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ABSTRACT: 

 
Information about current land-cover in forests is important for management and conservation of these areas. Up to the last decade 
traditional per pixel classification algorithms were used to be utilized in extracting land-cover information. However, they are poorly 
equipped to monitor land-cover in images acquired by current generation of satellite sensors with adequate accuracy. A good 
understanding and classification of an image can be done by gathering critical a priory knowledge about the study area and an 
effective use of channels involved in the procedure. It is important to make use additional spectral and spatial knowledge in order to 
improve the classification accuracy. In this study, a knowledge based hierarchical approach is proposed in order to classify and detect 
forest types in the Ömerli Dam Lake Region. The method makes use of the fact that land-cover types and their associated knowledge 
form a natural hierarchy. Hierarchical classification is a powerful approach in solving classification problems by decomposing the 
image into a hierarchical tree structure. This also results in sub-dividing the area into spectrally consistent regions and helps dealing 
with spectral variability within each subarea. Three types of knowledge were involved in the rule-based classification of the study 
area: Domain spectral knowledge, Spectral classification rules obtained from training data and Spatial knowledge. Sub-dividing the 
area into smaller homogeneous regions in hierarchical classification increased the accuracy, while supervised classification technique 
yielded 47 per cent in the same area. Spatial reclassification involved in the hierarchical classification method increased overall 
accuracy, yielding new classes like coast. 
 
 

 

1. INTRODUCTION 

 

1.1 Aim of the Study 

 

Land-cover is one of the basic data layers in geographic 
information system for physical planning and environmental 
monitoring. Traditional multispectral image classification 
techniques are, however, insufficient for extraction of land-
cover categories with required accuracy from high resolution 
imagery. Attempts to increase the overall classification 
accuracy, ranging from incorporation of ancillary data to use of 
expert systems and neural networks have proved to be 
successful when compared with traditional classification 
techniques. In this study, the classification accuracy problem 
was attacked using a knowledge-based hierarchical approach. In 
the context of Landsat imagery, domain spectral knowledge, 
spectral classification rules obtained from training data and 
spatial rules can be used to improve the quality of image 
classification (Anil, 1989). Since land-cover types present in 
Landsat imagery form a hierarchical structure, a top-down 
processing strategy was adopted in separate classes.  
 
The research described in this study attempts to deal with the 
spectral variability within a landscape during image 
classification by subsetting large study areas into spectrally 
consistent geographic areas with the cooperation of spectral and 
spatial rules, classifying these areas independently and then 
rejoining them to form a final continuous classification. In 
essence, the hierarchical classification helps in reducing the 
classification confusion among land-cover classes, because the 
spectral variability present within each subset image is usually 
considerably less than that between different strata.  
 

1.2 Background 

 
There are numerous accounts of research where TM data were 
used to classify forest types, but few researchers have used a 
knowledge-based hierarchical approach. Anderson et al., (1976) 
Level I and II classifications (discrimination between deciduous 
and coniferous forests) from remotely sensed data have been 
produced with accuracy of greater than 80 percent. However, 
for Anderson Level III classifications (discrimination between 
forest types), mapping accuracy has been generally lower. Anil 
K. Jain (1989) proposed an image segmentation technique by 
extracting kernel information from the input image to provide 
hierarchical classifier to discriminate between major land-cover 
types in the study area. A more detailed interpretation of the 
image was then produced using a spatial clustering technique, 
the previously extracted kernel image information and spectral 
and spatial rules which make up the knowledge-base of the 
hierarchical classifier.  
 
