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ABSTRACT: 
 
Today, digital terrain models (DTMs) are used in many fields of science and practice. When modelling the earth’s surface it is 
necessary to make a clear distinction between terrain models, i.e. models representing the terrain in the sense of the ‘bare soil’, and 
surface models, i.e. models that also include artificial buildings and vegetation. A DTM should not be influenced by off-terrain 
points such as points on vegetation and on buildings. Hierarchical robust filtering, a method for eliminating the influence of the off-
terrain-points in DTM generation, has been shown to give good results for airborne laser-scanner-data. In this paper, we want to 
show that this method can also be applied successfully to improve the quality of DTMs created by image matching techniques. Those 
techniques deliver a digital surface model containing disturbances such as houses and forests, even if filtering methods are an 
integral part of the matching process. Hierarchical robust filtering, implemented in the program package SCOP++, can be used in 
order to eliminate these errors in the DTM. The results presented in this paper show the improvement of DTMs created by matching 
methods that can be achieved by this method, using test data from different areas of interest.    
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1. INTRODUCTION 

Digital terrain models (DTMs) are important components in 
Geographic Information Systems, and they are used in many 
fields of science and practice. There are different ways of 
representing a DTM in the computer. Often the terrain is 
represented by heights in a regular grid. For a high-quality 
description of the terrain, a hybrid raster can be used, 
containing not only the grid heights, but also geomorphologic 
elements such as break lines or spot heights. The elevations of 
the grid points are not measured directly, but they have to be 
determined from irregularly distributed points and the 
geomorphologic elements, e.g. by linear prediction, or by 
interpolation based on finite elements (Kraus, 2000). The 
original points can be acquired in different ways. Traditionally, 
they were measured manually in stereoscopic images. Image 
matching methods have been successfully applied to automate 
DTM generation from digital aerial images (Gülch, 1994; 
Krzystek, 1995), which has resulted in operational software 
modules such as MATCH-T by INPHO GmbH (INPHO, 2003) 
that are widely-used today. In addition to photogrammetric 
techniques, the original data for DTM generation can also be 
acquired by airborne laser scanning (ALS) (Kraus, 2000).  
 
It is common to both image matching techniques and ALS that 
the original point cloud represents the earth’s surface as it is 
seen from the sensor’s vantage point. The original point cloud 
does not only consist of points located on the terrain, but it also 
contains off-terrain points on houses, trees, or other objects. 
Thus, a model interpolated from that point cloud is a digital 
surface model (DSM) rather than a DTM. For applications such 
as orthophoto production, a DSM might be sufficient. For other 
applications it is essential to eliminate the off-terrain points to 

obtain a model that really represents the terrain. In image 
matching, robust interpolation techniques are used to eliminate 
these off-terrain points (Krzystek, 1995), but problems arise in 
densely built-up regions and in forests, and manual intervention 
is often required to remove remaining errors.  
 
With respect to ALS data, hierarchical robust linear prediction 
has been shown to give excellent results in densely built-up and 
forested areas (Kraus and Pfeifer, 1998; Briese et al., 2002). It 
is the goal of this paper to show how this method can be applied 
to improve DTMs derived by image matching. We start with a 
description of the characteristics of DSMs derived from image 
matching and with an outline of the filter algorithm. After that, 
we show how the filter algorithm is adapted to the specific 
characteristics of point clouds derived by image matching. 
Finally, we will present results achieved for various types of 
terrain and land cover. 
 
 

2. DTM GENERATION USING IMAGE MATCHING 

In this work, we used the program MATCH-T from INPHO 
GmbH (INPHO, 2003) for the generation of a DSM from aerial 
images. MATCH-T applies feature based matching to generate a 
dense point cloud. From this point cloud, an elevation grid is 
interpolated by the finite element method, applying robust 
estimation to eliminate false matches (Krzystek, 1995). The 
major goal of this work was to create a DTM without buildings 
and vegetation. MATCH-T has various parameters which 
control the point density in the matching process and the degree 
of smoothing during the grid interpolation. By these parameters, 
the user can control the degree to which the resulting elevation 
grid represents the terrain (Summit Evolution, 2001):  



• The grid width of the resulting elevation grid is a fundamental 
parameter that is in general selected according to the 
application-specific requirements for the DTM, within certain 
limits given by the scale of the aerial images used for 
matching. Selecting a larger grid size yields a smoothing 
effect that helps to eliminate off-terrain points, but also 
smoothes terrain structures that one might want to preserve.  

