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ABSTRACT: 
Understanding remote sensing retrieval errors is important for correct interpretation of observations, and successful 
assimilation of observations into numerical models. Passive microwave sensors onboard satellites can provide global 
snow water equivalent (SWE) observations day or night and under cloudy conditions. However, there are errors 
associated with the passive microwave measurements, which are well known but have not been adequately quantified 
so far. This study proposes a new algorithm for passive microwave SWE retrievals that removes known systematic 
errors. Specifically, we consider the impact of vegetation cover and snow crystal growth on passive microwave 
responses. As a case study, systematic errors (difference between the old and new algorithms) are presented for the 
snow season 1990-91. Standard error propagation theory is used to estimate the uncertainty in the new retrieval 
algorithm (not shown here). An unbiased SWE dataset is produced and monthly SWE error maps (October-May) are 
derived for the Northern Hemisphere.  The next step is to fine tune and test the bias-free algorithm, which will be 
applied to the combined passive microwave dataset from SMMR and SSM/I over 20 years.  
     
 
 
                        I. INTRODUCTION 
 
Snow plays an important role in the global energy and 
water budgets, as a result of its high albedo and 
thermal and water storage properties. Snow is also the 
largest varying landscape feature of the Earth’s 
surface. Thus, knowledge of snow extent and SWE are 
important for climate change studies and applications 
such as flood forecasting. Furthermore, snow depth 
and SWE, as well as snow cover extent, are important 
contributors to both local and remote climate systems. 

 
Despite its importance, the successful forecasting of 
snowmelt using atmospheric and hydrologic models is 
challenging. This is due to imperfect knowledge of 
snow physics and simplifications used in the model, as 
well as errors in the model forcing data.  Furthermore, 
the natural spatial and temporal variability of snow 
cover is characterized at space and time scales below 
those typically represented by models.  Snow model 
initialization based on model spin-up will be affected 
by these errors. By assimilating snow observation 
products into Land Surface Models (LSMs), the 
effects of model initialization error may be reduced 
(Sun et al., 2003).  

 
Passive microwave remote sensors onboard satellites 
provide an all-weather global SWE observation 
capability day or night. Brightness temperatures from 
different channels of satellite passive microwave 

sensors (hereafter referred to as PM) can be used to 
estimate the snow water equivalent (or snow depth 
with knowledge of the snow density), and hence snow 
cover extent. However, there are both systematic 
(bias) and random errors associated with the passive 
microwave measurements.  In order for the remotely 
sensed SWE observations to be useful for climate 
modelers, water resource managers and flood 
forecasters, it is necessary to have both an unbiased 
SWE estimate and a quantitative, rather than 
qualitative, estimate of the uncertainty. This is a 
critical requirement for successful assimilation of 
snow observations into LSMs.  

 
For most PM algorithms, the effects of vegetation 
cover and snow grain size variability are the main 
source of error in estimating SWE. Of lesser concern 
are the effects of topography and atmospheric 
conditions. A major assumption made in a number of 
PM algorithms is that vegetation cover does not affect 
the SWE estimates. In fact, it can have a significant 
impact on the accuracy of SWE estimates. In densely 
forested areas, such as the boreal forest of Canada, the 
underestimation of SWE from retrieval algorithms can 
be as high as 50% (Chang et al., 1996). Another major 
assumption is that snow density and snow crystal size 
remain constant throughout the snow season 
everywhere on the globe; in reality, they vary 
considerably over time and space. The PM algorithms 
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are found to be very sensitive to snow crystal size 
(Foster et al., 1999).  
 
The purpose of this paper is to present a methodology 
for deriving unbiased SWE estimates from PM 
observations.  Systematic errors due to simplifying 
assumptions of the retrieval algorithm and effects of 
vegetation cover and crystal size are quantified. This 
paper presents results for the snow season 1990-91 as 
an example, using Special Sensor Microwave/Imager 
(SSM/I) data.  
 
 
   2. PASSIVE MICROWAVE RADIOMETRY 
 
If a snowpack is not too shallow (> 5 cm or contains 
more than about 10 mm SWE), scattering of naturally 
emitted microwave radiation by snow crystals occurs 
and can be detected at frequencies greater than about 
25 GHz. Otherwise, the snow will be virtually 
transparent. By comparing brightness temperatures 
detected at an antenna at frequencies greater than 25 
GHz (typically scattering dominated) with those 
brightness temperatures detected at frequencies less 
than 25 GHz (typically emission dominated), it is 
possible to identify scattering surfaces. Generally, the 
strength of scattering signal is proportional to the 
SWE, and it is this relationship that forms the basis for 
estimating the water equivalent (or thickness) of a 
snow pack (Chang et al., 1976; Pulliainen and 
Hallikainen, 1999; Tsang et al., 2000; Kelly et al., 
2003).  

