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ABSTRACT: 
 
For various satellite imagery applications, geo-referencing through rectification is a common operation. Rigorous mathematical 
models with the aid of satellite ephemeris data can present the relationship between the image space and object space. With 
government funded satellites, access to calibration and ephemeris data allowed the development of these models. However, for 
commercial high-resolution satellites, these data have been withheld from users, and therefore alternative empirical rectification 
models have been developed.  In general, most of these models are based on the use of control points. The lack of control points in 
some remote areas such as deserts, forests and mountainous areas provides a catalyst for the development of algorithms based on 
other image features. One of the alternatives is to use linear features obtained from scanning/digitizing hardcopy maps, from 
terrestrial mobile mapping systems or from digital images. 
In this work, a new model named the Line Based Transformation Model (LBTM) is established for satellite imagery rectification. 
The model has the flexibility to either solely use linear features or use linear features and a number of control points to define the 
image transformation parameters. As with other empirical models, the LBTM does not require any sensor calibration or satellite 
ephemeris data. The underlying principle of the model is that the relationship between line segments of straight lines in the image 
space and the object space can be expressed by affine or conformal relationships. Synthetic as well as real data have been used to 
check the validity and fidelity of the model, and the results show that the LBTM performs to a level comparable with existing point 
based transformation models.  
 
 

1. INTRODUCTION 

Point feature based transformation models have been, for 
several decades, used extensively in photogrammetry and 
remote sensing for image rectification and terrain modeling. 
They are driven by linking points in the image space and the 
corresponding points in the object space using rigorous 
mathematical models. However, under many circumstances 
accurately identifying discrete conjugate points may not be 
possible. Unlike point features, which must be explicitly 
defined, linear features have the advantage that they can be 
implicitly defined by any segment along the line. In the era of 
digital imagery, linear features can be easily identified in the 
image by many automatic extraction tools and in object space, 
they can be obtained from an existing GIS database, hardcopy 
maps, and terrestrial mobile mapping systems (using for 
instance kinematic GPS techniques). Therefore, using linear 
features becomes an advantage, especially because they add 
more information, increase redundancy, and improve the 
geometric strength of adjustment (Habib et al, 2003). Some 
effort has been made to use linear features in photogrammetric 
applications for frame and linear array scanners. However, 
some of these techniques use linear features as constraints and 
are still based on rigorous mathematical models, which need all 
sensor model information.  
 
Mulawa and Mikhail (1988) present the concept of linear 
features in photogrammetric tasks in which linear features and 
photogrammetric observations are combined in the formulation. 
Kanok (1995) and Mikhail and Kanok (1997) have used an 
independent set of linear feature descriptors to present the 
relationship between image space and object space. The method 
is based on the observation that any ray from the perspective 

center passing through a point on the image line must intersect 
the object line. In their approach, the standard point-based 
photogrammetric collinearity equations were replaced by line-
circle based ones. Instead of the regularly used two collinearity 
equations, a single equation is established to ensure the 
coplanarity of a unit vector defining the object space line, the 
vector from the perspective center to a point on the object line, 
and the vector from the perspective center to a point on the 
image line. Furthermore, coordinate transformations are 
implemented on the basis of linear features. In this case, feature 
descriptors are related instead of point coordinates. 
 
Further work has been done to accommodate linear features for 
single photo resection and automatic relative orientation. Habib 
et al (2002 and 2003) have suggested an algorithm to solve the 
problems relating to the correspondence between image and 
object space lines. This matching problem is solved through a 
modified version of the generalized Hough transform. The work 
introduced algorithms to incorporate straight lines into aerial 
triangulation for frame and linear array scanner imagery. The 
collinearity condition is used in single photo resection to 
present the relationship between matching entities in image and 
object space and the coplanarity condition is used in case of 
automatic relative orientation. This work suggests that linear 
features can be used to provide constraints in photogrammetric 
applications.  