• The terrain type (flat, undulating, mountainous) has to be 
selected in accordance with the actual terrain type to make 
matching successful.  

• The degree of smoothing (high, medium, low) is the 
parameter that is best suited for controlling whether to obtain 
a DTM or a DSM. In this work, we selected the degree of 
smoothing to be “high”, to obtain an initial elevation grid as 
close as possible to the terrain. 

• The density of the original point cloud (dense, medium, 
sparse) also influences the degree of smoothing: a sparse 
point cloud results in a model closer to the terrain than a 
dense point cloud. 

• MATCH-T can consider geomorphologic elements and 
additional points in the interpolation process, typically 
measured interactively by a human operator. The standard 
deviation of surface points and break lines has an influence 
on the weights of these additional observations in the 
interpolation process. 

 
MATCH-T delivers DSMs of good quality. If a DTM is 
required, the algorithms for smoothing work well if the grid 
width is not too small compared to the extents of groups of off-
terrain points in the original point cloud. For instance, groups of 
trees and single buildings can be eliminated if the grid width is 
in the range of about 5-10 m. However, if the grid width is 
chosen smaller, e.g. 1.5 m, these objects remain in the matching 
results, even if a high degree of smoothing is selected. Figure 1 
shows a DSM generated by image matching with a resolution of 
1.25 m. The remaining buildings are clearly visible. 
 

 
 

Figure 1.  Shaded view of an elevation grid acquired by image 
matching (Eggenburg east; cf. section 5). 

 
As in general the grid width has to be chosen in dependence of 
the proposed application of a DTM, there is only a small band 
width for adapting this parameter. That is why we propose to 
improve the image matching results by hierarchical robust linear 
prediction in a post-processing step. Our good experience with 
that technique gives us reason to believe that it should be 
possible to eliminate buildings and groups of trees in high-
density DSMs delivered by image matching techniques. 
 
 

3. HIERARCHICAL ROBUST LINEAR PREDICTION 

We use the program SCOP++ (Briese et al., 2002) for the 
interpolation of a hybrid raster DTM on the basis of irregular 

point and vector data by linear prediction. This method is based 
on the assumption that the heights of terrain points, after 
removing a trend, are correlated, the correlation being a 
function of the horizontal distance between the points (Kraus, 
2000). Linear prediction will be fragile if gross errors occur, so 
that a more robust approach has to be found. In this section, we 
want to describe how this can be accomplished. 
 
3.1 Robust Interpolation 

Robust interpolation (Kraus and Pfeifer, 1998) was developed 
for DTM generation from ALS-data in wooded areas. In this 
process the elimination of gross errors and the interpolation of 
the terrain are carried out simultaneously. This process consists 
of three steps: 
 
1. Interpolation of a surface model by linear prediction 

considering individual weights for each point. At the 
beginning all weights are assumed to be equal. 

2. Calculation of the filter values, i.e., the vertical distances 
from the interpolated surface to the measured points  

3. Recomputation of the weights of the individual points in 
dependence of the filter values, using a weight function 
adapted to the stochastic properties of the filter values of the 
off-terrain points. 

 
The steps are repeated in an iterative process until all gross 
errors are eliminated. The elimination of gross errors (off-
terrain points) is controlled by the weight function. This weight 
function is controlled by 3 parameters (figure 2): Halfweight h 
(the size of a filter value obtaining a weight of 0.5), slant s (co-
tangent of the slope at f=h), and the cut-off point t. 
 

 
Figure 2. Weight function (Briese et al., 2002). 
 
The values for h, s, and t can be set independently for the 
positive and the negative branches of the weight function, i.e. 
for points above and below the surface interpolated in the 
previous iteration. As a consequence, the weight function can 
be asymmetric. This allows to favour points on or below the 
intermediate surface (considered to be terrain points) and to 
decrease the weights of points above the intermediate surface 
that are more likely to be off-terrain points. The function is also 
shifted by a value g. This also should compensate for the fact 
that the intermediate surface is more likely to be above the 
terrain than below it. By choosing the weight function to be 
asymmetric and excentric, we model the actual distribution of 
the errors of the off-terrain points with respect to the terrain. 
Figure 2 shows a weight function for the elimination of off-
terrain points; note that in this case, points having a filter value 
f < g are not affected by robust estimation  (Briese et al., 2002). 
 