A rule-based expert system was developed by Skidmore (1989) 
to classify forest types. Relationships between forest type 
classes and terrain (ie gradient, aspect and topographic position) 
were quantified using the knowledge of local forest personnel. 
The expert system had a higher mapping accuracy than the 
maps produced by traditional classifiers. Bolstad and Lillesand 
(1991) designed a system of programs named CLASSMOD 
(Class Modeler) which allowed the integration of thematic data, 
satellite imagery and a rule-based, forward-chaining inference 
strategy in land-cover classification. Rules were used to 
describe feature types, data themes, the relationships among 
themes and feature types and to define the inference path. 
Barnsley and Bar (1992) used a kernel-based reclassification 
method, referred to as SPARK (Spatial Reclassification Kernel) 
which examined both the frequency and the spatial arrangement 



of class labels within a square kernel. It proved successful with 
20 m. resolution SPOT XS data.  
 
Wolter et al. (1993) implemented a layered multitemporal 
approach to the classification of Landsat data, combined with a 
specific knowledge of cover type phenology and accuracy for 
forest classes aggregated to Anderson Level II (hardwood, 
conifer and mixed) was 93.6 percent. Johnson (1994) was one 
of those who implemented and applied a rule-based model to 
classification of built-up land from multispectral SPOT data. 
The technique she used addressed the specific problem of 
extraction of a spectrally heterogeneous land use category from 
SPOT XS satellite data. Stewart and Lillesand (1994) 
demonstrated the utility of pre-classification stratification of 
large study areas into spectrally consistent subareas or strata to 
deal with spectral variability among classes. Their study 
focused on classification of non-urban component of Lansat TM 
imagery using hybrid “guided” clustering methods for 
classification of individual strata. The results proved to be 
promising in terms of accuracy. 
 
 
1.3 Hierarchical Approach for Classification of TM Image 

 

The knowledge that can be used as rules in hierarchical 
classification procedures can be divided into two types: Spectral 

and Spatial. In remote sensing, spectral properties associated 
with different land-cover types have been extensively studied. 
This spectral knowledge plays an important role in Landsat 
image segmentation. Spatial knowledge, on the other hand, 
deals with the spatial relationships (e.g., proximity, connectivity 
and relative orientation) between various objects in the image. 
The spectral and spatial knowledge is used in three different 
ways in the classification procedure.  
 
Domain knowledge is embedded in the region detection 
techniques. It is represented as spectral rules for region 
interpretation. These rules are used in interpreting and 
classifying different regions in the image. In Landsat images, 
water is the unique land-cover type such that the band 
reflectance values always decrease as the band number 
increases, ignoring the thermal band (band 6). In other words, if 
pixel (i, j) lies entirely within a water region, then 
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except for some boundary pixels of water regions which may 
consist of both water and non-water areas, the band decreasing 
property holds for all water regions of the study area. 
 
Spatial rules can be used in reclassification of pixels based on 
their spatial characteristics like the method implemented by 
Barnsley and Barr (1992). For example, a small vegetation  area 
surrounded by urban pixels can be relabeled as an urban area. A 
tiny non-vegetation region surrounded by forest areas can be 
merged with the forest areas. 
 
Landsat image consists of many regions which belong to 
different land-cover types. Since these land-cover types form a 
natural hierarchical structure, Hierarchical Classification is an 
appropriate strategy for land-cover classification. The procedure 
involves decomposing the image into hierarchical tree structure. 
 

Once the hierarchical land-cover structure is defined, 
knowledge rules for each land-cover type have to be generated. 
Three types of information are considered in constructing the 
knowledge rules for each land-cover type in the hierarchy: 
 
• Domain spectral knowledge: Spectral knowledge can be 

used to construct the hierarchical structure of land-cover 
classes, such as discrimination between vegetation and 
nonvegetation regions using indices and detecting water 
areas using band decreasing property. This domain 
knowledge is obtained from the remote sensing literature. 

 
• Spectral classification rules obtained from training data: 

Qualitative spectral knowledge involved in Landsat TM 
imagery has to be transformed to more specific quantitative 
classification rules. Training data help to generate thresholds 
to be used later as rules for discriminating and classifying 
land-cover categories more accurately. 

 
• Spatial knowledge: Since spectral knowledge alone is 

insufficient for classification of all land-cover types, spatial 
rules have to be used to increase the resultant accuracy. 

