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ABSTRACT: 
 
GIS and digital mapping operations frequently require the automatic comparison and superimposition of geometric figures 
represented by sets of vertex coordinates supported by structural and topological information. When the configurations are not 
structured, that is the only vertex coordinates of the figures are available, manual intervention is needed in order to establish 
correspondences among the different geometries. 
To overcome this limitation, an automatic method has been developed to detect the correspondences between two or more equivalent 
sets of unlabeled points, representing n-dimensional geometric figures. The proposed technique performs a geometrical analysis of 
the adjacency matrices of the point configurations, in order to identify, for each one, the vertex of maximal asymmetry. A pairwise 
comparison of the sorted components of the adjacency matrix relative to these vertices, leads to the identification of the point 
correspondences. A directly-computed Procrustes conformal transformation is then applied to the geometric figures in order to 
achieve their optimal alignment. 
Also in case of geometric entities included into another, the problem solution starts trying to find some minimal asymmetric sub-
configurations (kernels) that are similar in both figures. A Procrustes superimposition of these corresponding kernels is then applied, 
and extended to the remaining points of the included configuration. A shape test is finally executed in order to identify the best 
solution. Specific geometric rules and filters are implemented to optimise the computation process. 
The method has been successfully tested on cadastral cartographic matching problems. In addition, it is suitable for a wider range of 
possible applications, like CAD/CAM, computer vision and reverse engineering. 
 
 

1. INTRODUCTION 
 
Most of the GIS tools used to handle a digital map, and many 
CAD/CAM applications, are not currently provided of specific 
functions able to automatically identify the geometrical 
correspondence between a specific geometrical figure, and that 
part of a more general drawing containing it. This is not true 
just for the cases in which the reference data files are 
appropriately structured. 
Problems of this kind often arise in digital mapping and in GIS, 
where, given a cartographic element, for instance a cadastral 
parcel, the problem is to automatically recognize it within a 
general map. An analogous case is given by the automatic 
research of a predefined structural or mechanical component 
unit within some CAD/CAM files containing the entire 
structure or mechanism. 
In particular cases, the solution of these problems is possible 
through the a priori definition of some topological relationships 
among the object points, or from the availability of structural 
information, explanatory of how the points are mutually 
connected in order to represent specific shapes. It is established, 
for instance, that a collection of points, properly ordered and 
joined according to a certain rule, define a cadastral parcel, and 
the comparison between the specific structured dataset and the 
cadastral map is carried out. In this case, the map is considered 
like a cluster of unit parcels defined by a proper series of points 
organized in a topologically compatible manner. 
To structure the data archives in such a way, it requires a heavy 
and time spending manipulation, however not sufficient to solve 
the problems of identification and automatic comparison in the 
various ways in which they occur. It is impossible, for instance, 
to compare a new object with the existing archive, if the 
topology of the new object is unknown, undefined, or 
incompatible. 

Therefore, when such a kind of information is not available, or 
is incompatible, it is only possible to assume the fundamental 
geometrical information, i.e. the coordinates of the composing 
points that graphically define the involved geometrical 
configurations. 
Problems of this type have already attracted the attention of 
researchers mainly working in the field of the computer 
graphics. One fundamental contribution to the problem solution 
is due to Ullman (1979), who recognised the importance of 
using the stiffness of the existing constraints between two 
vertices, with the aim of identifying the correspondence among 
point sets. Later, many authors, being inspired by Ullman’s 
work, developed algorithms, using the weighed proximity 
matrix as a function of the computed distance lengths among the 
points. In particular, Scott and Longuett-Higgins (1991) have 
determined the correspondence by the spectral decomposition of 
the proximity matrix relative to point configurations under 
study. Shapiro and Brady (1992) reached the objective through 
the comparison of the modal structures deduced from each 
proximity matrix referred, this time, to a single configuration. 
Finally Umeyama (1988) came up with the definition of 
correspondence using the spectral decomposition of the 
adjacency matrices relative to weighed graphs of equal measure. 
The same author has later reconsidered (1993) these ideas, 
applying them for the solution of the matching problems among 
complex objects.  
More recently many authors have tried to model the structural 
deformations of point sets. In this regard, Amit and Kong 
(1996) have used the graph theory to model the deformations of 
2-D shapes contained in some medical images. Finally, other 
authors have formalised the concept of correspondence by using 
the links of a rigid body: we mention the work done by Morgera 
and Cheong (1995). Cross and Hancock (1988) proposed 
instead, for the correspondence problem solution, a statistical 
methodology based on the theorem of Bayes. Afterwards Luo 