3.2 Hierarchical Robust Interpolation 

Robust interpolation relies on a ‘good mixture’ of terrain and 
off-terrain points, but the algorithm is not able to eliminate 
clusters of off-terrain points as they occur, e.g., in densely 
developed urban areas. To meet this problem, robust 



interpolation is applied in a hierarchical framework. The main 
feature of the hierarchical robust interpolation is the creation 
of a data pyramid representing the data at different resolution 
levels. Robust interpolation is applied to thinned-out data first, 
the interpolation results being used to eliminate off-terrain 
points for the next iteration that is carried out using the data of 
the next finer resolution of the data pyramid. Three steps are 
carried out at each level of the data pyramid: 
 
1. Thin out the original data according to the resolution of the 

current level of the data pyramid, using only points not yet 
classified as being off-terrain points 

2. Generate a DTM by robust interpolation, using the thinned-
out data  

3. Compare the DTM thus generated with the original data. 
Data points outside a certain tolerance band are classified to 
be off-terrain points and, thus, no longer considered in the 
subsequent iterations. 

 
At the finest level, the DTM is computed from all original 
points classified as terrain points. Using this method, the 
generation of DTM from ALS data in densely built-up areas has 
been shown to be feasible (Briese, et al., 2002). Using thinned-
out data, the influence of large clusters of off-terrain points (e.g. 
points on buildings) can be eliminated but the resulting DTM 
also has a rather coarse resolution. The influence of low 
vegetation (e.g. bushes) is eliminated using the data at a finer 
resolution, a process that also results in a better DTM.    
 
 
4. HIERARCHICAL ROBUST INTERPOLATION FOR 

DTMS FROM IMAGE MATCHING 

As mentioned above, hierarchical robust filtering was primarily 
created for DTM generation from ALS data. However, in this 
paper the original point cloud is a grid that was generated by an 
interpolation with finite elements from the initial results of 
feature based matching by MATCH-T. 
 
4.1 Characteristics of the data 

Figure 3 shows the different characteristics of point clouds from 
image matching and ALS. The dots represent the grid points 
derived by image matching with a low degree of smoothing in 
grid interpolation. The red line shows the DSM that can be 
generated from these grid points. The crosses represent the ALS 
points. The green dotted line represents the DSM obtained from 
ALS data. One essential difference between point clouds from 
ALS and image matching is that image matching does not 
deliver terrain points in wooded areas because corresponding 
points are only determined on the tops of the tree canopies. On 
the other hand, ALS does provide a point cloud with a good 
mixture of terrain and off-terrain points, because the laser beam 
can at least partly penetrate tree canopies. If there is no ‘good 
mixture’ of terrain and off-terrain-points, robust filtering will 
not be able to eliminate gross errors. As a consequence, off-
terrain points from a point cloud derived by image matching 
cannot be expected to be eliminated in forests. The second big 
difference between point clouds from ALS and point clouds 
from image matching is that, unlike ALS data, point grids from 
image matching are pre- filtered in the matching process. The 
effect is that the outlines of buildings and other objects are 
blurred, which in densely built-up areas might result in narrow 
inner courtyards without points on the terrain. Consequently, 
the areas without actual terrain points might be larger for point 
clouds image matching than for ALS data. This has to be 

considered when applying hierarchical robust filtering to point 
clouds derived from image matching.  

 

 
 

Figure 3. Different characteristics of point clouds from image 
matching (dots) and ALS (crosses) and the resulting 
DSMs; DTM = blue dotted line. 

 
4.2 Adaptation of the filter strategy  

The strategy applied in this work is based on a strategy that has 
been shown to give good results in DTM generation from ALS 
data in low-density areas (figure 4).  
 

 
      

 
  

 
      

 
  

 
 
Figure 4.  Work flow for our filter strategy. LP: Linear 

Prediction, RLP: Robust Linear Prediction. 
 
The terrain type, the density of vegetation and development, and 
the average building dimensions are the determining factors for 
an adequate filtering strategy. It turned out to be necessary to 
have three iterations of the loop of thinning out, filtering, and 
eliminating points off the intermediate DTM, described in 
section 3.2. In each loop, the parameters were set in a way to 
take into account the peculiarities of the matched points. 
 