 
 

2. STUDY AREA AND THE DATA 

 

The study area is located approximately 20 km. east of Istanbul, 
centered on Latitude 400 58’ 48’’ N and Longtitude 290 22’ 51’’ 
E (Figure 1).  
 
The area includes various types of land use. Southern half of the 
Ömerli Dam Lake covers 5,2% of the region, approximately 
28% of the area is built-up land, mostly residential composed of 
apartment buildings and more than 44% is occupied by forest 
types. The most common tree species are black pine (Pinus 
nigra), red pine (Pinus brutia), oak, spruce and plane tree. 
Destructive logging practices and urban sprawl took place in the 
late years but the region is still a good place for the 
classification analysis. 
 
The Landsat TM image acquired 18 July 1997 was used mainly 
for the analysis. Spectral contrast between vegetated surfaces 
and cultural surfaces such as pavement, bare soil, construction 
areas and buildings were optimized due to the fact that it is a 
summer scene. 6 bands of the TM image were used. Thermal 
Band (Band 6) was not used because of its coarse spatial 
resolution. 
 

 
 

Figure 1. Location of the study area 



1/25 000 scaled forestry map sheets of Omerli Dam Lake and 
neighborhood, acquired from the General Directorate Of 
Forestry, provided valuable information about the forest types, 
tree ages, trunk diameter and density as well as other features 
like the road types, water boundaries and rivers. 
 
The data set also includes a 1/5 000 scaled orthophoto. It proved 
to be a valuable ancillary data in terms of spatial resolution (50 
cm.), date of acquisition (September  1999) and the level of 
detail.  

 

3. METHOD 

 

3.1 Contruction of hierarchy 

 
The study area consists of both man-made and natural regions. 
Forestry areas include deciduous (mostly oak groves) and 
coniferous types (red-pine, black-pine). Nonforested areas, on 
the other hand, are composed of orchards, shrubs, agricultural 
fields and grass. Remaining regions are covered with water 
(Omerli Dam Lake), roads and urban areas. So it would be a 
good strategy to divide whole study area first into two classes as 
vegetation and nonvegetation due to the heterogeneous nature of 
it. This is the first level of the hierarchical classification. 
Decomposing the area into such two classes as a first level 
would help to eliminate errors arising from mixed pixels in 
urban and residential regions from further levels. 
 
 The second level of proposed hierarchical classification 
involves further decomposition of both vegetated and non-
vegetated areas and masking operations. Forest types, 
agricultural areas, shrub and grasslands like open forest floor 
would be separated from each other using thresholds. Masking 
helps to extract image pixel values which satisfy the criteria and 
create new images which consist of target classes for further 
analysis. Each type of region is further decomposed into smaller 
regions recursively for detailed interpretation until regions 
cannot be further subdivided. 
 
The Figure 2 illustrates the structure of the proposed 
hierarchical classification for the test region. It contains 3 levels 
and 13 nodes. 
 

 
Figure 2. Proposed Hierarchical Tree Structure 

 
 
3.2 Spectral Rule Generation 

 
There are a few ways to increase the knowledge of the 
researcher about the spectral properties of the features in the 
TM image. Domain spectral knowledge – as described above – 
is hardly sufficient to generate rules in order to progress in such 
hierarchical methods, especially when seasonal variations of the 
vegetation is considered, so additional information has to be 
generated. This was done by examining training data containing 
regions of the various types with the correct types being known.  

The dimensionality was increased to 10, six of which 
correspond to the TM bands; the remaining four were band 
transforms, namely Normalized Difference Vegetation Index 
(NDVI) and TM Tasseled Cap Transformations (Brightness, 

Greenness, Wetness). 