and Hancock (2002) have associated to this methodology a 
Procrustean criterion for the solution of an alignment problem 
between configurations with a different number of vertices. 
Anyway, concerning the specific GIS and cartographic aspects, 
and the CAD/CAM related ones, the reported references do not 
provide a complete and satisfactory solution for the problem of 
identification of the correspondence between two or more sets 
of point coordinates. The above studies, in fact, have very 
general purposes, and give a correspondence solution also in the 
case of very dissimilar configurations: consequently, these 
methods are inadequate for the correspondence problem 
solution. 
 

 
2. THE PROPOSED METHOD 

 
The described procedure makes it possible to automatically 
recognise a given geometrical entity, represented by a finite 
number of vertices, into a more complex configuration, that can 
completely, or just partly, correspond with the entity taken into 
account. In more detail, the method allows both to identify and 
put in relation the single couples of homologous points of two 
representations of the same entity, and to establish the 
correspondence among points belonging to such entity and 
those ones belonging to the geometric configuration enclosing it 
entirely. For the two situations, the procedure just requires the 
knowledge of the vertex coordinates of the geometrical entities 
in the respective Cartesian reference systems. Therefore, the 
procedure can operate without the need that the points be 
acquired, or defined, according to a pre-fixed order, and also 
without the knowledge of any structural or topological 
information required to totally or partially characterise the 
connections among the various vertices. 
The procedure foresees two distinct operational sequences 
according to the kind of the problem treated. In one case the 
process carries out the recognition of the homologous points of 
two correspondent representations of the same geometrical 
entity, in a very simple and direct way, independently of the 
assumed coordinate system and of the reciprocal scale factor. In 
the second case the process solves the inclusion problem by 
means of a more general methodology, capable to identify a 
geometrical configuration completely contained within another 
one, more complex and more extended, also in the case in 
which the approximate knowledge of the mutual scale factor is 
not available. 
For both situations, the method is conceived on the use of 
mainly algebraic and geometric rules, and on the use of basic 
mathematical functions, chosen aiming to a fast and efficient 
software implementation. 
 
2.1   The comparison case 
 
The comparison problem considers generic point 
configurations, describing in the various cases, geometrical 
entities of the specific application fields (cartographic, CAD, 
GIS and so on). The comparison problem rises when: 
- the geometrical entities considered are both composed of n 
points of known coordinates; 
- the correspondence is bi-univocal: therefore each point of one 
configuration finds a correspondent in the other, and vice versa. 
These conditions are necessary and sufficient: for the 
geometrical entities taken into account, further information is 
not required, like for instance the value of the mutual scale 
factor or the criterion by which the points are listed. For this 
procedure, each entity is represented by a geometrical 
configuration of points, without any information of structural or 
topological kind; every configuration is uniquely described by 

