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ABSTRACT

The appearance of roads in northern Africa differs from that of roads, e.g., in central Europe, which most of the approaches for
automated road extraction in literature focus on. In this paper we propose a road model for areas with different road appearance in
IRS satellite image data with a panchromatic resolution of 5 m and 20 m multispectral resolution. We model areas where water makes
agriculture possible on one hand, and areas dominated by the desert and dry mountainous areas on the other hand.
In the desert and mountainous areas paved roads appear as more or less distinct lines and the Steger line extraction algorithm can be
used to extract roads in combination with global grouping. In mountainous areas detected, e.g., in a DEM, much larger curvatures
are expected to occur than in the desert. In agricultural areas, on which we focus in this paper, roads often do not appear as distinct
lines. Borders of the fields represented by edges in the image and the knowledge that these borders can be collinearly grouped, possibly
together with lines, into longer linear structures are used to construct road sections. To close gaps, pairs of lines or edges are connected
by ziplock snakes. To verify these road sections, the paths of the snakes are evaluated using the line strength and the gradient image.
The verified road sections are finally globally grouped using the knowledge that roads construct a network between important points.
Gaps which have a high impact on the network topology are closed if evidence supporting this is found in the image. Results show the
validity of the approach.

1 INTRODUCTION

For the road network in regions consisting in larger parts of desert
or dry mountainous areas, e.g., in northern Africa, there is either
no digital data available, or it is often very imprecise and not
up to date, i.e., incomplete, or even wrong. Because of the large
areas to be mapped, it is important to use highly automated means
as well as cheap and readily available data. IRS-1C/D (Indian
Remote Sensing Satellite) data with a ground resolution of about
5 m in the panchromatic and about 20 m in red, green, and NIR
(near infrared) is a good choice for this. We use pan-sharpened
images.

The appearance of roads in these regions differs from that of
roads, e.g., in central Europe, which most of the approaches for
automated road extraction in literature focus on. In the following
we give a short overview over related work, focusing on con-
tributions which employ similar data or similar techniques, e.g.,
snakes, as our approach.

One of the first approaches to automatic road extraction is (Fis-
chler et al., 1981), where two types of operators are combined:
the type I operator is very reliable but will not find all features
of interest, whereas the type II operator extracts almost all fea-
tures of interest, but with a large error rate. Starting with the
reliable type I road parts, gaps are bridged based on the type II
results employing a search algorithm termed F∗. (Wiedemann
et al., 1998) extract and evaluate road networks from MOMS-
2P satellite imagery with a resolution similar to IRS employing
global grouping. The basis of this approach is the Steger line
operator (Steger, 1998). The use of snakes for the detection of
changes in road databases in SPOT and Landsat satellite imagery

is demonstrated in (Klang, 1998). (Péteri and Ranchin, 2003)
employ a multiresolution snake based on a wavelet transformed
image to update urban roads based on given unprecise road data.
In (Laptev et al., 2000) linear scale space and ziplock-snakes are
used for the extraction of roads from high resolution aerial im-
agery. (Dal Poz and do Vale, 2003) propose a semi-automated
approach for the extraction of roads from medium and high reso-
lution images based on dynamic programming. Active testing for
the tracking of roads in satellite images is introduced by (Geman
and Jedynak, 1996). A semi-automated system for road extrac-
tion based on dynamic programming and least squares B-spline
(LSB)-snakes is proposed by (Grün and Li, 1997). The automatic
completion of road networks based on the generation and verifi-
cation of link hypotheses given in (Wiedemann and Ebner, 2000).
(Wallace et al., 2001) present an approach designed for a wide va-
riety of imagery. It is based on an object-oriented database which
allows the modeling and utilization of relations between roads as
well as other objects. Road extraction using statistical model-
ing in the form of point processes and Reversible Jump Markov
Chain Monte Carlo is proposed by (Stoica et al., 2004).

Our approach makes use of the 5 m panchromatic resolution as
well as the multi spectral information of IRS. It is designed for
the extraction of roads in mostly agricultural as well as in arid
areas, the latter also comprising mountainous regions. Section 2
describes model and strategy. In Section 3 the individual steps of
the extraction process, namely line / edge extraction, generation
of connection hypotheses, verification of connection hypotheses,
and global grouping are detailed. Section 4 presents experimen-
tal results showing the validity of the approach. An outlook con-
cludes the paper.



Figure 1: Sample images from mountainous (left) and desert ar-
eas (right)

2 MODEL AND STRATEGY

Due to large differences in the appearance of roads in different
areas in north Africa a single model for automatic road extraction
is insufficient. We distinguish three areas: agricultural, moun-
tainous, and desert. The characteristics of roads in IRS satellite
images in these areas can be described as follows (cf. fig. 1 and
2):

In mountainous areas roads are strongly affected by the to-
pography. Roads often turn with a large curvature or even with
sharp bends. In the images the roads are mostly represented as
bright and only seldom as dark lines.

In desert areas roads mostly appear as bright or dark lines with
few disturbing objects. The distinction from other linear objects,
e.g., pipelines, is often difficult.

