
MODELLING 3D OBJECTS USING WEAK CSG PRIMITIVES

Claus Brenner

Institute of Cartography and Geoinformatics, University of Hannover, Germany – claus.brenner@ikg.uni-hannover.de

KEY WORDS: LIDAR, Urban, Extraction, Modeling, Reconstruction, City, Semi-automation.

ABSTRACT

There have been numerous approaches to automatically extract man-made objects from images or laser scan data in the
past. Many efforts have been put into the detection and measurement of object parts. However, putting those parts together
in such a way that a topologically correct object representation is obtained – which additionally meets certain regulariza-
tion conditions – has not been addressed in a satisfactory manner. In this paper, following a review of existing methods
for obtaining roof topologies of buildings, an approach termed ‘weak constructive solid geometry (CSG) primitives’ is
proposed. This approach is intended to fill the gap between B-rep and CSG modelling, combining advantages of both.

1 INTRODUCTION

When research on man-made structures approached the
problem of automatically deriving building models from
sensor data about 20 years ago, the use of aerial images
to obtain roof structures was common. In the meantime,
new sensors have become operational, such as aerial and
terrestrial laser scanners, extending the possibilities to ac-
quire data. However, the requirements have increased also,
nowadays for example there is a demand for including tex-
tured and geometrically detailed façades.

1.1 Object Representation

What is a ‘good’ virtual representation of a real world ob-
ject? For example, given a dense point cloud from laser
scanning or image matching, one might argue that the best
boundary representation would be a triangulated surface
consisting of those points, or a subset thereof. This ap-
proach is typically used for free-form objects, where the
original measured point cloud is triangulated, smoothed,
reduced, etc..

Usually, this is not the description one strives for in the
context of modelling man-made objects such as buildings,
for various reasons:

• Even when used only for visualization, densely tri-
angulated meshes are not well suited in the context
of buildings, since the human eye is quite sensitive
to deviations between the (often piecewise flat) ob-
ject and its approximation by the densely triangulated
surface. Also, standard triangle reduction algorithms
are usually not well suited for polyhedrons. A better
visual impression can be obtained by adding texture
(e.g. (Früh and Zakhor, 2003)), however, the model
might still look ‘jagged’, especially at building bor-
ders.

• For graphics performance, storage, and transmission,
a surface description consisting of as few polygons as
possible is desirable.

• Since 3D building models will become a part of 3D
geographic data bases, an object-wise representation
is more adequate than a huge triangulated surface. As
with 2D databases nowadays, different scales will be
available, which correspond to different levels of de-
tail (LOD). It would be desirable to model buildings
in such a way that different LOD’s can be derived au-
tomatically.

As a result, the challenge is to obtain an object representa-
tion from dense measurements, which represents the major
structure of an object, given a certain desired generaliza-
tion level. In contrast to the reduction of point clouds or
triangulated surfaces, this involves an interpretation step.

1.2 B-rep vs. CSG

A large percentage of buildings can be represented by
polyhedrons. Two main approaches to model such build-
ings have evolved in the past. The first constructs the
boundary from measured points, lines or planes, thus
builds the boundary representation (B-rep) directly. The
second obtains the object by combining volume primi-
tives using Boolean operations (constructive solid geom-
etry, CSG). From the CSG representation, the B-rep can
be obtained automatically and unambiguously, when re-
quired.

CSG modelling is used widely in computer aided design
(CAD), since it has a number of advantages: (i) modelling
using primitives and Boolean operations is much more in-
tuitive than specifying B-rep surfaces directly (except for
situations where the set of primitives is not appropriate for
a given object), (ii) the primitives can be parameterized,
thus enabling reuse and collection in libraries, (iii) they
can be associated with other, additional information, and
(iv) the CSG modelling tree contains implicit information
that can be used for many purposes.

When building CSG models on the basis of measured data,
an additional advantage is that due to the implicit geometri-
cal constraints of the primitives, the determination of prim-
itive parameters is quite robust. However, one has to keep

in mind that since a conversion from a B-rep to a CSG rep-
resentation is ambiguous, deriving a CSG representation
from given (measured) data is ambiguous, too – unless ad-
ditional hints can resolve this ambiguity.

Looking at different modelling approaches, the following
points are of importance:

1. How is topological correctness of the surface en-
sured?

2. How are geometric constraints such as meeting sur-
faces, roofs of same slope, parallelism and rectangu-
larity enforced?