its vertex coordinates in a proper and independent 2D or 3D 
Cartesian reference system. If the geometrical configurations do 
not have axes or planes of symmetry, for which not unique 
solutions might happen, the procedure makes it possible to 
specify the correspondences between homologous points, also 
in the presence of errors in the coordinate values of the 
considered vertices. 
Before describing in detail every phase, it is necessary to 
premise some definitions, useful in the following explanations. 
Let us define “rigid link“ the segment joining two vertices (u, 
v), arbitrarily chosen, of a same configuration C. If C is 
characterised by n vertices, it follows that every vertex v 
belonging to C has n-1 rigid links defined with respect to the 
remaining vertices. Let us write as liv the ith rigid link referred to 
the vertex v, and also the length of the same link. 
Let us call “ordered set of rigid links“ of the vertex v the 
following set: Iv = {l1v, l2v, ... , l(n-1)v } with liv ≤ l(i+1)v, and with i 
= 1, ..., n-2. 
Let u and v be two vertices belonging to a generic configuration 
C of n points; let Iu e Iv  be the respective ordered sets of the 
rigid links. Furthermore, let us define “homologous rigid links 
unconformity“ of the vertices u and v the following value: 
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To each vertex v of a configuration C it can be associated a “set 
of asymmetry distances“ that assumes the following form: 
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2.1.1  The direct method: Once defined the necessary tools, let 
us pass to the procedure description. The only available data for 
solving the comparison problem are the vertex coordinates 
characterising the geometrical configurations A and B, listed in 
the respective and homonymous matrices. 
An initial test tries to single out possible symmetrical axes. If 
symmetrical configurations are present, the comparison problem 
will be solved by the alternative general procedure, since there 
exists the possibility of not univocal solutions. 
The successive phase foresees the computation of the unknown 
scale factor. The estimate of the scale factor s that joins B to A 
is given by: 
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where W = I-jTj/jjT is applied to centre the original point 
coordinate values into their respective systems, j = [1, 1, … 1] 
is the unit vector of dimension equal to the number of points 
contained in A (or B), and I is the identity matrix.  
The scale factor can be removed pre-multiplying the point 
coordinates of the configuration B by the scalar s. 
The next step is to look for a particular vertex in one of the two 
configurations, for example in A. This is named “point of 
maximal asymmetry“, and identified with the symbol mA. Since 
the coordinate values are affected by errors, it is necessary to fix 
a “significant" threshold (∆); the value of ∆, computed 
according to the length of the rigid links present in A, depends 
on the fixed tolerance values, or on the entity of the errors 
characterising the coordinates. 
Now let v be any vertex of A. Let us call “index of significance 
of v" (ia-v) the number of elements belonging to Dv having a 



value greater than the significant threshold. This corresponds to 
find out in Iv the number of lengths liv significantly different 
among all of them, without the uncertainty due to the coordinate 
errors. The vertex with the maximal asymmetry will correspond 
to that particular point of A having the largest index of 
significance. Formally, mA is such that:  
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In case of ambiguity, due to the simultaneous presence of more 
vertices having the same maximal value of reliability, the vertex 
that, for the same ia, is characterised by the minimal component 
of Dv with the largest value, will be chosen as the point of 
maximal asymmetry. The reason and the convenience of finding 
out a point of maximal asymmetry, will be clear in the 
following. 
At the next step, the corresponding point of mA in the 
configuration B is researched; this vertex is indicated with the 
symbol mB. To this purpose, the necessary but not sufficient 
condition to state that two arbitrary vertices (u and v) are 
correspondent, for configurations with the same scale rate, is 
that, for each rigid link associated to u, there must exist another 
one of the same length, a part for random errors associated to v. 
Referring to this property and considering the fact that the 
symmetrical configurations have been excluded, the most 
probable correspondent of mA is, among all the vertices of B, 
that one with the less discrepancy to homologous rigid links 
computed with respect to the point of maximal asymmetry in A. 
Formally, mB is such that: 
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In the case of exactly comparable configurations, that is without 
errors in the coordinate values, the discrepancy to homologous 
rigid links between two corresponding points is necessarily 
equal to zero. All this leads to an important consequence: the 
comparison between λ and a proper threshold (L), proportional 
to the admitted tolerances, provides a criterion to evaluate the 
correspondences. In fact, given two points u and v, if λ > L, the 
two considered vertices are not correspondent. Given the 
characteristic function assumed, L is defined as 
“correspondence threshold“.  
Keeping in mind what already exposed, let us consider again the 
points of maximal asymmetry and their correspondence ratio. 
The verification that mA e mB are not correspondent vertices, 
leads to consequences much more significant than a wrong 
correspondence. Referring to the way in which mB has been 
determined, a negative exit of the mentioned test would imply 
the conclusion of the procedure: which other point in B could 
overcome the comparison? 
This impossibility to proceed is due to the fact that the 
comparability hypothesis between the configuration considered 
it is not verified. A positive exit of the test about the 
correspondence between mA and mB allows, on the contrary, to 
pass to the next phase. 
Now, a fast and tentative problem solution of the residual 
correspondences will be looked for. The final solution should 
try to satisfy the following aspects: to be, as much as possible, 
near to the real result, and to require a light computational work. 
Now let u be a generic vertex of A, and v be the correspondent 
one in B: the method can solve the residual correspondences 
between A and B by the comparison of the rigid link lengths of 
u and v assumed as reference points. 