In agricultural areas roads appear as elongated structures. They
often have no bar-shaped line profile in the images, but can be
seen indirectly as collinear edges of field borders.

A distinction to what type of area a region belongs can be done
mostly automatically based on a Digital Terrain Model (DTM)
and the image data itself. Agricultural areas show high intensities
in the near infrared channel, mountainous areas are characterized
by extended steep slopes in the DTM, and desert areas consist
of homogeneous surfaces with low intensities in the near infrared.

Road extraction in mountainous and desert areas starts by
extracting lines with the Steger extractor (Steger, 1998). All
spectral channels are used independently. The resulting sub-pixel
lines are evaluated and fused. In mountainous areas there is
no limitation in curvature, whereas in desert areas only linear
features with a small curvature are accepted. The verified and
fused lines are globally grouped into the road network. A
detailed description of the approach is given in (Wiedemann et
al., 1998).

The extraction of roads in agricultural areas is much more chal-
lenging than in the other two areas. Here, roads not always appear
as lines (cf. fig. 2) because they run in many cases along field
borders. This means that the borders of the fields often indirectly
represent the path of the road. On the other hand, these roads usu-
ally form elongated collinear or curvilinear structures with small

Figure 2: Sample image from an agricultural area. The white
rectangle shows the part used in figures 4 and 6.

curvature, i.e., they can be approximated by linear structures.
Borders of fields means that there is a more or less strong grey
value gradient perpendicular to the road direction. The proposed
approach uses these characteristics to construct road sections. To
employ as much information as possible, both lines and edges are
used to form possible road connections. A detailed description of
the extraction is given in the next section.

3 ROAD EXTRACTION AS COLLINEAR FEATURES

Our goal is to group roads appearing as lines and edges of the
field borders into longer linear structures and by this means rec-
ognize and delineate the roads. We start with the extraction of
lines and edges (cf. fig. 3 and 5), both termed linear features
for the remainder of this paper. From these features connection
hypotheses are constructed and evaluated. The best path for the
connection is obtained by optimizing a ziplock snake between
the two adjacent endpoints of the linear features. The final road
network is obtained by globally grouping the road sections.

3.1 Extraction of Linear Features

The extraction of the linear features is performed with the Steger
sub-pixel line- and edge extractor. The extracted features are split
into segments with a curvature below a given threshold. This is
done for all image channels independently. In a following step
the resulting lines and edges from all image channels are fused to
single data sets. From these data sets connections are constructed.
Figure 4 shows results of line and edge extraction.

3.2 Construction of Connections

Connections consist of elongated features with a small curvature.
Two linear features are used to construct a connection if they sat-
isfy the following conditions:

• the linear features have to be collinear (µC1,2
)

• the linear feature and their straight connection must be
collinear (µC3

)
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Figure 3: Workflow of road extraction using collinear features

Figure 4: Extracted lines (left) and edges (right). The original
image is given in figure 2.
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Figure 5: Road section, consisting of linear features and a snake
optimized connection.

• the linear features must have a minimum length (µL1,2
)

• there is a minimum and maximum length for the connection
(µL3

)

The evaluation parameters µ are not simply thresholded, but they
are interpreted as fuzzy values. The fuzzy variables are combined
into one evaluation value (µCON ) with the Fuzzy AND operator
(1) (Zadeh, 1989).

µCON = µC1
∧ µC2

∧ µC3
∧ µL1

∧ µL2
∧ µL3

= MIN(µC1
, µC2

, µC3
, µL1

, µL2
, µL3

) (1)

Connections with a combined evaluation value above a given
threshold serve as basis for the construction of road sections.

3.3 Construction of Road Sections

To determine the actual path of the connection, the two adjacent
endpoints of the linear features are used as start points for a
ziplock snake (cf. fig. 5).

Snakes, also called Active Contour Models, were introduced by
(Kass et al., 1988). A snake is described by geometric (Eint)
and photometric (Eext) energies, with Esnake = Eint + Eext.
The goal is to minimize the energy by varying the path of the
snake. Due to the photometric energy the snake is pulled to
image features, whereas the geometric energy usually controls
the tension and rigidity of the snake.

(Neuenschwander et al., 1995) crafted the term ”ziplock
snake”, for which the optimization is performed from both sides
inwards. The advantages of this approach when using it for
bridging gaps in roads are that the given information about the
endpoints is exploited well, while local minima, which arise
especially in the middle of the gap due to a bad prediction of
the road path, are avoided (Laptev et al., 2000). During the
optimization process the active parts of the snake, where the
image information is exploited, move step by step from both
sides towards the center.

As roads can appear as bright lines and image edges, a line
strength and a gradient image, respectively, are used as photo-
metric energy. The line strength image is calculated in form of
the maximum negative eigenvalue of the Hessian Matrix (2) for
each pixel.