4.2.1 Generation of a Coarse DTM by Rigorous Thinning 
and Filtering:  In this first step, a DTM is created from data 
that are rigorously thinned out by selecting the lowest point 
within a certain neighbourhood. The degree to which the data 
are thinned out, controlled by selecting the grid width of the 
thinned-out data, is of crucial importance to the success of the 
whole procedure. It must not be chosen too small, because 
otherwise objects such as buildings and groups of trees cannot 
be eliminated. On the other hand, it must not be chosen too 
large, because this would result in too high a degree of 
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smoothing of relevant terrain structures, especially in undulated 
terrain. For reasons described in section 4.1, the degree of 
thinning has to be higher with point clouds from image 
matching than for ALS data. We chose the grid width for 
thinning out to be about half the linear extent of the largest 
object we wanted to eliminate, e.g. 30 m in a data set containing 
areas without terrain points with an extent of 60 x 60 m2. As a 
consequence, the terrain cannot be modelled very accurately in 
densely built-up areas for lack of terrain points within narrow 
gaps between the individual buildings, and because a higher 
degree of smoothing is required to eliminate the buildings. 
 
Having thinned out the data, robust interpolation is applied to 
eliminate off-terrain points. Selecting the filter parameters in 
this first iteration is crucial for the success of the overall 
process: larger objects not eliminated at this stage will remain in 
the DTM until the end, whereas larger terrain features that are 
cut-off cannot be regained in the subsequent iterations. It turned 
out to be good practice to eliminate only points on the positive 
branch of the weight function. For points below the initial 
estimate of the surface, the weights remained unchanged. This 
implies that outliers underneath the terrain are not eliminated at 
this stage. Several iterations were carried out with a weight 
function that was not too restrictive in order not to eliminate too 
many terrain points (h = 0.4 m). The cut-off point t was chosen 
to be 1.5 m. All points being more than 1.5 m above the DTM 
in the last iteration were classified as off-terrain points. To get 
an optimal estimate of the DTM representing the terrain after 
the first iteration of filtering, linear prediction using the original 
weights was carried out, considering only points classified to be 
on the terrain. The grid width of this DTM was set to a value 
smaller than the thinning parameter, e.g. 5 m in our examples 
(with a grid width of the original data of 1.25 m). At this stage, 
the influence of off-terrain points has not yet been completely 
eliminated, and the terrain is still modelled very coarsely. 
 
4.2.2 Intermediate Filtering to Improve the Coarse DTM: 
This second iteration starts with a classification of the original 
point cloud with respect to the DTM generated in the first 
iteration. Points within a certain tolerance band around the 
DTM are classified as potential terrain points and thus accepted 
for further computation. All the other points are eliminated. The 
width of the tolerance band has to be selected carefully in order 
to include as many actual terrain points as possible, while still 
eliminating a considerable portion of the off-terrain points. We 
selected a band with a bias towards points below the terrain, 
accepting points as far as 3 m below the initial DTM (to 
eliminate large negative outliers delivered more frequently by 
image matching methods than by ALS), but only 2 m above it. 
Using a more restrictive upper threshold than 2 m would have 
resulted in too great a number of terrain points to be eliminated. 
The DTM from iteration 1 is too coarse to perform such a 
rigorous step already at this stage of processing. Consequently, 
off-terrain points at building outlines and on the tops of small 
trees are still included in the data. These points are to be 
eliminated in the second processing stage. 
 
The original points classified as terrain points are thinned out 
again, using a smaller thinning parameter than in the first 
iteration (here: by selecting the lowest point within a regular 
grid width of 3 m). Robust linear prediction is applied to the 
thinned out data once again, but using more rigorous parameter 
settings for the weight functions in order to eliminate the 
influence of off-terrain points at the building outlines and on 
low vegetation (h = 0.3 m). Unlike in the first iteration, robust 
estimation was also applied to points below the terrain to take 

into consideration the more frequent occurrence of ‘negative’ 
errors in image matching results compared to ALS. Again, 
several iterations of robust estimation were carried out, using a 
cut-off point t = 0.3 m. All points having a filter value between 
-0.3 m and +0.3 m in the last iteration are considered to be 
terrain points. These points are used to compute the second 
approximation of the DTM by linear prediction, using the 
original weights. This DTM, interpolated with a grid width of  
2 m in most of our examples, is supposed to be already quite a 
good approximation of the terrain, though it still contains few 
off-terrain points on low vegetation. 
 
4.2.3 Final DTM Generation: The DTM created in iteration 2 
is again used to classify the original points, this time using a 
more restrictive tolerance band (e.g. eliminating points more 
than 2 m below or more than 1 m above the intermediate DTM), 
because the approximation is a much better one than in the 
previous iteration. Robust linear prediction using very 
restrictive values (h = s = t = 0.15 m) is applied to remove the 
remaining off-terrain points. In this final stage, robust 
estimation is again only applied to points above the 
intermediate DTM. This means that at this stage we assume that 
all large ‘negative’ outliers have already been eliminated in the 
previous filtering loop. The final DTM is created from the 
points classified as terrain points in the final iteration of robust 
estimation by linear prediction using the original weights. The 
grid width of the final DTM has to be selected in accordance 
with the resolution of the original point cloud.  
 