Let ai be the vertex of A joined to u by the rigid link liu of Iu. Let 
bi be the vertex of B joined to v by the rigid link liv di Iv. Since 
the correspondent vertices define, between A and B, rigid links 
of the same length, a part for some random errors, and 
remembering the definition of “ordered set of rigid links“, it 
seems correct the hypothesis that the correspondent vertex of ai 
is bi, with i = 1, ..., n-1. This assumption is as much close to the 
real situation as much the correspondence between the rigid 
links of the reference points is univocally identifiable. It is 
evident that the presence of links with very similar length (if not 
equal), combined to the distortions caused by the errors, can 
lead to imprecise results in the proposed solution. 
With the aim to optimise the procedure, it is therefore necessary 
to identify the reference vertex of A providing the maximal 
reliability and correctness to the hypothesised solution. This is 
the vertex whose rigid links have as much as possible different 
lengths with respect to the other points. According to its 
definition, the reference point for the correspondence solution is 
the point of maximal asymmetry. If mA is known, it is possible 
to find its correspondent mB, and the residual correspondences 
can be immediately identified at the first tentative. 
In the following, the quality of the obtained solution is 
evaluated. First of all it is necessary to define which, among the 
proposed correspondences, can originate doubts about their 
effective correctness. As mentioned before, these will be the 
correspondences characterised by rigid links, connected to mA, 
having similar length, that is contained within the tolerance 
range. 
According to what already explained, the methodology to 
search for couples of vertices with a doubt correspondence, 
assume the following form: fixed the ith distance of asymmetry: 

A A A
with  D∈im im md d ; if ∆ > 

Aimd ; then (ai+1; bi+1) and (ai; bi) 
are doubt correspondences. 
The same reasoning is repeated for all the distances of 
asymmetry referred to the vertex mA. At the end of this step, if 
the test has not found doubt correspondences, the problem can 
formally be considered solved. 
 
2.1.2 Validation test: To make this method satisfying the 
maximal reliability, the true final step is to verify the hypothesis 
of comparability of the configurations A and B. Having 
identified all the correspondences is not, by itself, index of 
correctness; the method of research, based on the lengths of the 
rigid links, leaves out of consideration from the effective spatial 
disposal of the vertices. To confirm the supposed comparability 
it is necessary to verify that the considered configurations have, 
a part for some random errors, the same shape. We can state that 
two configurations have the same shape if they can be put 
coincident by rotations, translations and isotropic deformations. 
Let us indicate with e2 the square mean of the measured 
distances among correspondent points belonging, from one side, 
to A (reference configuration) and, from the other, to a generic 
configuration having the same shape of B (transforming 
configuration). To perform the so called “test of shape“, the first 
step is to compute the minimum value that can be assumed by 
e2; this value is reported with the symbol ε2. 
Given: 
A = {xA1, xA2, .., xAn} = Reference configuration 
B = {xB1, xB2, .., xBn} = Transforming configuration; 
the term ε2 is provided by the following equation (Umeyama, 
1991): 
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In this formulation, the vertices of the transforming 
configuration correspond to those ones of the reference 
configuration. It happens therefore that xAi corresponds to xBi, 
with i = 1, …, n.. Furthermore, in the Singular Value 
Decomposition (SVD) of KBA, the eigenvalues have positive 
values, and are located in D in decreasing order (D = diag(dj); d1 
≥ d2 ≥ ... ≥ dk ≥ 0 where k is the dimension of the reference 
system). 
The term ε2 provides an index of the shape difference for the 
two considered configurations (ε2 = 0 means that the two 
configurations have the same shape). To limit the shape 
difference to the only presence of measurement random errors, 
it is necessary that the range of the values the term ε2 can 
assume must be contained within a given threshold. In the 
proposed procedure this threshold will be represented by a 
shape parameter δ2 referred to the reference configuration. The 
test of shape is accepted for ε2 < δ2: this event definitely ends 
the comparison procedure. 
If this does not happen, and previously the presence of doubt 
correspondences had been recognised, it is necessary to identify 
which ones of the correspondences are wrong or are inverted. 
Remembering what already said about the correspondent points 
and the rigid links, the determination is based on the following 
criterion: for each doubt correspondence (ai; bi); if −λ >