3. How is the desired level of generalization obtained,
i.e. which measures are taken to distinguish between
‘important’ parts that should be modelled and ‘unim-
portant’ parts, which have to be left away.

When object representations are built using CSG, this
solves a number of issues. First, primitives themselves
are assumed to be topologically correct and Boolean op-
erations will preserve correctness. Second, geometric con-
straints hold for the primitives implicitly: for example, the
faces of a box are parallel or normal to each other. How-
ever, this does not extend by default to aggregates of prim-
itives. Third, by imposing limits on the allowed primitive
sizes, the generalization level can be controlled.

2 PREVIOUS WORK

2.1 Example Building Reconstruction Systems

This section reviews a selected number of building recon-
struction approaches with special focus on how they deal
with topological correctness, geometric constraints, and
generalization. Table 1 summarizes the main points.

(Haala and Brenner, 1997) derive a skeleton (Aichholzer
et al., 1995) from a given ground plan, which defines re-
gions of interest in the digital surface model (DSM). Ana-
lyzing these regions, roof surfaces are accepted or rejected,
and the skeleton is rebuild using only accepted surfaces.
The topological correctness is ensured by the skeleton al-
gorithm, which is constructive with well-defined result.
Geometric constraints are not imposed, which can lead to
wrong gable positions, especially when the ground plans
are displaced relative to the DSM. Since each ground plan
segment leads to at most one roof surface patch, the gener-
alization level is implicitly determined by the ground plan.

(Weidner, 1997) extracts roof faces using a DSM segmen-
tation. No topology is build. However, it is proposed to
automatically derive mutual relationships between the ex-
tracted faces, such as ‘same slope’, ‘symmetry’, and ‘anti-
symmetry’, and to insert them as constraints into a global
robust adjustment. There is no control for the generaliza-
tion level except for the minimum accepted roof face size.

(Grün and Wang, 2001) extend a previous approach de-
scribed in (Grün and Wang, 1998). It is based on con-
ventional, manual measurement of corresponding image

points in stereo images. For all vertices of the object to be
acquired, corresponding points have to be measured. The
resulting point cloud is termed “weakly structured”, since
the operator can give hints regarding the roof topology by
measuring in a certain order and placing the points in dif-
ferent layers. Then, an automatic process based on relax-
ation recovers the roof topology from the point cloud. Fi-
nally, constraints are formulated, e.g. all eaves points hav-
ing the same height, vertices of a face lying in a plane,
etc.. A least squares adjustment is used to estimate final
point locations. It seems that no constraints are used to
enforce relationships between different roof parts, as over-
lapping parts are corrected by a snap operation which is
done after the adjustment. Altogether, the approach builds
the surface of the object directly by a mixed manual and
automatic procedure. Regularity is enforced by some con-
straints as well as a snap. The generalization level is en-
tirely controlled by the operator.

(Gülch and Müller, 2001, Gülch et al., 1999) describe
an approach which is based on CSG primitives measured
semi-automatically in aerial images. Buildings are mod-
elled using a fixed number of parametric primitives like
flat-, desk-, saddleback-, hipped-roof etc., which are com-
bined by Boolean operations. The selection of each ap-
propriate primitive is carried out manually by an operator.
Then, the wireframe model is overlaid in two images and
the operator can adapt the parameters accordingly. The
adaption is supported by various image matching tools so
that only a few mouse clicks are necessary to instantiate
and measure a primitive. Topological correctness is en-
forced by the CSG approach. Regularity is enforced im-
plicitly by the primitives. Across primitives, a snapping
procedure is used. Generalization is controlled entirely by
the operator.

(Vosselman, 1999) extracts faces from non-regularized
laser scan data using a Hough transform, followed by con-
nected component analysis. From this, edges are found by
intersection of faces and analysis of height discontinuities.
No ground plans are used as additional information, how-
ever since jump edges cannot be determined very well from
laser scanning, a ‘main building orientation’ is derived and
used as a constraint for the edge orientation. The topology
is build by bridging gaps in the detected edges. The use of
geometric constraints is proposed. Generalization is again
controlled by a minimum face size.