 

NDVI values, ranging from –1 to +1, stretched to unsigned 8-bit 
data. Examination of training sites, in cooperation with the 
orthophoto of the region, proved that a normalized difference 
vegetation index threshold of 135 was a critical value for 
discriminating between vegetation and non-vegetation. The 
value was found by using region growing tool, and examining 
the statistics generated from the DN values of the area of 
interest (AOI). 
 
Further investigation of the vegetated areas revealed that NDVI 
and greenness components are good indicators of forest type 
discrimination. The vegetation image which was created by 
masking the non-vegetated areas from the original image, was 
again decomposed into sub-levels as deciduous forest, 
coniferous forest and non-forest regions using these two 
indicators. Non-vegetation image was then divided into two 
more sub-classes as urban and transportation.  
 
3.3 Road Extraction 

 
The extraction of roads from images has received considerable 
attention in the past. Several schemes have been proposed to 
solve this problem at resolutions that range from satellite 
images to low altitude aerial images. The strategies proposed 
fall into two broad categories. The work described in Gruen and 
Li (1994),  Heipke et al. (1995), and McKeown et al. (1988) 
deal with the semi-automatic extraction of roads. The human 
operator has to select a certain number of points of the road 
which is then extracted. On the other hand, the work presented 
in Ruskone et al. (1994) is concerned with the automatic 
extraction of roads. Most of the studies referred above used fine 
resolution aerial images in information extraction about roads.  
 
These models, despite their success with aerial imagery, can 
hardly be applied to satellite images with coarser spatial 
resolutions. In this study, the roads were extracted using the 
vector coverages digitized from the orthophoto map. The 
1:5000 scale-orthophoto of the study area proved to be an 
excellent ancillary data for extraction of roads. An ARC/INFO 
coverage was created by digitizing roads and used to extract the 
road pixels from the image. A thematic roads image was created 
using the vector coverage and these regions were extracted and 
masked from the original image. 
 
3.4 Hierarchical Classification 

 
3.4.1 First Level: Domain spectral knowledge and spectral 
classification rules obtained from training data were used as 
input to the model created using Spatial Modeler Language 
(SML) ERDAS IMAGINE version 8.3.1. For later applications 
the software was customized and a user-friendly graphical user 
interface was created using Erdas Macro Language (EML) 
(Figure 3). 
 
 

 
 

Figure 3. Hierarchical classification module access button 



It is a known fact that healthy vegetation areas have high 
reflectance in the near-infrared region and low reflectance in the 
red-light region of the electromagnetic spectrum. This domain 
knowledge was transformed to quantitative rules using the 
training areas of the known classes.  
 
A NDVI threshold of 135 was used in the first level of the 
hierarchical classification process. Both vegetation and non-
vegetation areas were masked from the original TM image 
sequentially yielding two new thematic images in the first level 
as vegetation.img and non-vegetation.img. The output thematic 
images of the first level can be seen in Figure 4. Both of the 
new image files were used as inputs to the second level of the 
technique. 
 

 
 

Figure 4. Resultant images of the first level classification 
 
3.4.2 Second Level: The second level of the model involves 
decomposition of the vegetation image into forest and non-
forest images, and decomposition of the non-vegetation image 
into water and non-water images. Both procedures are described 
below: 
 
The vegetation image was divided into further sub-classes in the 
land-cover hierarchy. The rules generated during the 
examination of the training data were used as thresholds (Table 
1). 
 

NDVI Greenness  

Low High Low High 

Coniferous 180 220 -3 20 

Deciduous 220 255 20 255 

Other 135 180 -255 20 

 
Table 1. Forest classification rules 

 
The model created using Spatial Modeler Language created two 
new images using the threshold values given in Table 1. The 
forest.img image consists of two forest types and the 
nonforest.img consists of other vegetation including grass and  
agricultural areas (Figure 5). 
 
The non-vegetation image was sub-divided into water and non-
water images using the band decreasing property of the Landsat 
bands for the water regions. The spatial modeler language script 
was created for extraction of water areas from any Landsat 
scene and a user interface (Figure 6) linked to it was used at this 
node. The water statistics created before were used by the 
model as default values in water extraction. The resultant water 
and non-water images are shown in Figure 7. 
 