 
From November 1978 to the present, the SMMR 
instrument on the Nimbus-7 satellite, and the SSM/I 
on the Defense Meteorological Satellite Program 
(DMSP) series of satellites have acquired PM data that 
can be used to estimate SWE. The SMMR instrument 
failed in 1987, the year the first SSM/I sensor was 
placed in orbit. On SMMR, the channels most useful 
for snow observations are the 18 and 37 GHz 
channels. For the SSM/I, the frequencies are slightly 
different (19.35 and 37.0 GHz). The data are projected 
into ½ degree latitude by ½ degree longitude grid 
cells, uniformly subdividing a polar stereographic map 
according to the geographic coordinates of the center 
of the field of view of the radiometers. Overlapping 
data in cells from separate orbits are averaged to give 
a single brightness temperature, assumed to be located 
at the center of the cell (Armstrong and Brodzik, 1995, 
Chang and Rango. 2000).  

 
We propose a modified SWE algorithm based on the 
original algorithm by Chang at al. (1987), where 
brightness temperature differences between the 19 
GHz (or 18 GHz for SMMR) and 37 GHz channels are 
multiplied by a constant related to the average grain 
size to derive the water equivalent of the snowpack. 
The simple algorithm is  
 

SWE = c ( T19  - T37 )   [mm]             (1) 
      
 
where SWE is snow water equivalent in mm, c is 4.8 
mm K-1, and T19 and T37 are the horizontally polarized 
brightness temperatures at 19 GHz (or 18 GHz for 
SMMR) and 37 GHz, respectively. The performance 
of this algorithm is similar when either vertical or 
horizontal polarizations are utilized – horizontal 
polarization was used in this study (Rango at al., 
1979). If the brightness temperature from the 19 GHz 
channel is less than that from the 37 GHz channel, 
then the snow depth and SWE are zero.  

 
To derive snow depth, SWE is simply divided by the 
snow density. It has been determined that in general, a 
snow density value of 300 kg/m3 is representative of 
mature mid winter snow packs in North America 
(Foster et al., 1996). The effect of this is to modify the 
coefficient in (1) such that c is 1.60 cm K-1 (1.59 cm 
K-1 for SMMR). 
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(b) 
Figure 1.  (a) Underestimation of SWE due to forest cover. 
The error bars denote uncertainty of the underestimation. (b) 
The forest factor F as a function of fractional forest cover. 
 
       3. A NEW RETRIEVAL ALGORITHM  
 
There are typically two kinds of errors associated with 
a given observation, systematic error (bias) and 
random error.  In this study, the emphasis is to 
evaluate the bias in the original algorithm (1) by 
comparing with a new algorithm (2). We use the term 
“bias” as if the new algorithm gives the “true” values 
of SWE.  
 
3.1 Error due to forest cover  
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     Figure 2. SWE overestimation or underestimation for the six Strum classes due to the assumption of constant grain size. 
 
The primary source of systematic error in SWE is the 
masking effect of vegetation, which reduces the 
brightness temperature difference term in (1). In the 
PM portion of the electromagnetic spectrum, the error 
due to forest cover is expected to be very high, 
upwards of 50%, since the emissivity of the overlying 
forest canopy can overwhelm the scattering signal 
from the snowpack (Chang et al., 1996; Brown at al., 
2003). Where forests are scant or absent PM estimates 
of SWE are more accurate.   
 

 
For each forested pixel, a fractional forest cover fr is 
calculated using the International Geosphere-
Biosphere Program (IGBP) Land Cover Data Set 
described by Loveland et al. (2000). These data, at 1 
km x 1 km, are averaged to the 1° x 1° 
latitude/longitude grid used in this study. The 
percentage of forest cover in a PM pixel was 
calculated from the total number of forest 
classification pixels at 1 km divided by the total 
number of pixels. Based on this fractional forest cover, 
the systematic error in the SWE value obtained from 
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(1) can be estimated. A multiplicative “forest factor” 
F is introduced to remove the bias due to forest cover 
from (1) 
 

SWE = F c (T19 – T37)        [mm].            (2) 
                                        

We derived the values of forest factor F by assigning 
underestimation errors for algorithm (1). In Figure 1a, 
the diamonds denote the underestimation error in (1) 
due to forest cover. For example, if the fractional 
forest cover at a given pixel is 65%, we assume (1) 
underestimates SWE by 30%. These nonlinear values 
are inexact, but are our best approximations at this 
time. The error bars are our estimates of uncertainty 
associated with the underestimation estimate of a 
particular forest cover fraction. The more mixed the 
pixel, the more uncertainty there is on the forest 
influence of the PM signal. In other words, untangling 
the contribution of the signal due to scattering from 
the underlying snow and emission from trees is harder 
to assess when the mixture is more even.  
 
Figure 1b shows the forest factor F as a function of 
fractional forest cover fr in North America (maximum 
of 2.0). Note that the F factor increases (nonlinearly) 
with forest cover. This is to correct for more severe 
underestimation of SWE due to dense forest cover.  
The values for F are based on the underestimation of 
SWE at different values of fr.  
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Figure 3. Monthly grain size coefficient c for six Sturm 
classes. The constant value 4.8 (mm/K) used in the original 
algorithm is also plotted and labeled as “OLD”. 
 