(Brenner, 1999) divides ground plans into 2D primitives
(in this case, rectangles) using a heuristic algorithm. For
each of the 2D primitives, an optimal 3D primitive is se-
lected from a fixed set of available roof types, and its pa-
rameters are estimated using the DSM. The primitive se-
lection and parameters can be changed later on using a
semiautomatic extension. The final object representation
is obtained by merging all 3D primitives. Roof topology is
generated by the Boolean merge operation. Adjacent 3D
primitives with similar eaves heights are ‘snapped’ to ex-
actly the same heights, however no constraints are formu-
lated and no combined adjustment takes place. The initial
2D primitive generation can be controlled by a buffer pa-
rameter which will omit primitives for small ground plan

Topology Regularization Generalization Description
1 Constructed: skeleton of

ground plan.
— No. of roof faces

bounded by ground
plan edges.

Regular DSM, ground plans. Hypothesize-and-test
using skeleton. Result strongly coupled to ground
plans.

2 — Constraints derived
automatically.

Controlled by mini-
mum region size.

Regular DSM. Segmentation of planes but no topol-
ogy built. Automatic derivation of constraints.

3 Relaxation to connect points
from weakly structured cloud.

Constraints, snap. Manually by operator. Stereo images. Manual measurement of weakly
structured point cloud, relaxation to derive topol-
ogy, adjustment using constraints, snapping to correct
topology. Semiautomatic.

4 CSG: Primitives and Boolean
operations.

CSG primitives, snap. Manually by operator. Mono images. Selection of primitives by operator,
measurement of primitive parameters supported by
image matching. Semiautomatic.

5 Find and connect edges be-
tween extracted planar faces.

Outlines and jump
edges follow main ori-
entation. Constraints
proposed.

Controlled by mini-
mum region size.

Original laser scan data. Hough based region extrac-
tion, detection of edges, connected edges form topol-
ogy.

6 CSG: Primitives and Boolean
operations.

CSG primitives, snap
(limited to height).

Influenced by ground
plan and buffer param-
eter.

Regular DSM, ground plans. Subdivision of ground
plan into rectangles, reconstruct individually, and
merge.

7 Constrained tree search to find
topology between extracted
planar faces.

Constraints proposed. Influenced by ground
plan and acceptance
rules.

Regular DSM, ground plans. Extract planes, ac-
cept/reject on the basis of rules, global search for
topology. Weakly coupled to ground plans.

8 Find and connect edges be-
tween extracted planar faces.

— Influenced by ground
plan and split & merge
parameters.

Original laser scan data. Subdivide building area ac-
cording to ground plan, extract faces using Hough
transform, split & merge. Detection and connection
of edges.

9 Find and connect edges be-
tween extracted planar faces.

Automatic constraint
detection and global
adjustment proposed.

Controlled by mini-
mum region size.

Regular DSM for segmentation, original laser scan
points for estimation. Extraction of roof planes,
merge, detection and connection of edges.

Table 1: Comparison of different modelling approaches: How is the topology obtained, how are regularities enforced?
1 (Haala and Brenner, 1997), 2 (Weidner, 1997), 3 (Grün and Wang, 1998), 4 (Gülch et al., 1999), 5 (Vosselman, 1999),
6 (Brenner, 1999), 7 (Brenner, 2000a), 8 (Vosselman and Dijkman, 2001), 9 (Rottensteiner and Briese, 2003).

extrusions. Thus, the generalization level can be con-
trolled, but is of course tied closely to the ground plan.

(Brenner, 2000b) extracts planar faces from a regularized
DSM using a random sampling consensus (RANSAC) ap-
proach. Faces are accepted or rejected based on a set
of rules, which express relationships between faces and
ground plan edges. The final topology of the roof is ob-
tained from all accepted regions by a global search proce-
dure. The introduction of constraints and a least squares
adjustment to enforce regularity is described in (Brenner,
2000a). Generalization is linked to the ground plan and the
set of rules.

(Vosselman and Dijkman, 2001) and (Vosselman and Su-
veg, 2001) is an approach similar to (Vosselman, 1999),
however to prevent spurious roof faces, ground plans are
introduced as additional information. Concave ground
plan corners are extended to cut the building area into
smaller regions. The Hough-based plane extraction is con-
strained to those regions. Split-and-merge is used to obtain
the final faces. By using ground plans, generalization is
tied to the ground plan generalization, but also depends on
the parameters during split-and-merge.