In the absence of sensor calibration and satellite orbit 
information, there are several limitations in applying such 
techniques to High Resolution Satellite Imagery (HRSI): a) all 
those presented are based on rigorous mathematical models 
which require sensor and system parameters that are withheld 
from the HRSI user community; b) when using linear features, 



 

rather than point features, conventional photogrammetric rules 
may not be appropriate (Mikhail and Kanok, 1994); c) most of 
these models are valid for the projective geometry imagery of a 
photograph which is not exactly the case for linear array sensor 
imagery; d) the models become quite complicated when 
modified for the geometry and time dependency characteristics 
of linear array scanners; e) numerical problems could be 
encountered because of the initial approximation; and finally, f) 
constraints improve accuracy of the adjustment and increase the 
redundancy in estimation but each constraint adds an additional 
parameter to the adjustment and multiple constraints may lead 
to over parameterization (Habib et al., 2003).  
 
To date, there has been a substantial body of work dealing with 
non-rigorous mathematical models (such as rational functions, 
affine, polynomial, and DLT models) to circumvent the absence 
of satellite information and to rectify HRSI (see for example 
Fraser et al. (2002), Fraser and Hanley (2003), Shi and Shaker 
(2003), and Grodecki and Dial (2003)). These models are point 
based and have focused on two main aspects concerning 
accuracy: the accuracy attainable in image rectification, and the 
accuracy of DTM extraction by stereo spatial intersection. All 
reports demonstrate that the models described in them produce 
acceptable results. 
 
It is obvious that linear features can be used with rigorous 
mathematical models and points can be applied to non-rigorous 
mathematical models. That leads to the question of “Can linear 
features be used with non-rigorous mathematical models in 
order to circumvent the absence of satellite information and 
maintain satisfactory results?” This research answers the 
question with the development of a new model named the Line 
Based Transformation Model (LBTM).  
 
With the LBTM, most of the problems of using linear features 
with the present generation of rigorous models have been 
overcome. The model can either solely use linear features or 
use linear features plus a number of control points to define the 
image transformation parameters. It is a very simple model 
which is time independent, can be applied to images from any 
linear array sensor, does not require any information about 
sensor calibration or satellite orbit, and does not require any 
initial approximation values. The underlying principle of the 
model is that the relationship between line segments of straight 
lines in the image space and the object space can be expressed 
by affine or conformal relationships. The model adopts the 
same structure for 3D transformation as the eight-parameter 
affine model, and the same structure for 2D transformation as 
the six-parameter affine and four-parameter conformal models. 
Adopting these structures further allowed direct comparison 
between the developed LBTM and the existing models. 
Synthetic as well as real data have been used to check the 
validity and fidelity of the model and the results show that the 
LBTM can be used to efficiently and accurately rectify HRSI.  
 

2. THE MATHEMATICAL MODEL 

Successful exploitation of linear features in image rectification 
and terrain modeling requires consideration of the following 
two major aspects: the mathematical description of linear 
features in image and object space and the mathematical 
representation of the relationship between the two spaces. There 
are different options for representing linear features in both 
image and object space. Straight lines, circles, ellipses and free 
form lines are examples of such representation. In this work, 
straight lines as well as natural lines (free form lines) converted 

to straight lines by mathematical functions are used. Circles and 
ellipses are discarded due to their impracticality and because 
they are not transformation invariant. 
 
Various forms of equations can represent straight lines in two 
and three-dimensional spaces with each of them exhibiting 
some weakness in certain applications. For each of these forms, 
describing a line in 2D or 3D space requires two or four 
independent parameters, respectively. Straight lines can be 
represented in either image or object space in different ways 
such as the intersection between two planes, line descriptors, 
unit vectors and normal to line descriptors.  The Line Based 
Transformation Model (LBTM) is based on the relationship 
between the unit vector components of a line in image space 
and the unit vector components of the conjugate line in object 
space. Unit vector representation, which can be obtained from 
any two points along straight line segments, was chosen 
because they can be easily defined from images, existing geo-
databases or terrestrial mobile mapping systems in both image 
and object space. However, the unit vector is not a unique 
representation of a straight line as it can represent the line in 
question and an infinite number of parallel lines. This problem 
is addressed in section 2.1.1. 
 
