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ABSTRACT: 
 
Three-dimensional city models become more and more important in many GIS applications. Examples are, apart from simple 
visualization, city and land use planning as well as telecommunication planning and disaster management. Currently, there are no  
3-D GIS available, which are suitable for these applications. For managing large spatial data sets in an efficient and sustainable way, 
spatial databases are suitable, but in general restricted to two dimensions. The paper answers the questions how to represent a 3-D 
city model in an object-relational spatial database, and to what degree the modeling, analysis and query mechanism of the database 
can be used for 3-D models and applications. Our geometrical-topological 3-D city model is based on existing standards of the ISO 
and the Open GIS Consortium to ensure interoperability with other systems and data providers. Recent 'object-relational' databases 
support sophisticated object models closing the gap between relational databases and object-oriented models. Furthermore, spatial 
extensions are available for database systems. Based on the widespread commercial database system Oracle 9.2i Spatial, the 
functionality and efficiency of analysis, access and queries is examined. In our paper we will demonstrate which kind of 3-D spatial 
queries are feasible using Oracle Spatial, and how exact the query results are with respect to geometry, especially when using three-
dimensional spatial indices. Likewise, the system's performance is considered by means of miscellaneous benchmarks and their 
dependency on individual factors such as the recursive aggregation of objects. 
 
 

1. INTRODUCTION 
 
Three-dimensional city models are important in many 
applications of geographic information systems (GIS). 
Examples are telecommunications planning, disaster manage-
ment, or urban planning (Köninger & Bartel; 1998, Zlatanova, 
2000; Zlatanova & Holweg, 2004). On one hand, most GIS 
currently available, however, cope only with two or two and a 
half dimensional data. Most systems from Computer Aided 
Design (CAD) or Computer Graphics (Foley et al., 1995) can 
handle 3-D data, but are limited since they do not handle 
topology and semantic properties adequately and do not offer 
the GIS functionality required for the applications mentioned.  
 
Relational databases are, on the other hand, suitable for storing 
and managing data in an efficient and sustainable way (Ullman, 
1988). Transaction mechanisms enable consistent updates of the 
database, and powerful access structures guarantee efficient 
execution of queries. Object-relational extensions close the gap 
between conceptual models and their implementation in a 
database. Add-ons to handle spatial data are available for the 
most commercial databases, for example the Spatial Extender 
for IBM’s DB/2, PostGIS for PostgreSQL, Spatial Data Blade 
for Informix, or Spatial for Oracle. Most of these extensions are 
restricted to 2-D or 2.5-D data and offer only a few 
functionalities to handle 3-D data.  
 
This paper addresses the question how to store, manage and 
query 3-D city models in object-relational spatial databases and 
to which degree the required 3-D functionalities are supported. 
In addition, the performance of 3-D queries is analyzed. The 

focus is on a widespread commercial system, Oracle 9i Spatial 
(Oracle, 2002a; Oracle, 2002b). 
 
The 3-D city model on which the implementation is based 
(Kolbe & Gröger, 2003) is a multifunctional model, which may 
be used for analysis and simulation purposes as well as for 
visualization. To reach this objective, the model has explicit 
topologic relations between its geometric components, and a 
hierarchical structure to model aggregated thematic objects 
recursively. To support interoperability, it is based on 
international GIS standards, for example ISO 19107 ‘Spatial 
Schema’ (Herring, 2001). It can easily be interchanged using 
the Geography Markup Language (GML 3) (Cox et al, 2003), 
which will be one of the most important GIS transfer formats in 
the future.  
 
The implemented 3-D city model was developed based on 
discussions within the “Special Interest Group 3D” (SIG 3D) of 
the initiative “Spatial Data Infrastructure North Rhine-
Westphalia” (GDI NRW). In this group, municipalities, 
scientists and software developers cooperate to develop a 
unified approach for 3-D city models. 
 
In the last decade, the suitability of databases for 3-D GIS 
models has been studied several times. (Molenaar, 1992; 
Rikkers et al., 1994) employ a database to implement a 3-D 
formal data structure. A pure relational model without spatial 
extensions is used. A similar approach is the prototype SOMAS 
(Pfund, 2002), which focuses on the thematic aspects and, in 
particular, 3-D city models. In contrast to our approach, 
recursive aggregates are not considered in both prototypes. 
(Arens et al., 2003) analyze the suitability of Oracle Spatial 9i 



 

and propose the extension of this database by a 3-D primitive. 
Its topology, however, is only internal; there are no topological 
relations between primitives. (Stoter & van Oosterom, 2002) 
propose an implementation which is similar to ours, but they 
consider two different models: one using oracle spatial data 
types for Geometry, and another with topological relations. Our 
approach combines both in a single model. In addition, (Stoter 
& van Oosterom, 2002) do not deal with recursive aggregates.  
 