(Rottensteiner and Briese, 2003) extract roof races using
seed regions and region growing in a regularized DSM.
Similar to (Vosselman, 1999), intersection and step edges
are detected and a polyhedral model is derived. It is pro-
posed to detect regular structures automatically and to in-
troduce them as constraints into a global adjustment. Gen-
eralization is controlled by parameters governing the plane
extraction process.

2.2 Conclusions Drawn

From the presented approaches, one can conclude that
building the correct topology, enforcing geometric regu-
larities and ensuring a given generalization level are major
problems that have not been solved yet in a satisfactory
manner.

The easiest way to ensure a correct surface topology is to
construct the boundary representation directly. However,
this is only true as long as no subsequent processes (snap-
ping, parameter estimation) lead to a geometric change
which affects topology. Also, adjacent buildings should
not be modelled individually. Constructive algorithms like
CSG Boolean operations or building the skeleton yield the
correct topology, provided no numerical instabilities arise
(de Berg et al., 2000). When using CSG, the primitive
parts from which an object is built must be aligned prop-
erly, which is often a problem when the parameters of the
primitives are determined from measurements.

Enforcing constraints has been proposed by several au-
thors, however it has not been used to a larger extend.
The practical problem with constraints is that their num-
ber increases quickly with scene complexity. For exam-
ple, similar to the 2D case outlined below, a simple box
in 3D space can be described by its position (3), orienta-
tion (3) and dimensions (3), for a total of 9 parameters,
or degrees of freedom (DOF). However, considering this
box as a general polyhedral surface, we obtain 24 DOF
for the 8 points, 18 DOF for the 6 planes, and 33 con-
straints which enforce regularity, so that again 9 DOF re-
main. Thus, even if one had a modeler capable of identi-

Object
(Separator)

Part 1
(Shape)

Constraint
(Engine)

Part 2
(Shape)

Object
(Separator)

Part 1
(Shape)

Constraint
(Engine)

Part 2
(Shape)

Figure 1: Simple scene graph of an object consisting of
two shapes and an engine which connects their fields. The
drawing uses scene graph symbols from Open Inventor.

fying constraints from reconstructed object parts automat-
ically, it would probably be prohibitive to check interac-
tively if the correct constraints have been identified, and,
given cross-dependencies, which constraints are missing.

Finally, generalization is a mostly open problem. Espe-
cially approaches based on a general planar segmentation
usually use little more than region sizes to determine if a
region should become part of the final object. Some ap-
proaches use ground plans which influence generalization,
(Brenner, 2000b) uses a set of rules to describe simple
roofs. On the other hand, CSG modelling has the advan-
tage that primitives are tied to interpretations, which facil-
itates the definition of “valid” roofs.

3 SCENE GRAPHS

Scene graphs have been used extensively in computer
graphics. Their primary purpose is to describe a scene for
rendering (Wernecke, 1994, OpenSceneGraph, 2004). A
scene graph is a tree structure, able to store a hierarchical
description of a scene in terms of nodes. Objects are mod-
elled in parts, which are usually parameterized and can be
reused across the graph.

For the purpose of reconstructing objects from measure-
ment data, three scene graph concepts are of particular
interest: fields, engines and node kits. Fields are used
to store parameters of nodes. Since nodes are actually
classes, parameters could also be stored in simple class
member variables. However, defining fields has the ad-
vantage that i) parameters of all nodes can be accessed in a
unified way, ii) field changes can be monitored by the sys-
tem, and iii) fields can be connected to each other (Wer-
necke, 1994). Engines provide this possibility to connect
node fields. In scene graphs, one of their main purposes is
to animate scenes. However, engines can do arbitrary com-
putations and thus influence a number of result fields based
on a number of input fields. Figure 1 shows a simple graph
involving an engine. Finally, node kits are nodes grouped
in a subgraph which can be inserted into the scene graph
as one. Node kits somehow resemble libraries of object
parts as used in CSG modelling. However, their flavor is a
little bit different: a node kit contains a catalog of nodes,
arranged in proper order, of which only a minimal subset is
used by default. Additional nodes in the kit are “switched
on” as soon as their field values are set.

