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ABSTRACT: 

 
A number of studies have been carried out to find an appropriate spatial resolution to which to aggregate data in order 
to reduce the variation within an object, and minimize the classification error.  Such approaches are pixel-based, and 
do not draw on the spatial variability as a source of information. The variability within an object can provide 
additional information that can be used for image classification. Instead of pixels, groups of pixels that form image 
segments, which are called “patches” in this study, were used for image classification. New methods that exploit 
multivariate statistics to improve the image classification are suggested. In the case of the object-based classification, 
patches are not expected to consist of pixels with completely homogeneous spectral radiances, but rather certain 
levels of variability are expected. To treat this variation within objects, multivariate normal distributions are assumed 
for every group of pixels in each patch, and multivariate variance-covariance matrices are calculated.  A test of this 
approach was conducted using digital aerial imagery with a nominal one meter pixel size, and four multispectral 
bands, acquired over the small city of Morgantown, West Virginia, USA. Four classification methods were 
compared:  the pixel-based ISODATA and maximum likelihood approaches, and region based maximum likelihood 
using patch means and patch probability density functions (pdfs).   For region-based approaches, after initial 
segmentation, image patches were classified into seven classes:  Building, Road, Forest, Lawn, Shadowed 
Vegetation, Water, and Shadow. Classification with ISODATA showed the lowest accuracy, a kappa index of 0.610.  
The highest accuracy, 0.783, was obtained from classification using the patch pdf.  This classification also produced 
a visually pleasing product, with well-delineated objects and without the distracting salt-and-pepper effect of isolated 
misclassified pixels.  The accuracies of classification with patch mean, and pixel based maximum likelihood were 
0.735, 0.687 respectively. 
 
 

1. INTRODUCTION   
  

Perfect classification could be achieved if each spectral 
class were to have a unique spectral signature.  
However, spectral overlap between most real classes 
occurs as a result of noise in the system, the natural 
variability of objects within a specific class, and the 
spatial variability of radiance within each object (Swain 
and Davis, 1978; Price, 1994).  An added 
complication is that the spectral structure of an image is 
a function of scale (Cao and Lam, 1997).  Higher 
spatial resolution may actually lead to greater 
variability within classes, as additional detail is 
resolved.   
A number of studies have been carried out to find an 
appropriate spatial resolution to which to aggregate 
data in order to reduce the variation within an object, 
and minimize the classification error (Pax-Lenney and 
Woodcock 1997; Teillet et al., 1997; Latty et al., 
1985).  Such approaches are pixel-based, and do not 
draw on the spatial variability as a source of 
information.  Another problem with methods that 
search for an optimal scale is that real objects and 
classes are variable in size, and thus there is usually no 

single spatial resolution that suppresses all unwanted 
spectral variability (Marceau et al., 1994a; 1994b).  
Studies that use image segmentation to identify single 
objects (Gougeon, 1995a) can overcome this problem 
of a single optimal scale.  However, most such studies 
use mainly aggregated information such as average DN, 
and to a limited extent the variance within the image 
segments (Kettig and Landgrebe, 1976; Gougeon, 
1995a; Meyer et al., 1996).  The variability within an 
object can provide additional information that can be 
used for image classification.  The spectral correlation 
between bands, as quantified by the covariance matrix, 
is in fact often a key determinant in traditional 
maximum likelihood classification for separating 
classes that overlap in their univariate distributions. 
 