3.4.3 Third Level: The third level of the hierarchical 
classification model involves further classification of each 

image (forest image, non-forest image, and non-water image) 
and then merging the resultant images to create one thematic 
map.  
 

 
 

Figure 5. Second level results (Forest/Non-Forest images) 
 
 

 
 

Figure 6. User interface for water rule 
 
 

 
 

Figure 7. Second level results (Water/Non-water images) 
 
 
The forest.img (thematic image) was recoded using the 
threshold values and divided into two forest types as coniferous 
and deciduous. Non-forest image was decomposed into 
agricultural areas and grass/open forest floor classes 
 
A new thematic image was created with 7 classes after rejoining 
separate thematic images. All of these categories (except for the 
road data which was extracted using the vector coverage) were 
generated using thresholds as rules in the hierarchical 



classification procedure. The final image and classes are 
illustrated in Figure 8. 
 

 
 

Figure 8. Final image created by using Hierarchical approach 
 
3.4.5 Spatial Reclassification: Spatial reclassification 
represents a comparatively simple way to examine the spatial 
variation in land-cover in remotely sensed images, and is easy 
to implement in most image processing systems. It can be 
performed in one of two ways. The first, named as kernel-based 

spatial reclassification (Barnsley and Barr, 1992), involves 
passing a simple convolution kernel across the land-cover 
image. In the second, referred to as object-based spatial 

reclassification, discrete objects (i.e., groups of adjacent pixels 
with the same class label) are identified within the initial image 
segmentation: information on the size, shape and spatial 
arrangement of these objects is subsequently used to determine 
the nature of the land-use in different parts of the image. 
 
In this study kernel-based procedure was applied to resultant 
land-cover image created using the hierarchical approach. 
Following contextual rules were used during spatial 
reclassification : 
 
• Pixels labeled as urban due to the spectral similarities can be 

reclassified and labeled as coast if they share a border with 
the lake. 

• Agriculture and forest pixels can be reclassified as urban if 
they are surrounded by a user-defined number of urban 
pixels. 

• Urban/developed pixels can be reclassified as forest if they 
are surrounded by a user-defined rate of forest area. 

 
A 3 X 3 kernel was used to detect the urban pixels neighboring 
water as the first step of the spatial reclassification and 940 
coast pixels mislabeled as urban were detected. The thematic 
image was corrected and a new class was added to the 
classification scheme after these pixels were relabeled as 
“coast”.  
 
The second step of the spatial reclassification was to detect 
pixels labeled as any kind of forest or agricultural area in dense 
urban regions. A 5 X 5 kernel was used to find out forest or 
agricultural areas surrounded by urban pixels (Figure 9) because 
a 150 m. X 150m. area was found to be suitable for such a 
region which contains various land cover types with small 
parcel sizes. 

 
 

Figure 9. Spatial reclassification kernel 
 
The central forest (or agricultural) pixel was relabeled as urban 
if more than 14 of 24 neighboring pixels (almost 60 percent of 
the area) were labeled as urban. This threshold was found after 
comparing the thematic image and the orthophoto. 
 
Final 5 x 5 kernel was used to detect urban pixels within 
forested area but a negligible amount of pixels satisfied the 
criteria to relabel as forest. 
 
 

4. ACCURACY ASSESSMENT 
 
A number of randomly selected 265 reference points measured 
in the field survey were used in the accuracy assessment of the 
classification. The class values of the reference points were 
assigned during the field survey, except for the water class.  The 
overall accuracy of the proposed hierarchical and maximum 
likelihood classifications were found to be 91.32% and 47.55% 
respectively. In order to compare different classification 
methods namely Hierarchical and Maximum Likelihood 
Classification techniques, Kappa coefficient of agreement as an 
accuracy measure for remote sensing classification is used. 
 
