
SPATIAL ACCESS METHODS FOR ORGANIZING LASERSCANNER DATA

Thomas Brinkhoff

Institute for Applied Photogrammetry and Geoinformatics (IAPG)

 FH Oldenburg/Ostfriesland/Wilhelmshaven (University of Applied Sciences)
D-26121 Oldenburg, Germany

Thomas.Brinkhoff@fh-oldenburg.de

Commission IV, WG IV/1

KEY WORDS: Laser scanning, Data Structures, Database, Performance, Processing

ABSTRACT:

Laserscanning produces large sets of multidimensional point data, which demand for an effective and efficient organization and
storage. Adequate data structures must perform specific spatial queries and operations in order to support the computation and / or
the construction of surface models. Because of their increasing size, it is not advisable to organize the clouds of points by main-
memory data structures. Such an approach would lead to long loading times and misses scalability. Instead, persistent data structures
are desirable. In this paper, the usage of multidimensional spatial access methods are investigated for organizing laserscanner data.
Such access methods have originally been developed for storing and indexing geographic data in spatial database systems and
Geographical Information Systems. Point access methods based on hierarchical hash trees are one important class of such access
methods. Typical examples for hash trees are the BANG file and the buddy tree. Rectangle access methods are another class of
relevant access methods. The R-tree and its variants are the most important representative of this class. R-trees are typically used by
commercial spatial database systems. All data structures mentioned before are fully dynamic, i.e. they support arbitrary sequences of
insertions, modifications and deletions. They allow a persistent storage of multidimensional points and preserve spatial proximity
locally, i.e. within (database or file) blocks. The performance of the above point and rectangle access methods is investigated and
compared for storing and querying large clouds of points representing buildings. The examination identifies those access methods
that allow a fast construction of the data structure as well as an efficient support of relevant spatial queries. For some queries,
however, a local preservation of spatial proximity is not sufficient. The extraction of points for overview purposes is an example for
such a query. Therefore, different approaches for a global preservation of spatial proximity are introduced and experimentally
investigated.

1. INTRODUCTION

Laserscanning gains more and more importance in the last few
years. It allows the simple and inexpensive measurement of
spatial objects like façades or the interior of buildings.
Laserscanning produces large sets of multidimensional point
data, which demand for an effective and efficient organization
and storage (Niemeier & Kern, 2001). The measurements
provide immediately Cartesian coordinate values (x,y,z) and –
for some laserscanners – the intensity of the received signal.
Therefore, the result of a measurement is a set of three- or four-
dimensional points.

Because of the large data volume – several millions of points
with increasing tendency – it is not advisable to store the points
as conventional points in a CAD program (Schwermann &
Effkemann, 2002). In general, the approach to maintain the
cloud of points in main memory has several disadvantages:
• Such an approach requires a long time for loading the data

from secondary storage (like hard disks).
• Main memory storage shows a bad scalability because it

swaps (after exceeding a threshold) parts of the memory
onto the slow secondary storage.

An alternative is the usage of persistent data structures. Such
data structures store the data on secondary storage and allow
reading only (the required) parts of the data. Such data
structures have been developed to be used in (relational, object-

relational and object-oriented) database systems as an index.
Therefore, they are also called index structures. However,
conventional index structures are optimized for one-
dimensional data types like numbers and character strings. They
cannot be used (without modification) for spatial data. For this
purpose, spatial index structures (also called spatial access
methods) have been developed for spatial database systems and
Geographical Information Systems (Rigaux et al., 2002). One
category of spatial index structures are point access methods,
which allow the dynamic organization of multidimensional
points on secondary storage. Rectangle access methods are
another class of spatial access methods supporting extended
objects, especially multidimensional rectangles, but also non-
extended objects, i.e. multidimensional points. All types of
spatial index structures support the efficient processing of
spatial queries.

In this paper, the question is investigated whether spatial access
methods are suitable for storing point clouds produced by
laserscanners. Section 2 presents different spatial access
methods. The main focus is on so-called hash trees and R-trees.
In section 3, we consider the use of such index structures for
data produced by laserscanners. The paper concludes with a
short summary and an outlook to future work.