 

2. TRADITIONAL IMAGE CLASSIFICATION 
Maximum likelihood classification is a standard, pixel-
based supervised approach, which classifies unknown 
pixel-based on multivariate probability density 
functions (pdf) of the classes of interest.  Statistical 
properties of training data sets from ground reference 
data are typically used to estimate the pdfs of the 



classes.  Each unknown pixel is assigned to the class 
with the highest probability at the pixel location.  The 
decision rule is as follows: 
 

)()()()( ipiXpcpcXp ωωωω ≥         (1) 
 
where X : the spectral multivariate vector 

)( cXp ω : pdf of X, given that X is a member 
of class c  

)( cp ω : a priori probability of class c in the 
image 
i: class number among the m number of classes 
in the image 

 
The resultant likelihoods (D) can be used as surrogates 
for probabilities. 
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Figure 1 shows the pdfs of two spectral classes, with 
their overlap marked with diagonal lines.  The 
decision rule for this method is that all pixels are 
assigned to the class with the higher pdf for that 
spectral value.  For example, even if a pixel with the 
value of “a” belongs in reality to class B, it will be 
classified as class A (Figure 1).  This is an inevitable 
result of overlapping class pdfs. 

 
 
Figure 1. The decision rule of a pixel-based maximum 
likelihood classifier. 
 
 

3. METHODS 
 

Instead of pixels, groups of pixels that form image 
segments were used for image classification in this 
study.  There are few studies that evaluate the use 
statistic of segmented regions for classification (Kettig 
and Landgrebe, 1976; Meyer et al., 1996; Gougeon, 
1995a; Janssen and Molenaar, 1995).  However, most 
studies employing aggregated information focus on 
first order statistics and only use second order statistics 
to a limited extent.   In this section, new methods that 
exploit multivariate statistics to improve the image 
classification are suggested. 
Figure 2 represents a conceptual comparison between 
traditional classification and the methods developed in 

this study.  An example of the pixel-based approach 
(Figure 2, left) is the traditional supervised maximum 
likelihood classification.  Within a patch, pixels from 
the outliers of the class distribution are likely to be 
misclassified.  Window-based approaches use 
arbitrary groupings and return the value of the window  
to the central pixel (Figure 2, middle).  In the case of 
the object-based classification (Figure 2, right), patches 
are not expected to consist of pixels with completely 
homogeneous spectral radiances, but rather certain 
levels of variability are expected.  This approach, 
therefore, incorporates a more realistic representation 
of real phenomena.  The variation in an object is used 
as one characteristic of the object in this method, 
whereas it is an obstacle with traditional pixel-based 
classification methods.  To treat this variation within 
objects, multivariate normal distributions were assumed 
for every group of pixels in each patch, and 
multivariate variance-covariance matrices were 
calculated.  Two methods of exploiting this 
information were investigated:  maximum likelihood 
based on the patch mean, and maximum likelihood with 
Gaussian pdf.   
 

Figure 2. Comparison of object-based classification 
with traditional image classification approaches. 

 
 

3-1.  Maximum likelihood classification using the 
patch mean 

 
Maximum likelihood classification with the patch mean 
uses a decision rule modified to use the mean vector of 
a group of pixels, instead of individual pixels.  When 
the mean of the group is classified as belonging to a 
certain class, all the pixels in the group are assigned to 
that class.  The decision rule is as follows: 
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Where:  X
−

: mean vector of a group 

p X c( | )
−
ω : probability associated with the 

mean of the group of pixels of class c, given 
that the mean vector X

−
 is a member of class 

c  
 



This method classifies each group of pixels as a unit.  
This will tend to minimize misclassification for isolated 
pixels with outlier spectral characteristics. 

 
3-2. Region-based maximum likelihood classification 
with pdf 

 
The method suggested in this study can be summarized 
as a comparison of the pdf of an unknown group with 
pdfs of each of the training data sets.  If two samples 
originate from the same population, the pdfs of the two 
groups should be similar to each other.  Significantly, 
the distribution of radiance values that causes 
misclassification in pixel-based approaches (Swain and 
Davis, 1978), is critical information for the method 
developed in this study.   
To simplify the explanation, suppose two normally 
distributed populations have means 1µ  and 2µ , and 

standard deviation 1σ  and 2σ , respectively.   
Figure 3 represents three different cases that could 
occur.  If two populations are very similar, then the 
two pdfs almost completely overlap (Figure 3a).  If it 
is possible to estimate the area of the overlapped 
region, it should be close to 1, because the sum of all 
possible probabilities is equal to 1.  However, if two 
populations are very different from each other, there 
should only be a very small overlap area for the two 
pdfs (Figure 3c).  Thus it can be seen that the size of 
the overlapped area is proportionate to the similarity of 
the two pdfs.  If the two pdfs are identical to each 
other, the overlapping area is equal to 1, if completely 
different, then 0, and the values between are an index of 
similarity (Figure 3b).  The area of overlap can be 
found by integrating the relevant overlap portions of the 
two pdfs: 
 