4 WEAK PRIMITIVES

4.1 The Idea Behind Weak Primitives

From the conclusions drawn in section 2.2, CSG modelling
has a number of advantages: correct surface topology is
enforced by the primitives themselves, one has not to deal
with a confusing number of constraints because they are
implicit, and a handling of generalization is more straight-
forward since CSG primitives are associated with an in-
terpretation. The resulting CSG tree is certainly a more
valuable outcome than a collection of boundary patches,
e.g. when different levels of detail of an object are to be
derived afterwards. Furthermore, CSG modelling is less
sensitive to errors in measurement data and even to data
gaps, due to the strong implicit constraints.

The drawback is that those strong constraints cannot be
“relaxed” when needed, since they are a inherent property
of the primitives. However, real-world man-made objects
often have deviations from the idealized shape, which are
cumbersome to model using ideal primitives.

The second drawback is that the different CSG primitives
which make up an object have to be aligned properly.
When primitive parameters are estimated by a fit to real
data, this alignment is usually not fulfilled. Performing a
“snap” operation afterwards will align properly, but will
loose the best fit property. Thus, a single process is de-
sirable, which enforces alignment and a best fit simultane-
ously.

The idea of weak primitives is to combine the best of CSG
and “faces and constraints”. Weak primitives are a set of
unknowns and a set of constraints, packaged as a single
“primitive”. Using a weak primitive is just as using a “real”
primitive, although internally, the constraints are enforced
by equations rather than by an implicit model. The differ-
ence becomes obvious when constraints are to be relaxed:
weak primitives allow to “switch off” constraints and thus
are able do deviate from their ideal shape.

In order to enforce regularities between different primi-
tives, additional constraints have to be imposed. To achieve
this, weak primitives expose an interface consisting of
fields. Fields of different primitives can be connected by
constraints.

One can see the similarity to scene graph concepts out-
lined in section 3: Node fields correspond with weak prim-
itive fields, engines connecting fields correspond with con-
straints connecting fields, and weak primitives are similar
to node kits in the sense that they contain a number of “pre-
wired” objects which can be turned on or off.

4.2 An Example in 2D

A rectangle in 2D will serve as an example to illustrate the
approach. A “CSG representation” of a rectangle involves
the parameters (xc, yc) for the position, an angle a for the
rotation and the width w and height h of the rectangle, for

x

y

w
h

(xc,yc) a

x

y

(x0,y0)

(x1,y1)

(x2,y2)

(x3,y3)

Figure 2: Description of a rectangle in 2D. Left: using 5
parameters. Right: using 4 corner points.

a total of 5 parameters (figure 2, left). From those 5 param-
eters, all vertices and edges of the rectangle can be derived.

The rectangle can also be described by its vertices (points),
edges (lines), and constraints (figure 2, right). If the ver-
tices are given, the edges are defined as well and vice versa.
Using vertices as unknowns, one obtains the 8 unknowns
(xi, yi), 1 ≤ i ≤ 4. Since two of the edges are perpen-
dicular and one is parallel to the first edge, 3 constraints
apply, so that again 5 parameters remain. Formulating
constraints can be done in different ways. Especially in
projective geometry, linear constraints can often be ob-
tained (Heuel, 2002). However, in this case, the points
as well as the lines are unknown which leads to bilinear
equations, as used e.g. by (Brenner, 2000b) or (Grün and
Wang, 2001) in the context of building models. The con-
straint equations thus are linearized and have to be iterated.
Four line equations given in Hesse normal form (HNF)
aix + biy + ci = 0, 1 ≤ i ≤ 4 yield 12 additional pa-
rameters and 4 additional constraints for normalizing the
normal vectors, a2

i + b2

i = 1. Two points are on each line,
leading to two equations of the form aixj + biyj + ci = 0.
Three other equations hold for the normal vectors of the
lines, enforcing parallel and perpendicular edges. Table 2
summarizes unknowns and constraints for this case.

Description U C
4 Points: (xi, yi) 8
4 Lines: aix + biy + ci = 0 12
4 Normal vector length = 1: a2

i + b2

i = 1 4
8 Point on line: aixj + biyj + ci = 0 8
2 Perpendicular normals: aiaj + bibj = 0 2
1 Parallel normal: a0b2 − b0a2 = 0 1
Total unknowns 5

Table 2: Unknowns (U) and constraints (C) for a simple
rectangle in 2D.