The LBTM applies to high-resolution satellite imagery 
produced from CCD linear array sensors, which are widely used 
in remote sensing applications. Regardless of the capturing 
technique (cross or along track), images from linear array 
sensors consist of independent scanned lines. Each line on the 
image is the result of a nearly parallel projection in the flight 
direction and a perspective projection in the CCD line direction. 
Therefore, rigorous mathematical models based on the 
collinearity equations and including a time dependent function 
could be applied for geo-referencing the images. To circumvent 
the complexity of the time dependent model, in other words, to 
simplify the relationship between image and object coordinate 
systems, several assumptions were adopted: (a) the satellite 
sensor moves linearly in space with stable attitude; (b) the 
sensor orientation angles are constant; and (c) the satellite flight 
path is almost straight.  
 
Under these assumptions, the scanned lines from the sensor can 
be considered to form a continuous (single) image. These 
characteristics allow the ordinary collinearity equations 
between the satellite imagery and the ground to be replaced by 
simple affine and conformal transformation models similar to 
those introduced in Hanly and Fraser (2001) and Fraser et al., 
(2002). The underlying principle of the developed model is that 
the unit vector components in either image or object space 
could replace the point coordinates in the previous models.  
Both affine and conformal implementations of the LBTM were 
developed. The derivation of the 3D affine LBTM is given in 
the following section and the 2D affine and the 2D conformal 
LBTM form can be obtained by simplification. Here we will 
refer to eight-parameter affine model, six-parameter affine 
model, and four-parameter conformal model as 3D affine 
model, 2D affine model and 2D conformal model respectively. 
 
2.1 The 3D affine LBTM 

Vectors 12vv  and 12V
v

 are unit vectors for conjugate lines in image 
and object space respectively (see Figure 1). The two unit 
vectors can be defined by any two points along the line segment 
in image and object space. Suppose that point p1= (x1, y1) and 



 

p2= (x2, y2) are two points on the line in image space, then 12vv  
can be presented in matrix form as: 
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On the other hand, suppose that points P1= (X1, Y1, Z1) and P2= 
(X2, Y2, Z2) are located on the conjugate line in the object space. 
Then, the unit vector 

12V
v  is: 
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Figure 1 Unit line vector representation in image and object 
space (case of linear array sensor). 

 
It is worth mentioning that points p1, p2 and P1, P2 in image and 
object spaces are not conjugate points, but the lines they lie on 
are conjugate lines. As was mentioned earlier, the relationship 
between image and object space can be represented by 3D 
affine transformation for HRSI. The same relationship between 
the two coordinate systems is used to represent the relationship 
between vectors in image and object space. Any vector in 
object space can be transformed into its conjugate vector in 
image space by applying rotation, scale, and translation 
parameters as shown in equation (3): 
 

 TVMv +=
vv λ  (3) 

 
where vv  and V

v
 are vectors of line segment in image and object 

space respectively, M is a rotation matrix relating the two 
coordinate systems, λ is a scale matrix (a diagonal matrix 
providing different scales in different directions) , and T is a 
translation matrix. 
 