 
Figure 3. Likelihood measured with pdf.  The areas 
with diagonal lines indicate the degree of similarity 
between two classes.  (a) Two almost completely 
overlapping class.  (b) Two partially overlapping 
classes.  (c) Two almost completely separated classes. 
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Where: 12O : likelihood index between 1X  and 2X  

m = 2 for 1X 2X≥  

m = 1 for 1X < 2X  

 
When the likelihood index is extended to a multivariate 
pdf, with p variables and multiple samples, the 
equation is modified as follows: 
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Where ijO : likelihood index between iX  and jX  

i : patch id under investigation 
j : training data set id under investigation 
m = j  for iX jX≥  

m = i  for iX < jX  

 
The decision rule in this study is extracted from the 
relationship between the likelihood and similarity as 
follows: 
 

ijOicO ≥                              (6) 

 
Thus a patch is assigned to class c if the maximum of 
the likelihood index values is found for the pdf 
comparison of the patch and training data set c .  
With this method, a very stable similarity index is 
obtained because the variance and covariance 
information, as well as the class mean, are all directly 
used.  One disadvantage of this method is that it 
requires much computing time. 
 
 
4. APPLICATION OF THE PIXEL AND REGION-

BASED CLASSIFICATION METHODS 
 

The ADAR data is used to compare the new approach 
with traditional methods. The system captures images 
1,000 by 1,500 pixels in size, each pixel approximately 
1 x 1 meter.  The ADAR system acquires four bands 
of data with four separate digital cameras sensitive to 
blue, green, red, and infrared wavelengths covering the 
range from 400 to 1,000 nm.   
The data were acquired at 19:42:18 GMT (2:42 pm 
local time) on March 24 1997 (early spring, prior to 
tree leaf-out) from an altitude of 2,522 meters.  Leaf-
off data provides clearer observation of ground 
features, but less spectral discrimination of forest cover. 
The analysis procedure in this study comprises three 
stages.  It is assumed that patches have previously 
been identified by image segmentation using the region 
growing process incorporating thresholding and region 
growing.  In the first stage, statistics for the patches 
are computed.  The statistics used were the same as 
those used in the region growing stage, including the 
mean vectors and variance-covariance matrices.  
For the second stage, representative patches were 
selected to build a training data set for seven classes:  
Building, Road, Forest, Lawn, Shadowed Vegetation, 
Water, and Shadow. The patches selected as training 



data were treated as independent spectral classes within 
each informational class.  This means that the selected 
patches were not aggregated into composite statistics 
for the seven classes.  The likelihood index for each 
patch was computed for all individual training data set 
patches by the divergence index, the maximum 
likelihood using the patch mean, and the patch pdf.   
Small patches with fewer than six pixels were excluded 
from the region-based maximum likelihood analysis, 
and treated as part of the “melt pond,” to use McDevitt 
and Peddada’s (1998) term.  There were two reasons 
for identifying melting pond pixels.  Firstly, because 
five variables were used in this study, patches with 
fewer than six pixels had less than the minimum 
number of pixels potentially required to characterize 
the multivariate statistics.  Secondly, the melting pond 
was assumed to represent objects that are not of direct 
interest, but rather extraneous objects such as cars, or 
chimneys on buildings.   
In the third stage, each patch was classified into seven 
classes by the suggested methods. For maximum 
likelihood with patch pdf, the range over which the pdf 
was calculated was limited to three standard deviations.  
The pdf is very low outside of this range, and is not 
expected to have much significance in the calculation.  
Excluding pdf values greater than three standard 
deviations has the advantage of reducing the computing 
cost.   
Figure 4 shows a one dimensional representation of the 
process.  Within the pdf overlap region, the decision 
range was divided into ten equal cells.  The 
probability of the center of each cell calculated for both 
the training and the patch classes, and the lower of the 
two probabilities is used for the cell height.  After 
multiplying cell height by the width, the cell area is 
calculated.  The total area of the overlap is then 
estimated by summing the cell areas (Figure 4).  This 
procedure is modified for the multivariate case by 
dividing the multidimensional overlap region into 10n 
cells, where n is the number of bands.  For two bands 
a volume of the overlap region is calculated, and for 
three or more bands a hypervolume is calculated.  For 
this work, five bands were used, thus, 105 cells were 
calculated for each likelihood index.   