H(x, y) =

[

gxx gxy

gxy gyy

]

(2)

Here gxx, gyy and gxy, represent the second derivatives of the
Gaussian smoothed image, with σ = 2.0, in x and y direction,



Figure 6: (Left) Line strength image representing the absolute
values of the maximum negative eigenvalues of the Hessian ma-
trix. (Right) Gradient image representing the absolute values of
the sobel filter mask. The original image is given in figure 2.

as well as the mixed derivative. Large negative eigenvalues are
obtained for a bright line, whereas large positive eigenvalues cor-
respond to dark lines. We note that also point features lead to
large positive as well as negative eigenvalues, but they do not dis-
turb our procedure. As experience shows, that most of the roads
appear as bright lines in the images, only the maximum negative
eigenvalues are used. To take into account the information of all
image channels, the eigenvalues are calculated for every image
channel and the maximum of the absolute value for every pixel
is written into the line strength image. An example is shown in
figure 6, left.

Also the maximum gradient image is generated using all image
channels. For every image channel a Sobel image is calculated
using the medium absolute values. The maximum value for every
pixel of these Sobel images is taken for the maximum gradient
image (cf. fig. 6, right). By employing the line strength and the
gradient image as input data for our snake based approach we
focus on the features we are interested in, i.e., bar-shaped roads
and field borders.

3.4 Verification of Road Sections

A disadvantage of snakes is that they will minimize their energy
in any case, even if there are no meaningful image features avail-
able. This leads to the necessity to verify the result by examining
the path of the resulting snake. In our approach the verification
of the snake is synonymous with the verification of the road sec-
tions. As criteria for the correctness the line or edge strength
along the path of the snake is used. A section is verified only if
there is enough evidence for a linear feature along the path.

A grey value profile in the line strength or gradient image per-
pendicular to the snake direction is calculated for every snake
point. To evaluate the quality of a single point, the profile is
first smoothed with a Gaussian kernel. Then, the maximum value
along the profile and the position of the maximum are calculated.
For a valid point the maximum should be close to the center of
the profile and the second derivative along the profile at the max-
imum point should be significantly smaller than zero. To accept
a road section, the percentage of valid points needs to be larger
than a given threshold.

3.5 Global Grouping

The result of the previous step are individual road sections. To
construct a network, road sections are grouped into larger struc-

tures. As road sections may result from either line or edge fea-
tures they need to be fused first into linear features. To do so,
the road sections are evaluated using the quality measure gener-
ated by the previous verification. Because road sections resulting
from lines are more reliable, they are given a higher weight than
those obtained from edges. The result are the road sections with
the highest evaluation value.

An important property of a road network is, that most points on
the network can be reached from all other points along an optimal
path with a minimum detour. To make use of this property, we
generate link hypotheses according to (Wiedemann and Ebner,
2000). The distance between pairs of points within the network
is calculated along the existing network and along a hypothetical
optimal path, for which the Euclidean distance is used. To form
so-called preliminary link hypotheses, a detour factor is calcu-
lated as follows:

detour factor =
network distance

optimal distance
(3)

The link hypotheses are checked starting with the hypotheses
with the largest detour factor. If a link hypotheses is accepted,
the new connection is inserted into the road network. Due to
changes in the network, the generation of link hypotheses has to
be repeated. This is iterated until no more new link hypotheses
are generated. The result of the global grouping is the final road
network.

4 EXPERIMENTAL RESULTS

For the validation of the proposed approach pan-sharpened IRS-
1C/D satellite images for a test site in northern Africa were used.
The images were selected in a way that they comprise different
road types in agricultural as well as in mountainous test areas.
We have not yet generated reference data for a quantitative evalu-
ation, therefore, the validation is done just qualitatively by visual
inspection.

Figure 7 shows the results obtained for the first image sample
shown in figure 2. The network extracted for this example shows,
that in agricultural areas not only main roads can be extracted,
but also smaller roads that connect, e.g., individual farms, for
instance on the right side of figure 7. One difficulty here is the
distinction between roads and paths that follow the borders of a
field.

The second example (fig. 8 and 9) shows a complex road net-
work. Several small villages are connected by roads of different
importance. Most of the roads outside the villages were correctly
extracted. As the approach is developed for roads in agricultural
areas, the streets inside the villages could, as was to be expected,
mostly not be extracted. Worth to mention is the small number of
false positives.

The third example (fig. 10 and 11) shows a road passing through a
mountainous area. For this example the approach of (Wiedemann
et al., 1998) was used. No limitation for the maximal allowed
curvature was set.



Figure 7: Result of road extraction in agricultural area

Figure 8: Image data

Figure 9: Result of road extraction in agricultural area

Figure 10: Image data

Figure 11: Result of road extraction in mountainous area

5 CONCLUSIONS

We have proposed a new approach for the extraction of roads in
agricultural areas in 5 m resolution IRS data. The approach is
based on the fact, that roads in these areas are often not directly
visible, but they run along field borders and form elongated struc-
tures. Starting with the extraction of linear features, connection
hypotheses are generated. The evaluated connections are opti-
mized by means of ziplock snakes. The verification of the gener-
ated road sections is performed by checking the path of the snake.
Using the verified road sections a road network is constructed by
means of global grouping. Experiments have shown, that not only
the main roads but also smaller roads can be extracted from the
used IRS imagery. By means of the approach of (Wiedemann et
al., 1998) we are also able to extract roads in desert and moun-
tainous areas from IRS data.
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