2. SPATIAL ACCESS METHODS

2.1 Indexing in Database Systems

The main task of a database system (DBS) is to store large sets
of data persistently. The database management system (DBMS)
must support the insertion, modification and deletion of
arbitrary data in arbitrary sequences. For this reason, the DBMS
organizes the data in database blocks. The access to secondary
storage (i.e. typically to hard disks) is performed blockwise,
i.e., the access to a data record requires the transmission of (at
least) one complete block that may store also non-required
records.

An index dynamically organizes the database blocks in order to
accelerate the access to blocks containing records that fulfill
some query condition(s) (e.g., all persons born in Istanbul). The
data structures that are used for building and maintaining an
index are called index structures. In current database systems,
two types of index structures are most often used: B-trees and
hashing.

A B-tree is a dynamic balanced tree. Each of its nodes
corresponds to a database block. B-trees store the data sorted
according to a selected attribute. For processing a query, the
tree is traversed starting at the most upper node (= the root);
only subtrees are accessed that potentially refer to queried data.
Figure 1 illustrates a B-tree.

Figure 1. Example for a B-tree.

Hashing computes the location of a block on secondary storage
(i.e. the block address) using one or more selected attribute(s)
of a record. This computation is done by a hash function. Figure
2 depicts the hashing approach. Hashing supports efficiently
exact match queries, i.e. the search for records with attribute
value(s) that exactly match to the query condition (like in the
above Istanbul example). However, hashing has efficiency
problems either with handling uneven data distributions or with
range queries (like finding all persons born in a city whose
name starts with I).

Figure 2. Example for hashing.

2.2 Indexing Spatial Data and Point Data

B-trees require a linear ordering of the data and hashing has –
as mentioned before – problems with uneven data distributions
or with range queries. Because of this reasons, conventional
cannot be used – without extensions – for organizing spatial
data. Therefore, special spatial access methods have been
developed for spatial database systems and Geographical
Information Systems. Point access methods allow organizing
multidimensional points and rectangle access methods – in
addition – the storage of extended multidimensional objects like
rectangles, cuboids, and (in approximation) of polygons, arcs
and solids.

The grid file (Nievergelt et al., 1984) is an example for a
multidimensional point access method. It is based on hashing.
However, the hash function is replaced by a grid directory. This
directory stores block addresses in its cells (see Figure 3). Grid
files have performance deficits storing uneven or correlated
distributed points.

Figure 3. Example for a grid file.

The partitioning of the data space by grid files has following
properties:
• The region described by a database block (the so-called

block region) is rectangular.
• The data space is completely covered by the block regions.
• The block regions do not overlap.

However, for achieving efficient spatial access methods, at least
one of these three properties must not hold (Seeger, 1989).

2.3 Hash Trees

Hash trees are multidimensional point trees that combine
hashing with data structures derived from trees. A typical
example of a hash tree is the BANG file (Balanced and Nested
Grid File) developed by M. Freeston (1987). The BANG file is
a hierarchical tree. The upper part of the tree is the directory
and the leaf nodes store the real data (“data nodes”). The block
regions of the directory nodes are based on a grid structure and
represented by a (multidimensional) rectangle. In contrast to
conventional grid files, a block region does not represent the
complete area of this rectangle. Instead, the included rectangles
of the smaller block regions in the same node are removed from
the rectangle. In consequence, the shape of block regions is
irregular and may consist of several, unconnected areas.
Figure 4 shows a set of points organized by a BANG file. The
points are distributed on an area having the shape of a sinus
curve. The figure depicts the partitioning of the BANG file of
all nodes having the same height in the tree.

Figure 4. Example for the partitioning of a BANG file.

Figure 5. Example for the partitioning of a buddy tree.

Another example of a hash tree is the buddy tree (Seeger &
Kriegel, 1990). The buddy tree is also a hierarchical tree with
directory nodes containing rectangular block regions. In
contrast to the grid file and the BANG file, however, the
regions do not need to cover the complete data space. Figure 5
illustrates the partitioning of the buddy tree using the sinus data
again.

2.4 R-Trees

The R-tree (Guttman, 1984) is a spatial access method
organizing multidimensional points as well as rectangles. The
R-tree has similar properties as the B-tree but it does not require
a linear ordering. The block regions are minimum-bounding
rectangles of all regions or data in the corresponding subtree.
These block regions may overlap and do not need to cover the
whole data space.

There exist several variants of R-trees. They differ in the
insertion strategy (i.e., which subtree is chosen for storing a
new object) and the criteria used for splitting a node if an
overflow occurs. Figure 6 illustrates an R-tree: it shows the
block region of the root node and (a part) of the partitioning of
a node pointing to a data node, which illustrates the overlap
between the block regions.