 
Figure 4. Maximum likelihood calculation utilizing 
patch pdfs. 
 
The patch was assigned to the class with the highest 
likelihood after the unknown patch is compared with 
each patch in the training data set.  In the next step of 
the classification, melting pond pixels are classified.  
These small patches are treated as noise, and therefore 
assigned to an adjacent class.  If the patch is 

surrounded by a single class, it is assigned to that class.  
In the general case, however, the patch is adjacent to 
more than one class.  In this case, the patch is assigned 
to the adjacent class with the most similar DN values in 
the green band (Band 2).  A more sophisticated, 
multivariate approach was not used because of the 
small sample size of these patches.  In the final step, 
adjacent patches of the same class were merged to form 
objects. 
 
ERDAS Imagine was used to conduct the traditional 
pixel-based classifications.  The unsupervised 
ISODATA program (Tou and Gonzalez, 1974; 
ERDAS, 1999) was executed with 24 clusters.  After 
classification, the 24 clusters were assigned empirically 
to the most appropriate class among the seven classes 
based on the ground truth and knowledge of the area. 
For each of the supervised classification methods, the 
same training data sets were used. 
 
 

5. RESULTS AND DISCUSSION 
 

Figure 5 shows the results from the four previously 
mentioned methods. To compare the accuracy of the 
four methods, error matrices for the kappa index and 
errors of commission and omission were produced 
using the IDIRSI program ERRMAT (Eastman, 2003) 
(Table 1).  Ground reference maps for the accuracy 
evaluation were produced using photo-interpretation 
and expert knowledge for three parts of the study area: 
Downtown Morgantown, a medium density residential 
area, and a forested stream valley.   
 
Table 1. Summary accuracy statistics for 7 classes by 
the 4 classification methods used in this study. 

 
 Blding Road Forest Lawn 

CERR 0.363 0.489 0.135 0.440 
ISODATA 

OERR 0.487 0.320 0.147 0.046 

CERR 0.391 0.347 0.063 0.366 MHL with 
pixel OERR 0.202 0.412 0.133 0.214 

CERR 0.309 0.291 0.104 0.304 MLH with 
patch mean 

OERR 0.194 0.292 0.042 0.503 

CERR 0.225 0.243 0.101 0.294 MLH with 
patch pdf 

OERR 0.170 0.249 0.045 0.480 
 

 Shd Veg Water Shadw Kappa 
CERR 0.567 0.024 0.062 

ISODATA 
OERR 0.373 0.981 0.352 

0.610 

CERR 0.440 0.123 0.137 MHL with 
pixel OERR 0.297 0.308 0.359 

0.687 

CERR 0.360 0.095 0.048 MLH with 
patch 
mean OERR 0.691 0.232 0.398 

0.735 

CERR 0.306 0.042 0.054 MLH with 
patch pdf 

OERR 0.603 0.089 0.234 
0.783 

 
The overall kappa value of the supervised pixel-based 
classifications was 0.687. The lowest accuracy, 0.610, 
was obtained with the unsupervised pixel-based 