This paper is organized as follows: In the second section, the 
spatial and object-relational properties of the database system 
Oracle 9i are discussed. The representation of a 3-D city model 
in this spatial object-relational database is the topic of the third 
section. The next section discusses how this model may be 
queried and to what extend these queries are suitable to 
consider the third dimension, including performance issues. The 
paper ends with some concluding remarks and a discussion of 
open questions. 
 
 

2. SPATIAL OBJECT-RELATIONAL DATABASES - 
ORACLE 9I  

 
Oracle 9i is a sophisticated, widespread commercial database 
system, which provides a spatial extension, called Oracle 
Spatial, and object-relational properties. Both are discussed in 
this section, which is based on (Oracle, 2002a) and (Oracle, 
2002b). 
 
2.1 Geometric properties 

Oracle Spatial provides a data type, called SDO_GEOMETRY, 
for representing spatial data, and associated operators and 
functions, which allow storing, editing, updating and querying 
these data. Two mechanisms for indexing spatial data are used, 
Quadtrees and R-trees (Guttman, 1984). For querying 3-D data 
by Oracle Spatial, however, only R-trees may be employed.  
 
The geometry types supported by Oracle Spatial are based on 
the ‘OGC Simple Features Specification for SQL’ issued by the 
Open GIS Consortium (Open GIS Consortium, 1999). 
According to this standard, a geometry may be a point or a 
multi point, i.e. a point cluster, a line string or a multi line 
string, a polygon or a multi polygon. In addition to the Simple 
Feature specification, arc line strings, arc polygons, and 
collections of arbitrary geometries are offered. A geometry is 
defined in a spatial coordinate reference system. According to 
the Simple Features specification, the explicit representation of 
topological relations between geometric objects is not provided. 
The coordinates of the geometric objects may be two or three 
dimensional, thus allowing polygons and lines positioned 
arbitrarily in 3-D space. The polygon boundaries may be non-
planar, but the specification of interpolation rules for their 
interiors is not provided. For the representation of 3-D solids 
according to the Boundary Representation (B-Rep) (Foley et al., 
1995; Mäntylä, 1988), no data type is offered by Oracle Spatial.  
 
A database table may contain more than one column of type 
SDO_GEOMETRY. Thus it is possible, for example, to assign 
different levels of detail to a single object. This property is 
crucial for managing 3-D city models. 
 
For manipulating and querying spatial data, two mechanisms 
are offered, which differ in particular in their 3-D properties: 
operators and functions. 
 

Operators retrieve spatial data from the database according to 
geometrical criteria, using the R-tree index. One specific 
operator, called SDO_FILTER, selects geometries, which 
interact with a given fixed geometry, or pairs of geometries, 
which interact pair-wise. The first case is called window-query, 
while the second is a join-query. The operator does not consider 
the exact geometry of objects, but approximates it by a minimal 
bounding rectangle or a minimal bounding box, depending on 
the dimension of the geometries. The rectangles and boxes are 
parallel to the x-, y-, and z-axis of the coordinate reference 
system.  
 
The approximation of geometries by bounding boxes, however, 
yields inexact results. Consider, for example, the two 
geometries in Figure 1b), which are disjoint. The bounding 
boxes overlap, thus the operator SDO_FILTER recognizes that 
both are not disjoint. In Figure 1a), the operator SDO_FILTER 
is able to identify the two geometries’ bounding boxes as 
disjoint. 

 
 
 b) a) 

 
 
Figure 1:  Approximation of geometries by minimal bounding 

boxes, yielding inexact results. In Figure a), both 
objects can be distinguished from each other, while 
in b), the two geometries do not touch each other, 
but their bounding boxes do so.  

 
The other operators apart from SDO_FILTER select geometries 
within a given distance, nearest neighbor geometries, or 
geometries with topological relations according to the well-
known 4-intersection model (Egenhofer & Herring, 1990). 
These operators are evaluated using a so-called ‘two-tier 
model’, which applies SDO_FILTER first, and the more exact 
operator to the result afterwards. All operators apart from 
SDO_FILTER may not be applied to data with more than two 
dimensions, and thus are not discussed any further.  
 