Figure 6. Example for the partitioning of an R-tree.

2.5 First Conclusions

The presented spatial access methods are dynamic index
structures supporting the insertion, the modification and the
deletion of points. They support the persistent storage of data
on secondary storage like hard disks. All presented spatial
access methods are suitable of two-, three- or more dimensional

points. They support the efficient processing of basic spatial
queries. Such spatial queries are:
• spatial selection queries like the point query and the

window query,
• the computation of k nearest neighbors (nearest neighbor

query, see e.g. (Hjaltason & Samet, 1999)), and
• the spatial join (see e.g. (Brinkhoff et al., 1993)).

Index structures typically preserve the ordering of data locally.
In the case of spatial access methods, spatially close objects are
stored with high probability in the same database block. This is
essential for processing spatial queries because one query
accesses typically many spatially neighbored objects and
because reading a database block from secondary storage is a
very costly (i.e. slow) operation in comparison to other
computer operations. Storing near objects in the same block
reduces the number of block accesses and increases the
probability to find the block in the cache of the database system
or of the operating system.

Other techniques try to store blocks, which are described by
spatially close block regions, physically close on the secondary
storage (“global order”). The objective is to reduce the cost of
sets of blocks required by one spatial query. The presented
spatial access methods do not preserve the global order. This
would require the usage of additional techniques like the
approaches proposed by (Hutflesz et al., 1988) or by
(Brinkhoff, 2001).

3. USAGE FOR DATA FROM LASERSCANNING

3.1 Preparation

For investigating the spatial access methods presented in the
sections 2.3 and 2.4 for data produced by laserscanning, some
preparations had been necessary:
• Modula-2 implementations of the BANG file and the buddy

tree, both implemented for old Motorola processors, were
adapted to current Intel processors. A unified API was
designed and implemented.

• Besides the well-known R*-tree – a very efficient variant of
the R-tree (Beckmann et al., 1990) – the new Revised R*-
tree (RR*-tree) of Beckmann & Seeger (2004) was
implemented in Java.

• The two Modula-2 implementations and the Java
implementation of the R-tree variants were integrated under
a unified Java user interface.

Figure 7. Illustration of the test data.

The data structures were tested by a cloud of points that
originates from the measurement of the façade of a building.
The data set consists of about 3.66 million points. It is
illustrated in Figure 7.

3.2 Investigation

The following experiments were performed on a Pentium IV-
PC with 2 GHz and 256 MB main memory.

The aspect investigated first was the construction of the spatial
access methods. The points were inserted into the index
structures in the order they have been measured. The observed
storage overhead is – independently of the data structure –
about 68%. The reasons are the storage requirements for the
directory and – more significant – empty space in the data
nodes. The empty space is due to fact that all investigated
spatial access methods are dynamic index structures allowing
insertions and deletions without worsening their performance.
The empty space can be reduced by using special bulk-loading
algorithms.

The insert throughput is depicted in Figure 8. The performance
of most the spatial access methods is rather high. One exception
can be observed: the R*-tree achieved only a third of the
throughput compared to the other trees.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

BANG file Buddy tree R*-tree RR*-tree

th
ro

ug
hp

ut
 (p

oi
nt

s/
se

c.
)

Figure 8. Throughput of the insertion of points.

All spatial access methods showed an excellent performance for
extracting data points queried by small query cuboids. The
access to the data does not require a long loading phase. The
queried points were accessed by few block accesses.

Many applications require extracting an overview about the
distribution and/or location of the points. One example is a
rough visualization which is often sufficient for getting an
impression of the data. A reasonable approach for such
requirements is to stop the traversal of the spatial access method
as soon as the size of a block region falls under a given
threshold. Such an approach reduces the number of block
accesses significantly. However, the tests have shown that the
query time was not reduced significantly. The reason is that the
investigated spatial access methods preserve only the local
order. In consequence, block accesses on the secondary storage
had often led to a seek operation on disk. Therefore, the
standard access methods were compared to globally re-ordered
variants. In the globally re-ordered variants, the blocks were
sequentially arranged on secondary storage according to a depth
first traversal through the respective tree. Figure 9 shows the
results of this comparison. The query time of the standard
version is set to 100% for each spatial access method. We can

observe a performance improvement of factors between 6
and 10.