The elements of M are functions of three sequential rotations 
about the X, Y and Z (object) coordinate axes and are the same 
as used in the derivation of the collinearity equations used in 
photogrammetry. Substituting the various presented matrices 
into equation 3 gives: 
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where λ1, λ2, λ3 are scale factors, m11, m12,….,m33 are the 
rotation matrix elements, (ax, ay) are the line unit vector 
components in the image space coordinate system, (AX, AY, AZ ) 
are the line unit vector components in the object space 
coordinate system, and TX, TY, TZ are the components of the 
translation matrix between the image and the object coordinate 
systems in X,Y and Z directions. The previous form is valid 
only if the scale factor is equal to ±1 since the transformed 
vectors, in this case, are unit vectors. This condition is 
necessary and should be sufficient to validate the equation. 
Then, the equation will lead to the following individual 
equations 
 

XZYXx TAmAmAma +++= )( 133122111 λλλ  (5) 

YZYXy TAmAmAma +++= )( 233222211 λλλ  (6) 

ZZYX TAmAmAm +++= )(0 333322311 λλλ  (7) 
 
After substituting the scale factors λi multiplied by the rotation 
matrix coefficients miv, and the translation components Tx-z, by 
the new coefficients bi, the transformation equation can be 
rewritten as:  
 
 4321 bAbAbAba ZYXx +++=   (8) 
 

8765 bAbAbAba ZYXy +++=   (9) 

 
where b1 to b3 and b5 to b7 present the rotation and scale factors, 
and b4, b8 are translation coefficients. Equations 8 and 9 
represent the mathematical form of the 3D affine LBTM.  
 
The model is similar to the ordinary 3D affine model used by 
Fraser et al. (2002), with the only difference being the use of 
line unit vector components instead of point coordinates in 
order to calculate the model coefficients (image parameters). A 
unique solution for the new model coefficients could be 
calculated by using four Ground Control Lines (GCLs), which 
are conjugate image/object lines. If the number of observations 
available (number of GCLs) is more than the minimum amount, 
then a least squares adjustment is used. 
 
2.2.1 The unit vector problem: As mentioned above, unit 
vectors do not provide a unique representation of a line and thus 
the LBTM expresses the relationship between a group of lines 
in image space and any other parallel group of lines in object 
space. Comparing the coefficient values calculated from the test 
data with the use of the ordinary 3D affine model and GCPs 
with the coefficient values calculated with the use of the 
developed 3D affine LBTM and control lines (unit vector 
components) shows: a) very small differences between those 
coefficients representing rotation and scale factors; b) large 
differences between the translation coefficients. This finding 
suggests that there is a problem in the LBTM concerning 
calculation of translation coefficients. 



 

 
Several solutions can be applied to overcome this problem. 
First, the translation coefficients may be recovered if the shift 
between the origins of the two coordinate systems is known. In 
this case, the six coefficients representing the scale and rotation 
are recovered by the aid of the GCLs and then the translation 
coefficients (b4 and b8) will be determined from the shift 
between the origins. This is a special case, which occurs only 
when local image and object coordinate systems are used. 
Second, the six coefficients relating the scale and rotation 
transformation coefficients are recovered as in the first case and 
a single GCP could be used to define the translation 
coefficients. 
 
2.1.2 

2.2 

Using the 3D affine LBTM: Similar to the collinearity 
equations in photogrammetry, the 3D affine LBTM can be 
applied to various operations such as space resection for 
calculating the model coefficients (image parameters), space 
intersection for determining the location of a 3D point, and 
image rectification. Recovering the model coefficients for 
images by the LBTM leads to one of the followings processes: 
either working on 2D image rectification (in case of single 
image transformation) or 3D geo-positioning determination (in 
case of using stereo pair images). For image rectification, points 
in image space could be transferred directly to an object plane 
by assuming an average elevation of terrain for the whole area 
covered by the image and by using the recovered model 
coefficients and image coordinates of the points. For the same 
purpose, a Digital Elevation Model (DEM) could also be used 
together with the previous information to enhance the results, 
especially when the model is applied to undulated terrain. 
 
For 3D geo-positioning determination, stereo images should be 
used. More specifically, a group of GCLs should be used to 
recover the stereo image parameters individually and then 3D 
point coordinates could be calculated. Each point in the area 
covered by the stereo images will raise four equations to 
recover the three unknowns (X,Y,Z), which means one 
redundancy is available to check the quality of the results.  
 