In contrast to operators, functions do not use a filter step and a 
spatial index, and are applicable to 3-D data, but they ignore the 
z-coordinate. Oracle Spatial provides functions to select 
geometries according to the 4-intersection model, to compute 
areas, distances, or to construct convex hulls, centroids, buffers, 
and so on. In addition, the union, difference or intersection of a 
pair of geometries may be derived.  
 
Figure 2 depicts the different spatial relations distinguished by 
the function SDO_GEOM.RELATE, which implements the 4-



 

intersection model. Note that the z-coordinate is ignored by the 
function. If, for example, one geometry A is above a geometry 
B and both are disjoint, then the operator SDO_GEOM. 
RELATE recognizes erroneously that A and B are not disjoint. 
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Figure 2:  Topological relations differentiated by the function 

SDO_GEOM.RELATE, which implements the 4-
intersection model (Oracle, 2002b).  

 
Although functions do not use the R-tree index, both concepts 
may be combined in a 3-D query. The operator SDO_FILTER 
is employed first to pre-select a superset of the desired 
geometries in an efficient way, using the R-tree index and 
bounding boxes. This set is further refined by a 2-D function 
afterwards. In this way, a two-tier query model may be realized. 
An example of such a query will be given in section 4.1.  
 
2.2 Object-relational properties 

The database Oracle offers an object-relational extension of the 
relational data model, closing the gap between the object-
oriented conceptual model, which often is formulated using the 
Unified Modeling Language UML (Booch et al., 1997), and the 
database. Object-relational features in Oracle are object types 
and object views, which specify attributes and methods. They 
are implemented using one or more object tables, being similar 
to relational tables. Object methods, which can be used to 
manipulate the data, are stored with the table definition. The 
concept of inheritance allows the specification of super- and 
subtypes, which will be mapped on relational tables by the 
database management system. An object table may have 
references to other object types, allowing navigational access 
and replacing the relational concept of foreign keys. 
 
In the relational data model, the columns of tables are restricted 
to contain simple data types. In contrast, the columns object 
tables may be whole objects or whole tables, which are called 
nested tables. Nested tables provide a convenient means to 
represent m:n-relations between object tables. In relational 
tables, the representation of these relations requires an 
additional table, too. But a nested table is embedded into an 
object table, simplifying the handling of the relation. An 
example for a nested table embedded in an object table is 
depicted in Figure 3. The first row of the object table has 

relations to three objects, which are identified by A11, A12 and 
A13. 
 
The efficiency of nested tables may be improved by using 
indices. The database arranges the order of the rows according 
to the order of the corresponding rows in the superior object 
table. 

 
 

 
 
Figure 3:  Example for a nested table, embedded in an object 

table. Each row of this object table corresponds to 
several rows in the nested table, representing a m:n-
relation The figure is taken from (Oracle, 2002a). 

 
 

3. REPRESENTING 3-D CITY MODELS 

This section describes how the multi-functional 3-D city model 
presented in (Kolbe & Gröger, 2003) was implemented in 
Oracle 9i Spatial and which difficulties occurred due to some 
deficiencies of this database. First, the geometry data types of 
Oracle Spatial do not provide explicit topological relations 
between geometric components, which are crucial for 
representing 3-D city models. Thus topology had to be modeled 
using standard object-relational, non-spatial tables. To get 
benefit from the efficient spatial index structure, the spatial data 
types are used in addition, obtaining a double representation of 
spatial properties, which is redundant to a certain degree. In the 
following, the topological level of the database schema is 
discussed first, the aggregation level afterwards, and finally the 
representation of the geometry using the Spatial extension of 
Oracle. The complete database scheme is depicted in Figure 4. 
 
At the bottom of Figure 4, the primitives vertex, edge, face and 
solid as well as their topological relations are represented, 
according to the well-known Boundary Representation (Foley 
et al., 1995; Herring, 2001). Each primitive is stored in a single 
table. Rings are employed to differentiate outer boundaries 
from inner boundaries of faces, i.e. holes. The various m:n-
relations between the topological primitives are implemented 
by the object-relational concept of nested tables. For example, a 
solid is bounded by several faces. Thus one column of the solid 
table is a nested table called FaceListNestedTab, each row of 
which contains a reference to a bounding face of the solid. In a 
similar way, the relations between a face and its interior rings 
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Figure 4. Object-relational database schema for the 3-D city model 

and between a ring and its edges are realized, using the nested 
tables RingListNestedTab and EdgeListNestedTab.  
 