classifier ISODATA.  The maximum likelihood 
classifier using the patch mean resulted in a relatively 
high kappa value of 0.735.  Maximum likelihood 
classifier with pdf produced the overall best accuracy, 
0.783. 
Looking at the results in more detail, the unsupervised 
classifier resulted in many isolated pixels and small 
clusters, as expected (Figure 5 a).  The Water class in 
the region of the stream was almost completely 
misclassified as Building with this method.  The 
stream has exposed and shallow covered rock that is 
apparently spectrally similar to the materials from 
which buildings are constructed.  Building was also 
misclassified as Road, and consequently the Building 
omission error was relatively high (Table 1).  Pixel-
based supervised classification (Figure 5 b), like the 
unsupervised classification, resulted in a rather noisy 
classification.  The classes of Buildings and Roads 
were extensively confused, resulting in high errors of 
commission and omission for both classes.  However, 
compared to the unsupervised classification, the 
confusion between Building and Water was 
dramatically reduced for the pixel-based maximum 
likelihood classification. 
The maximum likelihood classifier using the patch 
mean (Figure 5 c) yielded a visually pleasing 
classification, and the second best overall accuracy.  
The higher classification accuracy of the maximum 
likelihood classification with patch pdf is most likely a 
result of the incorporation of differences in the kurtosis 
of classes through the variance-covariance matrix data.  
When only the patch mean is used in the classification, 
such differences are suppressed.  The particular 
classes that were less well classified in the maximum 
likelihood using the patch mean, compared to the patch 
pdf, were the Building and Road classes.  But the 
computing cost for classification with the mean was 
much lower than with the pdf.  Thus, the classifier 
with the patch mean is an efficient alternative to 
classification with pdf. 
The maximum likelihood classification with pdf 
produced higher accuracy than any other classifier 
(Table 1).  The segmentation suppresses isolated 
pixels and small clusters (Figure 5 d), and thus 
classification error resulting from high within object 
variance was efficiently controlled by this method.   
However, a number of cases of confusion arose 
between Building and Road, and Lawn and Forest.  
The confusion between Lawn and Forest can be related 
to segmentation.  Although these two classes 
generally had sufficient spectral difference between 
them for good classification, in some cases the low 
 

 
 
Figure 5. Results of the classifications.  (Above) 
Legend.  (Right) a): ISODATA from ERDAS 
Imagine.  b): Maximum likelihood classification from 
ERDAS IMAGINE. c): Maximum likelihood classifier 
with patch mean. d): Maximum likelihood classifier 
with patch pdf.  
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contrast boundaries  between Lawns and Forest areas 
resulted in these regions being merged into a single 
patch.  The confusion between Building and Road was 
not a result of segmentation as generally these two 
classes were well delineated.  However, confusion 
occurred because the spectral radiances of the two 
classes were sometimes very similar.  This arises 
because materials such as asphalt, stone and concrete 
are used for both building roofs and roads.   
As part of the classifications carried out using 
maximum likelihood, all pixels were assigned to the 
class with the highest likelihood.  This is a relative, 
not an absolute measure.  Thus even classes that result 
in very low likelihood when compared to all the 
training data sets are classified.  It is possible that a 
region is not represented by any of the training data 
sets, and this should be identified.  In future work, it 
may be desirable to establish an absolute minimum 
maximum likelihood for classification.  Patches that 
fail to meet the minimum value would be flagged as 
unknown. 
 
 

6. CONCLUIONS 
 
This study produced a region-based classification 
approach specifically designed for high spatial 
resolution imagery. The new classification method 
resulted in improved results at both the image object 
scale and a richer attribution at the aggregate land cover 
scale. This research made a contribution to the growing 
field of analysis of high spatial resolution imagery.   
The methods developed in this research are important 
not just because they produce more accurate results that 
show the spatial patterns more clearly because of their 
lack of distracting high frequency noise.  The 
delineation and attribution of image objects, rather than 
classified pixels, is an important step toward integrating 
remote sensing with GIS. The object-based approach 
resulted in a pleasing simplicity of spatial structure 
compared to the noisy patterns of traditional pixel-
based classification. 
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