The 2D LBTM 

Two-dimensional transformations are required in many 
applications of photogrammetry and remote sensing. We often 
need to convert between coordinates in two different plane 
systems having different origins, orientations, and possibly 
scales. More importance is added to the need for a 2D 
transformation when terrain information is either not necessary 
(as in case of flat terrain or low accuracy requirements) or not 
available (as in case of remote, unmapped areas). 

Similar to the way in which point coordinates in the 3D affine 
LBTM are replaced with unit vectors, the 2D affine LBTM can 
be rewritten as follows: 
 
 

321 CACACa YXx ++=  (10) 
 

654 CACACa YXy ++=  (11) 

where (ax, ay) are unit vector components of a line segment in 
the image coordinate system, (AX , AY) are planimetric unit 
vector components of the conjugate line segment in the object 
coordinate system, and C1,…,C6 are the model coefficients. 
 
In addition, the 2D conformal LBTM can be presented for 
unique scale transformation as follows: 
 

 
321 CACACa YXx +−=  (12) 

 
412 CACACa YXy ++=  (13) 

 
where (ax, ay) and (AX, AY) are unit vector components of the 
line segment in the image and object coordinate system 
respectively, and C1,…,C4 are the model coefficients. 
 
As was demonstrated in the derivation section of the 3D affine 
LBTM, line unit vectors are not a unique representation of 
lines. Therefore, coefficients presenting the scale and rotation 
can be recovered with the use of GCLs (as was explained in 
section 2.1.1), and calculating the translation coefficients will 
require one additional GCP. A minimum of three GCLs is 
sufficient for the determination of the 2D affine LBTM 
coefficients, and a minimum of two GCLs is enough to 
calculate the 2D conformal LBTM coefficients. Comparing the 
3D LBTM to the 2D LBTM, it can be said that the latter can be 
applied to rectify single images instead of stereo images 
without needing any relief related information. As with the 3D 
LBTM, synthetic as well as real data have been used to verify 
the 2D LBTM model and the results are presented in the 
following section. 
 
 

3. EXPERIMENTAL RESULTS AND ANALYSIS 

3.1 Synthetic Data 

The effects of various factors such as differences in terrain 
elevation, inclination angle, length, number, and distribution of 
GCLs were tested for the developed model.  Image coordinates 
of four sets (S1, S2, S3, S4) of synthetic stereo image data were 
derived from the actual orientation parameters of a stereo pair 
of Ikonos imagery and synthetic object coordinates of 48 well-
distributed points. The sets were derived so that both S1 and S3 
represented undulating terrain with height variations of about 
100 m, while S2 and S4 represented flat terrain with height 
variations of less than 15 meters.  
 
Two different configurations of 12 GCLs were established from 
half of the object points and the remaining object points were 
used as checkpoints. One configuration consisted of long, 200 – 
500 meter, lines with random orientations and the other of 
short, 100 – 200 meter, lines predominately aligned to the 
diagonals of the image.  S1 and S2 used the long lines, while S3 
and S4 used the short lines. The two configurations of GCLs 
and checkpoint data are shown in Figures 2 and 3 respectively. 
 
Extensive sets of experiments were performed, but only a few 
representative cases are reported here due to the space 
limitations. Tables 1 and 2 present the results of the 3D and 2D 
affine LBTM respectively. Different groups of GCLs (from 4 to 
12 GCLs) plus one additional GCP were used, and the results 
are summarized in terms of RMS errors of the 24 independent 
checkpoints in the X and Y directions. The RMS errors in the Z 
direction (in case of using the 3D affine LBTM) are not 
considered here as this study focuses on the rectification of the 
satellite imagery. A detailed discussion of the 3D geo-
positioning determination will be presented in a future 
publication. 
 