Based on the topological primitives, aggregates can be build 
recursively. This enables the representation of arbitrarily nested 
building structures. An example is one university campus, 
which consist of several complex buildings. One complex 
building consists of parts, and these parts again are a 
composition of a main part, chimneys and balconies, and so on. 
An aggregate is represented by a row in the SolidGeometry 
table in Figure 4. The relations to the parts of the aggregate are 
defined by the nested table SolidAggregateNestedTab, which 
references several rows in the SolidGeometry table. Since these 
rows in the SolidGeometry table may have parts on their own, a 
nesting of arbitrary depth may be achieved. Finally, the 
SolidGeometry rows, which have no parts, are related to a Solid 
defining the geometry and topology of the SolidGeometry row. 
 
Faces may be aggregated to SurfaceGeometries analogously. In 
particular, this is necessary to map textures on surfaces, which 
is very important for the visualization of 3-D city models. 
Attaching textures to aggregated SurfaceGeometries provides 
more flexibility than relating it to a face, since often textures 
correspond to whole walls covering more than a face of a single 
building. Textures are represented by a row in the Material 
table, which may alternatively be just a color value when no 
texture is available. 
 
On the top level of the database schema in Figure 4, the GeoTab 
table represents the geometry of objects by a value of Oracle 
Spatial’s SDO_GEOMETRY type, which was already 
discussed in section 2. A row in the GeoTab table may be 
related to a SolidGeometry or to a SurfaceGeometry, but not to 
both. In both cases, the SDO_GEOMETRY value is a collection 
of polygons. It must form a closed solid, if it is related to a 
SolidGeometry. The database, however, provides no standard 
mechanisms to check this property.  
 
Using a collection of polygons to represent a solid is only an 
approximation. This is due to the fact, that Oracle Spatial does 
not offer geometry types for solids. The semantics of a solid is 
different to the semantics of a collection of polygons forming a 
closed solid. For example, the question whether a point is 
completely inside a solid may be answered by a solid model, 
but not by a polygon approximation of a solid. In such a 

polygon model, the notions of ‘inside’ and ‘outside’ are not 
defined. 
 
Note that a solid may not be approximated by a multi-polygon. 
According to the ‘Simple Feature Specification’ (Open GIS 
Consortium, 1999), two polygons being part of one multi 
polygon may touch only in a finite number of points. In a solid 
boundary, two polygons meet in a common edge and thus touch 
in an infinite number of points. 
 
The database schema for the 3-D city model is accompanied by 
a set of integrity constraints, which express relevant properties 
of the model explicitly, and which are important for many 
applications using the model. One constraint, for example, 
states that two solids must be disjoint and may touch at least at 
their boundaries. In this case, the area where both solids touch 
must be a face, which is contained in the boundary of both 
solids. More details about integrity constraints may be found in 
(Kolbe & Gröger, 2003). 
 
 

4. QUERYING 3-D CITY MODELS 

Based on the analysis of the 3-D query capabilities in the 
second section, now it is discussed how the 3-D city model 
presented in the last section may be queried.  
 
4.1 3-D Queries 

As discussed in the second section, Oracle Spatial’s operators 
apart from SDO_FILTER are not applicable to 3-D data, while 
functions neglect the z-coordinate and treat them as zero, 
respectively. To obtain a efficient two-tier query model, the 
SDO_FILTER operator, which is suitable for 3-D bounding 
boxes, may be combined with 2-D functions, enabling a few 
standard applications for 3D city models. This combination is 
achieved by a nested SQL command; SQL is the standard query 
language for relational databases (Ullman, 1988).  
 
An example for a nested query is given in Figure 5. It selects 
the identifiers of those objects, which are related to solids 
having the relation ‘inside’ (see Figure 2) to the bounding 
rectangle or window given by the two coordinate pairs 
(3446733.79, 5549996.27) and (3445133.79, 5539196.27). In 
the nested select-from-where-statement, which is included in 
the from-part of the outer query, the SDO_FILTER operator is 
applied. It selects all geometries interacting with the 3-D 



 

bounding box given by the two coordinate triplets, using the R-
tree index. The result of this sub-query is passed to the outer 
from-part, where the exact relate function is applied. Note that 
the x- and y-coordinates are considered only. The query is 
illustrated in Figure 6. 
 