ia
L

ib
; 

then (ai ; bi) is a wrong correspondence. The same reasoning is 
repeated for all the doubt correspondences found out at the 
preceding step. At the end of this phase, three are the cases that 
can be present: 
- there is only one wrong correspondence; 
- the number of the wrong correspondences is equal to two; 
- the number of the wrong correspondences is greater than two. 
The first situation means, for the largest part of the cases, that 
all the proposed correspondences are apparently correct: the 
final decision is then remitted to the shape test. If the number of 
the wrong correspondences is equal to two, a swap is carried 
out: if (ai; bi) and (aj; bj) correspond to the wrong 
correspondences, then (ai; bj) and (aj; bi) represent the necessary 
correction. In the third case, the most complex, the procedure is 
iterated just for the subsets of A and B containing 
correspondences not yet solved, recalling again the 
considerations done for the two preceding cases. 
An alternative solution of the comparison problem can be found 
in Sossai (2003), and in Beinat, Crosilla & Sossai (2003, 2004). 
 
2.2 The inclusion case 
 
The situation of inclusion occurs when a group of points is 
entirely contained in a more numerous and topographically 
extended set. This means that the geometrical entities taken into 
consideration can have a different number of points: the 
configuration with less vertices will be called “enclosed“, while 
the other will be the “enclosing“ one. This situation is not 

mandatory: the general method proposed works well also for 
configurations having the same number of points, solving in this 
way, by another approach, the comparison case. 
Other conditions are required instead: all the points of the 
enclosed configuration must find univocal correspondence 
within the enclosing configuration, and every entity must not be 
represented by a degenerate geometrical configuration, like that 
whose vertices are all approximately aligned. As for the 
preceding problem, also for this case, we do not need the 
knowledge of the scale ratio between the configurations, neither 
any structural or topological information. 
According to these conditions, the method described in the 
following allows to identify the correspondences between 
homologous points, also in the presence of some errors present 
in the coordinates of the considered vertices. In Figure 1 and 
Figure 2 two different problems, relative to two distinct 
application fields, are shown. In the following, we will indicate 
with A the enclosed configuration, and with B the enclosing 
one. 
 

 
 

Figure 1. The problem of inclusion for a cadastral 
map, that is to find the point correspondences between 
a parcel A fully contained into a more general map B. 

 
 

 
 

Figure 1. The problem of inclusion for a CAD design, 
that is to locate some predefined structural elements 
fully contained into a more complex drawing. 

 
2.2.1  The general method using a correspondence kernel: 
The idea leading to the general solution of the problem of 
correspondence is based on the following two considerations:  
- the less is the number of the vertices of the enclosed set 
(considering constant the number of the enclosing points) the 
easier is the solution of the inclusion problem; 



- the correspondence problem solution valid for an entire 
enclosed configuration, must also be appropriate for every 
partial configuration of it.  
It is therefore valid and correct to devote the attention, not to the 
entire enclosed configuration, but to a particular and 
characteristic minimal subset of it, constituted by three vertices, 
called “basic triangle“ or also “correspondence kernel“. 
Once such a triangle in the enclosed configuration is identified, 
its images within the enclosing configuration have to be looked 
for. To do so, the basic triangle is overlapped to each image by 
a Procrustean similarity transformation, and the condition that 
every point of the remaining configuration A has a 
correspondent one in the configuration B is verified. The final 
solution is that one furnishing the best geometrical fit, and the 
correct correspondence for all the points of A.  
This procedure is described in the following (see for more 
details: Sossai, 2003; Beinat, Crosilla & Sossai, 2004). 
 