From the results obtained, it is obvious that the LBTM works 
significantly well for image rectification. The investigation 
shows that, except for the translation coefficients which are 
calculated by the aid of the additional GCP, coefficients 



 

calculated by the LBTM are almost identical to those obtained 
from the ordinary 3D/2D affine models and GCPs. Applying 
different configurations of the control straight lines indicates 
that the inclination angle (the angle in the XY plane) of the 
control line does not affect significantly the accuracy of the 
results but the distribution of the GCLs on the area covered by 
the image does. Increasing the number of GCLs improves the 
accuracy of the results; however, a key feature established from 
these results is that the GCL slope, which is a function of the 
GCL length and terrain elevation differences along the line, has 
the most important effect on the results accuracy. The results 
presented below are chosen to illustrate this phenomenon. 
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Figure 2. GCLs and checkpoints distribution of S1and S2 sets 
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Figure 3. GCLs and checkpoints distribution of S3 and S4 sets 
 

The 3D affine LBTM 
Total RMS (m) 

Data Set No. of 
GCLs 

No. of 
Chkpts 

X Y 

Sy
nt

he
tic

 Case S1 
Case S2 
Case S3 
Case S4 

4-12 24 5.32- 2.92 
0.20- 0.21 
4.32- 3.27 
2.03- 1.47 

2.04- 2.26 
0.29- 0.23 
4.21- 2.62 
1.84- 1.67 

Real (HK) 4-12 16 9.01- 2.39 6.96- 2.01 
Table 1: The 3D affine LBTM results of the synthetic and the 

real data 
 

The 2D affine LBTM 
Total RMS (m) 

Data Set No. of 
GCLs 

No. of 
Chkpts 

X Y 

Sy
nt

he
tic

 Case S1 
Case S2 
Case S3 
Case S4 

4-12 24 3.81- 3.01 
0.46- 0.28 
3.96- 2.17 
3.76- 1.49 

6.99- 4.60 
1.10- 0.51 
5.77- 6.31 
1.63- 0.46 

Real (HK) 4-12 16 7.73- 5.09 8.19- 9.14 
Table 2: The 2D affine LBTM results of the synthetic and the 

real data 

When considering the effect of the terrain type, the results in 
Table 1 indicate that data set S2 (flat terrain) yields more 
accurate results than data set S1 (undulated terrain) in all 
directions, the same way as data set S4 leads to more accurate 
results than data set S3. The results also show that the sharper 
the slopes of GCLs are, less accurate the results are. Applying 
the 2D affine LBTM to the same data sets leads to similar 
findings; however, the overall accuracy is generally worse than 
when using the 3D affine LBTM. The deficit of the results is 
especially clear when applying the 2D affine LBTM to the sets 
of the undulated terrain. This finding is expected because the 
2D LBTM does not consider the differences in terrain elevation. 
On the basis of the above, one can conclude that the selection of 
the LBTM form to be used for image rectification depends 
primarily on terrain elevation differences. In the following 
section a real data set is used to examine the feasibility and the 
performance of the developed model. 
 
3.2 Real Data 

To verify the results obtained from the simulated data, a real 
stereo data set (Ikonos Hong Kong data set) was used. The area 
covered by the two images extends over 11.60 x 10.28 km2 for 
image 1 and 6.62 x 10.18 km2 for image 2 of the stereo with the 
overlap area of 2.5 x 10 km2. The inclination angles of the 
images are 19.02 and 27.3 degrees respectively, which leads to 
the base to height (B/H) ratio of about 0.87. The maximum 
ground elevation difference in the test area is about 450 meters. 
A fast static GPS technique was used to collect thirty-eight 
well-distributed GCPs on the entire coverage area of the two 
images; among them, eighteen GCPs belong to the overlap area. 
Most of the observed points were road intersections, pavement 
corners, or road-canal intersections. Further information about 
the test field can be found in Shi and Shaker, 2003 and Shaker 
et al., 2004. 
 