 

SELECT s.IDGeo  
FROM ( 
  SELECT r.IDGeo, r.world  
  FROM GeoTab r 
  WHERE MDSYS.SDO_FILTER( 
    r.world, MDSYS.SDO_GEOMETRY( 
      3003, NULL, NULL, 
      MDSYS.SDO_ELEM_INFO_ARRAY(1,1003,3), 
      MDSYS.SDO_ORDINATE_ARRAY( 
        3446733.79, 5549996.27, 142.8, 
        3445133.79, 5539196.27, 104.8) 
    ),'querytype=window' 
  ) = 'TRUE' 
) S, SolidGeometryTab v 
WHERE MDSYS.SDO_GEOM.RELATE( 
  S.world, 'INSIDE', MDSYS.SDO_GEOMETRY( 
    3003, NULL, NULL, 
    MDSYS.SDO_ELEM_INFO_ARRAY(1,1003,3), 
    MDSYS.SDO_ORDINATE_ARRAY( 
      3446733.79, 5549996.27, NULL, 
      3445133.79, 5539196.27, NULL) 
) 
  ),0.5 
) = 'TRUE' AND 
v.IDSolidGeometry = S.IDGeo; 

 
Figure 5. Nested SQL query, which applies the SDO_FILTER 

operator first and then refines the resulting set by 
applying an exact 2-D function, selecting those 
geometries inside a given rectangle. 

 
To summarize the query, the filter operates in 3-D, but yields 
no exact results (see Figure 1). The relate function provides 
exact results regarding two dimensions, but neglects the z-
coordinate.  
 
These query capabilities offered by Oracle Spatial are sufficient 
for many 3-D city model applications, where the vertical 
relation between objects is not relevant. But other queries, in 
particular those which implement consistency constraints, are 
not supported by Oracle Spatial. For example, such a constraint 
states that solids must be pair-wise disjoint. To cope with these 
queries, special functions must be implemented, which analyze 
the result of the filter operator exactly and includes the third 
dimension. 
 
 
4.2 Performance 

Due to the R-tree index, 3-D spatial queries using the filter 
operator are very efficient. As an example, the diagram in 
Figure 7 shows the query time of the query given in Figure 5. 
The database contains 9934 buildings. The query time is 
depicted for several queries, differing in the number of 
buildings in the result set. For a small result set, the time is less 
than a second. This analysis was performed using an AMD 
Athlon XP 2100+ PC, with 1.800 GHz and 512 MB DDR-
RAM. The operating system was Windows XP.  
 
 

 
A 

B C 

D 

 
Figure 6.  Example for an application of the query in Figure 5. 

The objects A, B and C interact with the bounding 
box and pass the filter, while D does not. The 
projections of A and C onto the x-/y-plane are inside 
the projection of the bounding box, thus both 
constitute the final result set. Note that only C is 
inside the bounding box. 

 
The query time increases significantly, when the result set 
grows. But the most important observation is, that the query 
time does not increase significantly when the database size 
grows. This scalability is an important property of spatial 
databases. 
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Figure 7.  Query time of the spatial window filter in seconds 

for selected numbers of buildings in the result set. 
The database contains 9934 buildings.  

 
 

5. CONCLUSIONS AND FURTHER WORK 

This paper presents an approach to store, manage and query 3-D 
city models using a spatial object-relational database. Thus 
applications can benefit from the efficiency, consistency and 
sustainability of databases. Topology is represented explicitly, 
providing efficient access to neighboring objects and geometric 
consistency. In addition, the build-in functionality of the spatial 
extension of the database enables efficient geometric access to 
large 3-D data sets.  
 
Some deficiencies of the database regarding its 3-D capabilities 
were identified. Topology is not modeled explicitly by the 
spatial data types, resulting in a redundant representation of 



 

spatial properties. Furthermore, a spatial data type for the 
specification of solids is missing. Spatial queries are restricted 
to two dimensions, apart from the efficient filter operator, 
which considers three dimensions. These 3-D queries are 
sufficient for many applications of 3-D city models, but too 
restricted for other relevant queries, for example for checking 
the consistency of the model. 
 
The next step is the extension of the model by a variety of 
thematic objects relevant for 3D city models, including the 
corresponding attributes as well as aggregation and 
generalization hierarchies. Efficient visualization and analyses 
will be obtained by allowing multiple representations of a 
single thematic object in different levels of detail (Kolbe & 
Gröger 2003). A further extension will be the integration of the 
relief structure using Triangulated Irregular Networks. 
 
The long-term objective of the database is to extend it to a 3-D 
GIS prototype, which is a platform for various 3-D research 
projects. In the context of spatial data infrastructures, the 
database will provide services to get access to data in an 
interoperable way. An example is the provision of GML 3 data, 
thus extending OGC’s Web Feature Service (Open GIS 
Consortium, 2002), which is limited to 2-D data currently.  
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