4.3 Packaging Constraints as Weak Primitives

If one “packages” unknowns and constraints as weak prim-
itives, some of the constraints will become invisible: en-
forcing the normal vector length and points lying on their
respective lines are internal constraints which a user won’t
change. Parallel and perpendicular constraints will be-
come properties of the object to be switched on and off.
The point coordinates, being unknowns, will become fields
which can be connected to fields of other primitives. What
about the HNF line coefficients? In the above formulation,
they are needed when regularization conditions should be
met. However, after performing an adjustment, their esti-
mated values are not used, since the object is defined by its
points only, which are estimated as well. Thus, a line has

A
B

B
Points[4]

Lines[4]

A
Points[4]

Lines[4]

A.Lines[1]

Point on line

B.Points[0]

A.Lines[1]

Point on line

B.Points[3]

Figure 3: Two rectangles, A and B, standing side by side.
Left: geometry. Right: user view of constraints between A
and B.

A.p0 A.l0 A.p1

A.l1

A.p2

A.l3

A.p3 A.l2

B.p0 B.l0 B.p1

B.l1

B.p2

B.l3

B.p3 B.l2

A B

Figure 4: Internal representation of the two rectangles of
figure 3 as a graph connecting unknowns by constraints.
Unknowns are depicted as circles, constraints as boxes.
The icons represent the “rectangular” and “point on line”
constraints.

only to take part in the estimation if i) regularization condi-
tions are used which involve the line, or ii) the line is a field
which is connected by a constraint to another primitive.

Thus, one sees that fields offered by a primitive are inde-
pendent from the parameters which represent its geome-
try. If a field directly corresponds to a parameter, this pa-
rameter will be introduced as unknown into the estimation.
If not, the field will be introduced as unknown and equa-
tions will be added relating the unknowns to the parame-
ters of the primitive. In fact, both the “5-parameter” and
the “4-point” representations can define the same interface
in terms of the fields which are available for connection by
constraints.

Figure 3, left shows an example. Two rectangles are re-
quired to stand side by side. In order to make them pre-
cisely aligned, constraints are introduced, say in this case
that the two left points of rectangle B have to lie on the
right line of rectangle A. So from an operator’s point of
view, the rather simple figure 3, right, reflects the scene
structure: two objects, A and B, are present which are con-
nected by constraints of type “Point on line”.

Internally, however, if the rectangles are represented by
four points, the structure of unknowns and constraints
more complex. Figure 4 depicts the graph of unknowns
and constraints which results. Each time an operator inter-
action changes parts of the graph, the required graph nodes
are determined, unknowns and constraints are set up, and
an estimation is performed. Figure 5 shows how the two
example primitives react to different user interactions.

5 CONCLUSIONS AND OUTLOOK

In this paper, a new modelling approach termed weak CSG
modelling is proposed. Its main idea is to package, or hide,

a b

c d

Figure 5: Constraints at work: while the user modifies the
scene, constraints are simultaneously set up and solved.
(a) Scene with constraints, as defined in figure 3. (b) When
the primitives are turned, they keep aligned. (c) An ad-
ditional constraint is inserted which links the lower right
point of A to the lower left point of B. (d) The “rectangu-
lar” constraints are switched off for B, but the point and
line stay aligned.

regularity constraints of objects inside black boxes which
appear to the user as traditional CSG primitives. Thus, the
advantages of CSG and B-rep modelling are combined.

There is much room for extensions to obtain a truly inter-
active system. Even though there are not many constraints
to be “wired” by a user, inserting them should be very in-
tuitive – and not be associated with editing a graph repre-
sentation of the scene. For example, when a user drags an
object part close to another object, the system should au-
tomatically propose the constraints which make sense be-
tween the two objects involved. The same holds for associ-
ating primitives with measured or pre-segmented data. The
next step will be to apply the approach to a truly 2D/3D
setup, where image and laser scan data from aerial and ter-
restrial sensors are combined.

ACKNOWLEDGEMENTS

This work has been funded by the VolkswagenStiftung,
Germany, http://www.volkswagenstiftung.de/.

REFERENCES

Aichholzer, O., Aurenhammer, F., Alberts, D. and Gärtner, B.,
1995. A novel type of skeleton for polygons. Journal of Universal
Computer Science 1(12), pp. 752–761.

Brenner, C., 1999. Interactive modelling tools for 3D building
reconstruction. In: D. Fritsch and R. Spiller (eds), Photogram-
metric Week 99, Wichmann Verlag, pp. 23–34.