3. 2 Error due to grain size variability 
 
The secondary source of SWE error results from the 
retrieval algorithm assumption that snow crystal size 
and shape is spatially uniform and remains constant 
throughout the snow season. This assumption is 
reflected in the original SWE retrieval algorithm (1) 
where c is a constant. The constant coefficient c (4.8 
mm K-1) is associated with an average crystal size of 
0.3 mm (radius). In fact, snow crystals vary with 
location and evolve with time. Since microwave 
scattering increases as the crystals grow in size as the 
snow season progresses, the algorithm (1) typically 
overestimates SWE, except when the snowpack is 
thin. 

 
Sturm et al. (1995) have characterized the seasonal 
snowpack into six classes (excluding continental ice 
caps and ocean/water bodies), based on vegetation and 
meteorological conditions: tundra, taiga, alpine, 
prairie, maritime and ephemeral. In this investigation, 
we use these classes to address the issue of spatial 
inhomogeneity of snowpacks. In addition, we consider 
the evolution of snow crystal size of these different 
snow classes. As a result, the c value used in (2) now 
varies with location and time.  
 
In this study, it is assumed that crystals grow 
throughout the snow season – an exception to this is 
the “ephemeral” snow class. Where temperature and 
vapor gradients are greater (northern interior climates 
– taiga, tundra, and prairie snow classes), the rate of 
growth and the associated crystal size errors are 
typically larger.  
 
Figure 2 shows the systematic errors for six different 
“Sturm” snow classes due to grain size variability. For 
each Sturm snow class calendar month, a percentage 
error in SWE due to differences in snow crystal size 
over time is prescribed. They are assigned based on 
various field campaign results with snow crystal 
samples collected and analyzed, as well as subjective 
analysis (based on previous work and personal field 
experience). Negative values denote underestimation 
of SWE, while positive values denote overestimation. 
The greatest systematic error occurs in the tundra 
snow and the least in maritime or ephemeral snow. 
The largest uncertainty in c random errors occur in the 
tundra and prairie during the late winter and early 
spring period, whereas the smallest uncertainty is for 
the maritime and ephemeral snow classes. 
 
Note that for November, (1) underestimates SWE for 
each snow class. That is because when the snow cover 
is shallow (< 5 cm), as it generally is at the beginning 
of the snow season, microwave radiation at all 
observed frequencies passes through the snowpack 
virtually unimpeded.  
 
Figure 3 shows the different values of c for each of the 
six Sturm snow classes for each month of the snow 
season from October to May for North America. 
These values are derived from estimates of snow 
crystal size-related errors (Fig. 2). When the average 
crystal size is smaller than 0.3 mm, c becomes larger 
than 4.8; when the crystal size is larger, c becomes 
smaller.  
 
In summary, to compute unbiased SWE value for each 
pixel using (2), the forest factor F is first determined 
based on the forest cover fraction of this pixel, and 
then the c value is assigned based on its snow class 
category and time of the year. The introduction of 
forest factor F and time- and space-varying c in (2) is 
to correct the systematic errors in (1) so that only 
random errors remain.
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Figure 4: Difference maps between the new and old SSM/I SWE algorithms for October 1990 through May 1991. 
 
3.3 Comparisons between the new and old 
algorithm for SWE retrieval 
 
Figure 4 shows maps of monthly biases, i.e., 
difference between SWE estimate from the new (2) 
and old algorithm (1). Shades of blue indicate that the 
new algorithm is estimating less snow than the 
original global snow algorithm, while shades of red 
indicate that the new algorithm is estimating more. 
The pale blue and sage colors in Figure 6 indicate 
areas where there is little difference in SWE estimates 
by the two algorithms. Because snow crystals are 
typically larger in tundra regions than in forested 
regions, snow thickness and SWE were overestimated 

using the original algorithm. Snow was under-
estimated using (1) in forested areas because the 
microwave emission from the trees was overwhelming 
scattering from the underlying snowpack. The most 
noticeable negative values are found in the northern 
portion of the Mackenzie River basin and on the north 
slope of Alaska. With the inclusion of a forest factor 
in the new algorithm, considerably more SWE is 
estimated in the taiga or boreal forest region.  
 
 

     4. CONCLUSIONS  
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This study corrects an existing SWE model for known 
systematic errors. Dense vegetation was shown to be 
the major source of systematic error, while 
assumptions about snow crystal size and how crystals 
evolve with the progression of the season also 
contribute significant biases.  The proposed unbiased 
algorithm is applied to SSM/I data in a case study for 
snow season 1990-91, with an associated uncertainty 
estimate (not shown here). These results have been 
evaluated in taiga, prairie and maritime regions of 
Canada using snow data from the Meteorological 
Service of Canada. In the most densely forested areas 
of the taiga and maritime classes of eastern Canada, 
SWE may still be underestimated using the new 
algorithm. As more complete data on forest density 
becomes available, separate forest factors could be 
prescribed for taiga and maritime sub-classes to better 
account for SWE in densely forested areas. 
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