soybeans 
84.3% 389 41 0 2 1 0 3 328 10 4 Woods 
77.5% 944 163 9 0 24 0 732 8 8 0 Wheat 
96.4% 1219 4 2 0 21 1175 0 0 17 0 Sudex 
84.2% 603 43 28 0 508 3 8 0 12 1 Oats 
90.6% 339 32 0 307 0 0 0 0 0 0 Pasture 
79.4% 746 54 592 0 52 3 21 ١1 1 22 Hay 
89.6% 3546 3176 81 9 111 1 68 14 69 17 Nonfarm 
89.2% 30800 4722 748 318 826 1191 1089 978 11936 8992 Totals 

CPU Time = 51.52 Seconds Overall Performance = 89.2% 

Table 1. Pixel-Feature performance using Bayes MLC 
 
 

Number of Features=13,692  Bytes.        Compresstion Coefficient = 27 

Classifier results True Class 
%Corrct Totals Nonfarm Hay Pasture Oats Sudex Wheat Woods Soybeans Corn  
94.9% 10104 233 66 0 6 0 67 17 123 9592 Corn 
96.1% 12910 155 11 0 27 1 74 209 12409 24 Soybeans 
99.0% 389 0 0 0 0 0 0 385 4 0 Woods 
87.3% 944 80 0 0 11 0 824 12 11 6 Wheat 
97.9% 1219 1 3 0 13 1193 0 0 9 0 Sudex 
97.5% 603 8 0 0 588 0 2 0 1 4 Oats 
100.0% 339 0 0 339 0 0 0 0 0 0 Pasture 
92.6% 746 0 691 0 1 9 0 0 0 45 Hay 
80.8% 3546 2865 118 0 244 8 94 12 136 69 Nonfarm 
93.8% 30800 3342 889 339 890 1202 1061 635 12693 9740 Totals 

CPU Time = 1.88 Seconds Overall Performance = 93.8% 

Table 2. Object-Feature performance using Bayes MLC 