2.2.2  Construction of the basic triangle: The process starts 
finding out, within the enclosed configuration A, the two 
vertices separated by the largest distance. Let us call 1 and 2 
these points, name a the segment 1-2, and da its length. One of 
the points, for instance point 2, it is assumed as the reference . 
The third vertex is chosen, among the remaining points, as the 
closest point to the reference. Called v the possible candidate, 
the distances dv1 e dv2, between v and the already defined points 
1 and 2, are calculated. In order that v can be considered the 
third vertex of the basic triangle, the following conditions must 
be verified: 
-   ||dv1 – dv2| – d12| ≥ ∆0; 
-   |dv1 – dv2| ≥ ∆1, |dv2 – da| ≥ ∆1, |da – dv1| ≥ ∆1. 
The symbols ∆0 e ∆1 are threshold values proportional to the 
required tolerances. The first condition aims to avoid that the 
basic triangle be degenerate, for instance too flat. The second 
condition guarantees that the basic triangle is not characterised 
by symmetrical axes, that is, neither isosceles, nor equilateral. 
These constraints are chosen in order to define one 
configuration able to minimise the ambiguity and the possibility 
of errors, both in the phase of identification that during the 
solution of the correspondences. 
Let us call point 3 such a vertex and name with b the segment 1-
3, with c the segment 2-3 (the shortest) and with db e dc their 
respective lengths. The configuration 1-2-3, so determined, 
represents the basic triangle. 
Since we are using coordinate values affected by errors, a 
variability interval of the distances between the vertices must be 
considered. For this reason the lengths of the sides da, db and dc 
of the original triangle are substituted by the variability intervals 
so defined: 

Rb = [db-t; db+t]     (6) 
Rc = [dc-t; dc+t] 

where t is the tolerance parameter, that can be fixed or 
proportional to the distance dij. If the scale factor s in known, 
the procedure defines also the rounded value Ra = [da-t; da+t]. 
As a last thing, a shape parameter δ2 is computed, whose value 
is proportional to the square mean of the tolerances computed 
for the centroid distances of the correspondence kernel. 

2.2.3  Images of the basic triangle: Once the basic triangle and 
its admitted interval of variability are fixed, its possible images 
in B are looked for. This generates a set of point triplets of 
possible correspondence. 
For the most general conditions, one triplet of possible 
correspondence is a general subset of three vertices [i, j, k] of B 

not degenerate, characterised by the fact that dij < djk < dki, 
where the symbols identify the distances between the points i 
and j, j and k, k and i, respectively. 
For the definition of the point triplets of possible 
correspondences two alternatives can be present. If the scale 
factor s is unknown, all the triplets of possible correspondence 
will belong to the above mentioned set, and it will be necessary 
to proceed with a combinatorial approach. In the opposite case, 
if the scale factor is known, just the triplets of possible 
correspondence, such that s·dki is contained within the round Ra, 
will belong to the set. Once this particular set is constructed, the 
attention moves to individuate, within the same set, the subset 
of the kernels of possible correspondence. 
The kernels for which exists a relationship of comparison with 
the basic triangle, will belong to this set, while all the others are 
excluded. Let us consider, for example, a generic triplet of 
points [i, j, k] (note that the meaning of the symbols previously 
introduced remain valid). It follows a geometric comparison, 
based on the distances, between the triplet of points of possible 
correspondence and the basic triangle. If the scale factor s is not 
known, this will be estimated as a/dki. 
For db > dc (case 1) it is: 
segment i-j = possible image of the segment c; 
segment j-k = possible image of the segment b; 
segment k-i = possible image of the segment a. 