As it is given in Table 2, Kappa coefficients are obtained as 
0.94 for Hierarchical Classification and 0.37 for Maximum 
Likelihood Classification. This implies that the accuracy of the 
Hierarchical Classification, 91.32 percent, and the accuracy of 
the supervised classification, 47.55 percent, are better than the 
accuracy that would result from a random assignment. This 
result indicates the Hierarchical Classification is better than 
supervised classification in identifying the forestry areas from 
Landsat image. 
 

Hierarchical 

Classification 

Supervised 

Classification 
Classes 

Accuracy 

(%) 
Kappa 

Accuracy 

(%) 
Kappa 

Water 
100.00 1.0000 70.59 0.6919 

Coniferous 95.60 0.8430 30.77 0.8985 

Deciduous 97.06 0.9044 94.12 0.9325 

Agricultural 90.24 0.9132 82.93 0.2902 

Grass 77.36 0.8619 16.98 0.0959 

Urban 90.91 1.0000 90.91 0.4103 

Roads 94.74 1.0000 5.26 0.2818 

Coast 100.00 1.0000 0.00 0.0000 

OVERALL 
RESULT 

91.32 0.9403 47.55 0.3700 

 
Table 2. Overall classification results 



The hierarchical classification method was more successful in 
detecting agricultural, grass and urban areas. Except for the road 
pixels which were extracted using vector coverage, the 
superiority of hierarchical approach has been proved, since the 
area was sub-divided into spectrally homogeneous region, 
minimizing the risk of spectral confusion among classes. 
 
 

5. CONCLUSIONS 
 
Compared to the traditional multispectral classification 
methods, the knowledge-based hierarchical classification did 
improve the classification results. The water was found to be the 
unique class, generated by both techniques, with similar 
thematic output. All other classes involved some confusion due 
to the spectral similarities (i.e., agricultural areas and urban, 
roads and urban). No class with “coast” label was generated 
with the maximum likelihood classification method because it 
was created by spatial reclassification step of the hierarchical 
method. Coastal regions were not included in the starting 
classification scheme because high risk of confusion between 
actual shore and urban and/or road pixels which would cause 
some inland urban pixels to be labeled as coast and affect 
resultant accuracy. Maximum likelihood classification detected 
one fourth of the coniferous area, which are detected by 
hierarchical classification.  
 
The results showed the proposed hierarchical classification 
approach is promising and has several advantages in 
comparison to standard approaches: 
• The domain spectral knowledge and other spectral 

knowledge obtained from training data are provided in an 
easily modified and understandable rules. 

• Computationally expensive operations can be avoided by 
restricting the channels involved in the classification 
procedure. Although the dimensionality was increased in the 
beginning of the approach, only those with the least 
correlation and which would best define the target classes 
were used in the rules.  

• Integration of spatial characteristics of features with the 
classification procedure helps to increase the understanding 
of some classes confusable with others. 

• It is flexible when applying to geographically different areas. 
Higher level, more general categories in the hierarchy would 
remain constant across different types of terrain; only the 
lower level nodes would be variable from one type of region 
to another. 

 
The disadvantage of the proposed hierarchical classification 
approach is the requirement of the reliable training data. The 
rules are extracted using the statistical information of the 
training data so these statistics should be carefully examined 
since gathering enough training statistics to adequate account in 
order to be used as rules, is a difficult task. 
 
Although the classification technique presented in this study 
generally worked well, there is potential for improvement and 
refinement:  
• Additional ancillary data like detailed land use and land 

cover maps would not only decrease omission and 
commission errors for the forest cover type classifications, 
but also increase the levels of classification, like classifying 
the types of trees in the forest areas  

• Multitemporal TM image of the study area, if combined with 
additional channels like band ratios and transforms, would 
help generating more reliable rules for hierarchical 
classification method. 

• More spatial rules should be generated. Most of the 
frequently used spatial rules can be collected and 
transformed into computer-accessible format. 
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