 

5. RESULTS 

In order to test our filter algorithm, three data sets of quite 
different characteristics with respect to land cover and image 
geometry were used. 
 
5.1 The Test Data 

The first data set, captured over Eggenburg (Lower Austria) 
consisted of high-resolution aerial images of a historic town and 
its surroundings and was characterised by undulating terrain 
with both densely-built up areas in the town centre and forested 
and agricultural regions with little but dense vegetation at the 
fringes. The second data set consisted of high-resolution images 
of a waste disposal site in Stockerau (Lower Austria), including 
few buildings and man-made “terrain” shapes. The third data set 
was captured over the Schneealm mountain range in Styria, 
characterized by rugged terrain and partly by dense forest. For 
all test sites, a DSM was derived using MATCH-T, selecting a 
high degree of smoothing. Table 1 gives an overview of the 
flight parameters and the parameter settings for MATCH-T. The 
grid points derived by MATCH-T provided the input for our 
filter algorithm. 
 

Area S = 1: f 
[mm] 

r 
[µm] 

terrain 
type 

Point 
density 

∆  
[m] 

Eggenburg 4500 152 30 U M 1.25 
Stockerau 3500 208 30 U D 1.25 
Schneealm 15000 214 30 M D 10.0

0 
 
Table 1.  Image scales S, focal lengths f, and scanning 

resolution r of the aerial images for the three test 
sites. Terrain type (U: undulating, M: mountainous), 
point density (M: medium, D: dense), and ∆ (grid 
width) are the respective parameters for MATCH-T. 



5.2 Results 

We start this section with examples where the method was able 
to generate a DTM of good quality. The first examples are taken 
from the Eggenburg data set. Figure 1 shows a shading of a 
DSM acquired by image matching with MATCH-T before 
filtering with SCOP++ in an area in the east of Eggenburg. 
Figure 5 shows the DTM that could be derived by hierarchical 
robust filtering.  
 

 
 

Figure 5.  Shaded view of a DTM after including break lines 
and filtering with SCOP++ (Eggenburg east). The 
DSM is shown in figure 1. 

 
The influence of the off-terrain points on houses could be 
eliminated completely. Even large buildings such as a factory in 
the left lower part and blocks of houses in the right upper part 
of the test area could be eliminated successfully. This was 
mainly achieved by choosing a rather coarse resolution of 15 m 
for thinning out the data in the first iteration, at the cost of a 
degree of smoothing that cut off some terrain features. If these 
smoothing effects are too large to be tolerated for the 
application of the DTM, break lines determined by interactive 
measurement can be considered in the filtering process. Thus, 
these smoothing effects can be avoided.  
 
It was interesting to observe that using a high degree of 
smoothing in image matching smoothed the DSM at houses and 
trees without completely eliminating them. As a result, some 
off-terrain points were classified as terrain points by robust 
filtering because houses were not accentuated enough to be 
distinguished from the terrain. We think that it would be easier 
to select the appropriate parameters in each step of our filter 
strategy if the smoothing parameter were set to ‘low’ in image 
matching. Actually, it would be desirable not to filter or smooth 
the original data at all, to achieve a point distribution closer to 
the one delivered by ALS.  
 
Figure 6 shows the result for another area in Eggenburg. The 
terrain is more undulating than in the example in figure 5, with 
some abrupt changes along a railway line and dense vegetation 
in the left lower part of the scene. Off-terrain points on houses 
could be eliminated again, but hierarchical robust filtering could 
not remove the off-terrain points in the dense forest south of the 
railway line. As predicted in section 4.1, this was caused by the 
lack of terrain points delivered by image matching. This 
problem could only be circumvented by manual measurement of 
3D points on the terrain in the forest, which is, however, hardly 
feasible. 
 
We selected the town centre of Eggenburg to check the 
performance of our method in a densely built-up area (figure 7). 
In the densely built-up area in the left lower part of the scene 

only a few terrain points were delivered by MATCH-T. The 
grid width for the first thinning of the data had to be chosen 
rather wide (30 m) in order to cope with large areas without any 
terrain points. Still, it was not possible to get as good a DTM as 
in the more rural areas of the previous examples. The reason for 
this is the lack of terrain points in inner courtyards and narrow 
streets between the houses. However, the influence of the off-
terrain points on the houses could be eliminated and a DTM of 
quite a good quality could be achieved. Again, unwanted 
smoothing effects could be reduced by introducing break lines. 
 