0

10

20

30

40

50

60

70

80

90

100

BANG file Buddy tree R*-tree RR*-tree

qu
er

y
tim

e
(in

 %
)

standard version
globally re-ordered

Figure 8. Comparison of query time.

4. CONCLUSIONS

In this paper, we discussed the usage of spatial access methods,
which have been originally developed for organizing spatial
data in spatial database systems and GIS, for the persistent
storage of point clouds produced by laserscanning. As potential
data structures, the BANG file and the buddy tree as
representatives of hash trees and the R*-tree and the RR*-tree
as R-trees have been selected, implemented and experimentally
investigated using real laserscanner data. The first results show
that both types of index structures have the potential for
organizing point clouds originating from laserscanning.

Two important tasks for future work can be identified: 1. The
definition of typical query profiles. Such profiles would allow a
more detailed investigation and comparison of index structures.
2. The order preserving properties and spatial hierarchies of
spatial access methods may be used for analysing the clouds of
points measured by laserscanners. Especially the extraction and
approximation of surfaces and edges (e.g. like in (Niemeier &
Kern, 2001)) should be considered.

5. REFERENCES

Beckmann, N., H.-P. Kriegel, R. Schneider & B. Seeger, 1990.
The R*-tree: An Efficient and Robust Access Method for Points
and Rectangles. In: Proceedings ACM SIGMOD International
Conference on Management of Data, Atlantic City, NJ, pp.
322-331.

Beckmann, N. & B. Seeger, 2004. Ready for System
Integration: A Revised R*-tree with Improved Insertion and
Search Performance. Technical Report of the University of
Marburg.

Brinkhoff, T., 2001. Using a Cluster Manager in a Spatial
Database System. In: Proceedings 9th ACM International
Symposium on Advances in Geographic Information Systems
(ACM-GIS), Atlanta, GA, pp. 136-141.

Brinkhoff, T., H.-P. Kriegel & B. Seeger, 1993. Efficient
Processing of Spatial Joins Using R-trees. Proceedings ACM
SIGMOD International Conference on Management of Data,
Washington, DC, pp. 237-246.

Freeston, M., 1987. The BANG file: A new kind of grid file. In:
Proceedings ACM SIGMOD International Conference on
Management of Data, San Francisco, CA, pp. 260-269.

Guttman, A., 1984. R-trees: A Dynamic Index Structure for
Spatial Searching. In: Proceedings ACM SIGMOD
International Conference on Management of Data, Boston, pp.
47-57.

Hjaltason, G.R. & H. Samet, 1999. Distance Browsing in
Spatial Databases. ACM Transactions on Database Systems,
(24)2, pp. 265-318.

Hutflesz, A., H.-W. Six & P. Widmayer, 1988. Globally Order
Preserving Multidimensional Linear Hashing. In: Proceedings
4th International Conference on Data Engineering, Los
Angeles, CA, pp. 572-579.

Niemeier, W. & F. Kern, 2001. Anwendungspotentiale von
scannenden Messverfahren. In: U. Weferling et al. (eds..): Von
Handaufmaß bis High Tech, Verlag Philipp von Zabern, pp.
134-140.

Nievergelt, J., H. Hinterberger & K.C. Sevcik, 1984. The Grid
File: An Adaptable, Symmetric Multikey File Structure. ACM
Transactions on Database Systems, (9)1, pp. 38-71.

Rigaux, P., M. Scholl & A. Voisard, 2002. Spatial Databases
With Application To GIS. Morgan Kaufmann Publishers, San
Francisco.

Schwermann, R. & C. Effkemann, 2002.: Kombiniertes
Monoplotting in Laserscanner- und Bilddaten mit PHIDIAS. In:
Luhmann T. (ed.), Photogrammetrie und Laserscanning,
Anwendung für As-Built-Dokumentation und Facility
Management. Herbert Wichmann Verlag. pp. 57-70.

Seeger, B., 1989. Entwurf und Implementierung
mehrdimensionaler Zugriffsstrukturen. Dissertation of the
University of Bremen.

Seeger, B. & H.-P. Kriegel, 1990. The Buddy Tree: An
Efficient and Robust Access Method for Spatial Databases. In:
Proceedings 16th International Conference on Very Large Data
Bases, Brisbane, Australia, pp. 590-601.