In this case, if s·dij belongs to the round value Rc and if s·djk 
belongs to the round value Rb, a relation of comparison exists. 
For db < dc (case 2), i-j and j-k are swapped, so to correspond to 
possible images of b and c respectively. If the comparison fails, 
the examined triplet of points will be rejected, and the process 
passes to examine the successive. 
In the comparison test, the correspondence among the points i, j, 
k of the triplet, and the vertices 1, 2, 3 of the basic triangle, is 
immediately defined. They remain valid, in fact, the following 
results:  
in the case 1, i ≡ 2; j ≡ 3; k ≡ 1;  
in the case 2: k ≡ 1; j ≡ 3; i ≡ 2. 
The identification of a kernel of possible correspondence is 
completed with the execution of the test of shape, already 
introduced in the previous chapter. If also this test is overcome, 
it follows the expansion of the kernel by the solution, where 
possible, of the residual correspondences till the identification 
of a possible complete image of the enclosed configuration.  

2.2.4 The expansion of the correspondence kernel: 
During this phase, the basic triangle is overlapped to all the 
selected correspondence kernels, by an appropriate algorithm, 
obtained from the orthogonal Procrustes analysis. This 
technique allows to obtain the mutual least squares fit of a 
moving matrix configuration with respect to another one, 
considered as a reference, by means of a proper set of 
transformation parameters, so to satisfy a prefixed objective 
function. 
In detail, the Procrustes algorithm makes it possible to find out 
the rotation matrix R, the translation vector t, and the isotropic 
deformation s, to apply to the moving configuration, to satisfy 
the minimum to the distance square mean ε2 among the 
correspondent points belonging to the two considered 
configurations (see e.g. Beinat & Crosilla, 2003a). 
Let: 
 
Y = {y1, y2, .., yn} be the reference configuration, that is the 
possible correspondence kernel; 
X = {x1, x2, .., xn} be the moving configuration, that is the basic 
triangle. 
 



Referring to the notation previously introduced, the solution 
proposed by Umeyama (1991) is now explained. In the case in 
which the rank of Kxy  is equal to k, it follows: 

TR = USV      (7) 
y xs= −t m Rm      (8) 

( )1 trs
n

= DS      (9) 

if the rank of Kxy  is equal to k-1, the elements of matrix S in the 
SVD of R are the following: 

( ) ( )
( ) ( )

                               if det det 1

diag(1,1, 1,-1)       if det det 1...

 == 
= −

I U V
S

U V
  (10) 

The basic triangle will be therefore rotated, translated and 
scaled, according to the rules of the Procrustes analysis, to fit in 
the best way the kernel of possible correspondence. The 
application of the just mentioned transformation parameters to 
the entire configuration, allows, with good approximation, the 
insertion of this configuration in the datum of the enclosing 
configuration. 
Once the two geometrical entities are represented in the same 
reference system, the solution of the residual correspondences is 
obtained by a simple comparison of the mutual distances. The 
nearest point B to a fixed vertex of A (expressed in the new 
coordinate system) will be its probable correspondent. 
By solving all the residual correspondences, one possible 
complete image of the enclosed configuration A in the 
enclosing B, can be identified. 
The final solution is defined, also in this case, by a test of shape. 
For each possible image previously identified, the value of the 
Procrustean shape parameter ε2 is determined, assuming as 
reference the enclosed configuration. The most probable image 
will be that one corresponding to the lowest value of ε2. 
 
 

3.  CONCLUSIONS 
 
In this paper we have illustrated a novel procedure to 
automatically identify correspondences between geometrical 
entities missing of topological structure. The method is based 
only on the knowledge of the vertices coordinates describing the 
geometrical entities considered, referred to their own and 
different Cartesian reference systems. 
The entire process is developed without the necessity that the 
points are acquired or defined according to a prefixed order, and 
without requirements about structural or topological 
information, relative to the links among such a vertices. The 
recognition of the homologous points of two correspondent 
configurations of the same geometrical entity is solved, 
independently for the coordinate systems assumed, and for the 
reciprocal scale rate. 
For the inclusion problem solution, the methodology is able to 
identify a geometrical configuration  completely contained 
within another one, more general, also in the case in which the 
approximate knowledge of the reciprocal scale factor is not 
available.  
Further developments of the proposed method will consider the 
case of partial inclusion, that is the identification of the subset 
of common points belonging to two different configurations. 
Finally, a research field will be the identification of shape 

parameters alternative to that employed, and the introduction of 
methods and principles of the fuzzy logic. 
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