A number of GCLs were established by connecting different 
points in the overlap area between the two images and the 3D 
LBTM was applied. The results show that the new model is 
applicable to the real data, though solid conclusions could not 
be drawn as the data set had limited overlap coverage area 
(2.5x10 km2) and dependent checkpoints (the same 18 points 
which are used to establish the GCLs). Consequently, the 
coverage area of image 2 of the data set (6.62 x 10.18 km2) was 
extended to cover the same area as in image 1 (11.60 x 10.28 
km2). The image coordinates of the extension area of image 2 
were calculated by using the ground coordinates of the 
observed GPS points, the corresponding image coordinates of 
image 1, and the ordinary affine model parameters as they 
defined in Shi and Shaker, 2003. Accordingly, the two image 
coordinates and the object coordinates of a set of the 38 points 
were ready for the experiment.   
After several attempts to generate control straight lines, a group 
of 12 GCLs were established by connecting some of the GCPs 
of the data set keeping in mind that the lines were matching real 
linear features such as roads or canals. The remaining points 
were used as checkpoints (16 independent checkpoints). The 
final distribution of GCLs and checkpoints used in this 
investigation are presented in Figure 4.  
 
The accuracy of the results of applying the established GCLs 
plus one additional GCP to the developed LBTM was found to 
be matching the accuracies which resulted from using the 
simulated data. It is important to mention that the data set did 
not contain any high slope GCL; however, the GCLs 
comprising in the data set presented different levels. Tables 1 



 

and 2 show the results for the cases of using the 3D and 2D 
affine LBTMs, respectively. The results reveal that the 
accuracy level of about 2 m in X and Y directions can be 
achieved by applying 12 GCLs to the 3D affine LBTM. 
However, the accuracy declined to about 5 m in X and 9 m in Y 
when using the 2D affine LBTM and the same number of 
GCLs. This last finding is consistent with our expectations and 
the results obtained from applying the 2D affine LBTM to the 
simulated data because the effects of the terrain elevation 
differences (about 450 m in this study area) are not considered. 
In this case, the results in the X direction are better than the 
results in the Y direction (when using the 2D affine LBTM) 
because of the along track capturing techniques. In general, the 
results are comparable to what was achieved by using the 3D 
affine model and GCPs in Shi and Shaker, 2003. In addition, 
the results suggest that the developed LBTM is applicable to 
and reveals an accurate performance for high-resolution satellite 
imagery rectification.  
 

 
 
Figure 4. GCLs and checkpoints distribution of the Hong Kong 

data set. 
 
 

4. CONCLUSIONS AND FURTHER WORK 

The Line Based Transformation Model is proposed for the 
rectification of high-resolution satellite imagery. This is an 
attempt to establish a new model, which can deal with linear 
features and/or linear features with a number of GCPs. In this 
model, most of the problems encountered in previous models 
using linear features have been overcome. In addition, sensor 
calibration and satellite orbit information, which are withheld 
from the user community for most of the new high-resolution 
satellites, are not required. 
 
The underlying principle of the new model is that the line unit 
vector components of a line segment could replace the point 
coordinates in the representation of the ordinary 3D/2D affine 
and conformal models. Any two points along a line segment 
could be measured in image and object spaces to calculate the 
line unit vector. It is noteworthy that the two line segments in 
image and object spaces are not required to be the same, but are 
required to be segments of conjugate lines. Experiments with 
synthetic and real data have been conducted and the results 
prove the applicability of the new model for image rectification. 
The analysis of the results obtained from the LBTM indicates 
that the slope values of GCLs, which are based on the 
differences in terrain elevations along the line and the line 
length, significantly affect the accuracy of the results. The 
lower the slopes of GCLs are, the higher accuracy can be 

attained, and visa versa. No significant differences in the results 
could be recorded for flat terrain. 
  
Currently, the applicability of the developed model for the 
rectification of images produced by several high-resolution 
satellites such as IRS-1D, SPOT-5 and QuickBird is under 
study. In addition, the effects of the sensor inclination angles on 
the performance of the model and possible limitations of the 
model are examined. Finally, we are also investigating the 
possibility of extending the use of the new model for frame 
cameras.  
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