    
 

Figure 6.  Shaded view of a DSM from image matching (left) 
and the resulting DTM after including break lines 
and filtering (right) (Eggenburg west). 

 

  
 

Figure 7. Shaded views of an elevation grid acquired by 
MATCH-T (left) and of a DTM after filtering (right) 
for the city centre of Eggenburg; contour lines in the 
DTM are shown. 

 
Finally, we want to present some examples where our method 
failed to eliminate the influence of the off-terrain points. In the 
example taken from the waste disposal site near Stockerau, the 
influence of off-terrain points on buildings and vehicles should 
have been eliminated. The terrain contained small features such 
as heaps of sand and waste (figure 8). As the shapes and 
dimensions of the buildings are nearly the same as those of the 
terrain, no satisfying result could be achieved. The filtering 
method either eliminated both the buildings and heaps of sand 
and waste material, or it eliminated neither of them. It is, 
however, no surprise that the method only works if there is a 
distinction in appearance between the terrain and the objects 
that should be eliminated. 



 

 
 

Figure 8. Shaded view of a DTM after filtering (Stockerau);  
b: buildings that could not be eliminated. 

 

 
 

Figure 9. Shaded view of a DSM before (left) and after 
filtering (right) from the Scheealm test site. 

 
The Schneealm test site was selected to find out whether our 
filtering method could be used to derive a good DTM in 
wooded areas. Given the image scale of that test site, the width 
of the elevation grid delivered by MATCH-T was chosen to be 
10 m. Consequently, the parameters had to be set in a different 
way than described in section 4.2, even more so because only 
very few terrain points could be expected (e.g. in glades). The 
grid width for the first thinning-out was chosen to be 100 m. 
The parameters for the weight function had to be chosen rather 
restrictive in order to eliminate as many off-terrain points as 
possible (h = s = t = 0.3 m). The terrain was modelled very 
coarsely after the first loop of thinning out and filtering the data, 
represented by a DTM with a grid width of 50 m. In the second 
iteration, the tolerance band was selected so that only points 
above the initial DTM were eliminated, whereas all points 
below that DTM were regarded to be terrain points. The 
original points classified as terrain points were thinned out 
using the lowest point within a grid with a width of 30 m. 
Robust linear prediction was applied using very restrictive 
parameters on the positive branch of the weight function  
(h = s = t = 0.25m), again in order to only eliminate points 
above the terrain. However, the method failed to eliminate the 
off-terrain points at this stage, so that the resulting intermediate 
surface model was not close enough to the terrain. 
Consequently, the third iteration could not succeed, either. Our 
filtering method could not deliver acceptable results because too 
few terrain points were provided by image matching, so the 
algorithm was not able to eliminate the influence of the off-
terrain points on the trees (figure 9). The drawback of digital 
image matching methods compared to ALS in wooded areas 
was obvious.  
 
 

6. SUMMARY AND OUTLOOK 

A classification of the original point clouds into terrain points 
and off-terrain points is necessary in order to create a DTM 
from ALS data or image matching. We have shown how a 
method originally designed for the filtering of ALS data can be 
adapted to generate a DTM from the DSM created by image 
matching techniques. The basic difference between ALS point 
clouds and the image matching results is the distribution of the 
points in wooded and densely developed urban areas. The 
sequence of the applied strategy in SCOP++ might be the same 
for both data sets, but the parameters have to be adapted to the 
characteristics of DSMs from image matching. A point grid 
obtained from image matching techniques does still contain off-
terrain points in spite of the filter methods integrated in the 
matching process. The method described in this work could be 
used to eliminate these errors concerning the DTM. Tests show 
that our method gives acceptable results for urban areas. The 
influence of off-terrain-points is widely eliminated, even though 
at the cost of some smoothing. However, these smoothing 
effects can be eliminated by the inclusion of break lines, so that 
a very good representation of the terrain can be achieved. The 
results for wooded areas are not satisfying because no terrain 
points are acquired by matching techniques. ALS data are much 
better suited for DTM generation in forested areas (Kraus and 
Pfeifer, 1998). A further improvement of the results is expected 
when using the unfiltered original data from the matching 
process or if the degree of smoothing in the matching process is 
selected to be as low as possible in order to eliminate 
undesirable pre-processing effects. 
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