Brenner, C., 2000a. Dreidimensionale Gebäuderekonstruktion
aus digitalen Oberflächenmodellen und Grundrissen. PhD thesis,
Universität Stuttgart, Deutsche Geodätische Kommission, DGK
Reihe C, Nr. 530.

Brenner, C., 2000b. Towards fully automatic generation of city
models. In: IAPRS Vol. 32 Part 3, Amsterdam, pp. 85–92.

de Berg, M., van Kreveld, M., Overmars, M. and Schwarzkopf,
O., 2000. Computational Geometry: Algorithms and Applica-
tions. Springer.

Früh, C. and Zakhor, A., 2003. Constructing 3d city models
by merging ground-based and airborne views. IEEE Computer
Graphics and Applications, Special Issue Nov/Dec 2003 23(6),
pp. 52–61.

Grün, A. and Wang, X., 1998. CC-modeler: A topology generator
for 3-D city models. In: D. Fritsch, M. Englich and M. Sester
(eds), IAPRS, Vol. 32 Part 4, Stuttgart, pp. 188–196.

Grün, A. and Wang, X., 2001. News from CyberCity-modeler. In:
E. Baltsavias, A. Grün, and L. V. Gool (eds), Automatic Extrac-
tion of Man-Made Objects from Aerial and Space Images (III),
Balkema Publishers, pp. 93–101.

Gülch, E. and Müller, H., 2001. New applications of semi-
automatic building acquisition. In: E. Baltsavias, A. Grün,
and L. V. Gool (eds), Automatic Extraction of Man-Made Ob-
jects from Aerial and Space Images (III), Balkema Publishers,
pp. 103–114.

Gülch, E., Müller, H. and Läbe, T., 1999. Integration of automatic
processes into semi-automatic building extraction. In: IAPRS,
Vol. 32 Part 3-2W5, München.

Haala, N. and Brenner, C., 1997. Interpretation of urban surface
models using 2D building information. In: A. Grün, E. Balt-
savias and O. Henricsson (eds), Automatic Extraction of Man-
Made Objects from Aerial and Space Images (II), Birkhäuser,
Basel, pp. 213–222.

Heuel, S., 2002. Statistical Reasoning in Uncertain Projective
Geometry for Polyhedral Object Reconstruction. PhD thesis,
Rheinische Friedrich-Wilhelms-Universität zu Bonn, Institut für
Photogrammetrie (to appear).

OpenSceneGraph, 2004. www.openscenegraph.org/, last ac-
cessed 07. April 2004.

Rottensteiner, F. and Briese, C., 2003. Automatic generation of
building models from LIDAR data and the integration of aerial
images. In: H.-G. Maas, G. Vosselman and A. Streilein (eds),
Proc. ISPRS working group III/3 workshop on ’3-D reconstruc-
tion from airborne laserscanner and InSAR data’, Dresden, Octo-
ber, IAPRS Vol. XXXIV, Part 3/W13, pp. 174–180.

Vosselman, G., 1999. Building reconstruction using planar faces
in very high density height data. In: in: ISPRS Conference
’Automatic Extraction of GIS Objects from Digital Imagery’,
Münchem, IAPRS Vol. 32/3-2W5, ISBN 0256- 1840, pp. 87–92.

Vosselman, G. and Dijkman, S., 2001. 3D building model re-
construction from point clouds and ground plans. In: M. A.
Hofton (ed.), Proceedings of the ISPRS workshop on Land Sur-
face Mapping and Characterization Using Laser Altimetry, An-
napolis, Maryland, IAPRS vol. XXXIV part 3/W4, Commission
III., pp. 37–44.

Vosselman, G. and Suveg, I., 2001. Map based building recon-
struction from laser data and images. In: E. Baltsavias, A. Grün,
and L. V. Gool (eds), Automatic Extraction of Man-Made Ob-
jects from Aerial and Space Images (III), Balkema Publishers,
pp. 231–239.

Weidner, U., 1997. Digital surface models for building extraction.
In: A. Grün, E. Baltsavias and O. Henricsson (eds), Automatic
Extraction of Man-Made Objects from Aerial and Space Images
(II), Birkhäuser, Basel, pp. 193–202.

Wernecke, J., 1994. The Inventor Mentor: Programming Object-
Oriented 3-D Graphics with Open Inventor. Addison-Wesley,
Reading, Mass.

