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ABSTRACT: 
The most commonly used topographic vector data, the core data of a geographic information system (GIS) are currently two-
dimensional. The topography is modelled by different objects which are represented by single points, lines and areas with additional 
attributes containing information, for example on function and size of the object. In contrast, a digital terrain model (DTM) in most 
cases is a 2.5D representation of the earth’s surface. The integration of the two data sets leads to an augmentation of the dimension 
of the topographic objects. However, inconsistencies between the data may cause a semantically incorrect result of the integration 
process. 
This paper presents an approach for a semantically correct integration of a DTM and 2D GIS vector data. The algorithm is based on 
a constrained Delaunay triangulation. The DTM and the bounding polygons of the topographic objects are first integrated without 
considering the semantics of the objects. Then, those objects which contain implicit height information are further utilized: object 
representations are formulated and the semantics of the objects is considered within an optimization process using equality and 
inequality constraints. The algorithm is based on an inequality constrained least squares adjustment formulated as the linear 
complementary problem (LCP). The algorithm results in a semantically correct integrated 2.5D GIS data set. 
First results are presented using simulated and real data. Lakes represented by horizontal planes with increasing terrain outside the 
lake and roads which are composed of several tilted planes were investigated. The algorithm shows first satisfying results: the 
constraints are fulfilled and the visualization of the integrated data set corresponds to the human view of the topography. 
 

1. INTRODUCTION 

1.1 

1.2 

Motivation 

The most commonly used topographic vector data, the core data 
of a geographic information system (GIS) are currently two-
dimensional. The topography is modelled by different objects 
which are represented by single points, lines and areas with 
additional attributes containing information, for example on 
function and size of the object. In contrast, a digital terrain 
model (DTM) in most cases is a 2.5D representation of the 
earth’s surface. The integration of the two data sets leads to an 
augmentation of the dimension of the topographic objects. 
However, inconsistencies between the data may cause a 
semantically incorrect result of the integration process. 
Inconsistencies may be caused by different object modelling 
and different surveying and production methods. For instance, 
vector data sets often contain roads modelled as lines or 
polylines. The attributes contain information on road width, 
road type etc. If the road is located on a slope, the 
corresponding part of the DTM often is not modelled correctly. 
When integrating these data sets, the slope perpendicular to the 
driving direction is identical to the slope of the DTM which 
does not correspond to the real slope of the road. Another 
reason for inconsistencies is the fact, that data are often 
produced independently. The DTM may be generated by using 
lidar or aerial photogrammetry. Topographic vector data may 
be based on digitized topographic maps or orthophotos. These 
different methods may cause inconsistencies, too. 
Many applications benefit from semantically correct integrated 
data sets. For instance, good visualizations of 3D models of the 
topography need correct data and are important for flood 
simulations and risk management. A semantically correct 
integrated data set can also be used to produce correct 
orthophotos in areas with non-modelled bridges within the 

DTM. Furthermore, the semantically correct integration may 
show discrepancies between the data and thus allow to draw 
conclusions on the quality of the DTM. 
 

Related work 

The integration of a DTM and 2D GIS data is an issue that has 
been tackled for more than ten years. Weibel (1993), Fritsch & 
Pfannenstein (1992) and Fritsch (1991) establish different forms 
of DTM integration: In case of height attributing each point of 
the 2D GIS data set contains an attribute “point height”. By 
using interfaces it is possible to interact between the DTM 
program and the GIS system. Either the two systems are 
independent or DTM methods are introduced into the user 
interface of the GIS. The total integration or full database 
integration comprises a common data management within a 
data base. The terrain data often is stored in the data base in 
form of a triangular irregular network (TIN) whose vertices 
contain X,Y and Z coordinates. The DTM is not merged with 
the data of the GIS. The merging process, i.e. the introduction 
of the 2D geometry into the TIN, has been investigated later by 
several authors (Lenk 2001; Klötzer 1997; Pilouk 1996). The 
approaches differ in the sequence of introducing the 2D 
geometry, the amount of change of the terrain morphology and 
the number of vertices after the integration process. Among 
others, Lenk and Klötzer argue that the shape of the integrated 
TIN should be identical to the shape of the initial DTM TIN. 
Lenk developed an approach for the incremental insertion of 
object points and their connections into the initial DTM TIN. 
The sequence of insertion is object point, object line, object 
point etc. The intersection points between the object line and 
the TIN edges (Steiner points) are considered as new points of 
the integrated data set. Klötzer, on the other hand, first 
introduces all object points, then carries out a new preliminary 
triangulation. Subsequently, he introduces the object lines, 
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determines the Steiner points, adds both to the data set. Since 
the Delaunay criterion is re-established in the preliminary 
triangulation, the shape of the integrated TIN may deviate 
somewhat from the one of the initial DTM. The methods have 
in common, that inconsistencies between the data are neglected 
and thus may lead to semantically incorrect results. Rousseaux 
& Bonin (2003) focus on the integration of 2D linear data such 
as roads, dikes and embankments. The linear objects are 
transformed into 2.5D surfaces by using attributes of the GIS 
data base and the height information of the DTM. Slopes and 
regularization constraints are used to check semantic 
correctness of the objects. However, in case of incorrect results 
the correctness is not established. A new DTM is computed 
using the original DTM heights and the 2.5D objects of the GIS 
data. 
 

2. SEMANTIC CORRECTNESS 

2.1 

2.2 

Consequences of non-semantic integration 

In our investigations a digital terrain model (DTM) is 
represented by a triangular irregular network (TIN). Bridges, 
vertical walls and hang overs are not modelled correctly 
because it is a 2.5D representation. The topographic vector data 
we consider are two-dimensional. The topography is modelled 
by different objects which are represented by single points, 
lines and areas. The integration of the data sets leads to an 
augmentation of the dimension of the topographic objects. 
 
Figure 1 shows two examples of the non-semantic integration of 
a DTM and 2D topographic vector data. The height values of 
the lakes do not show a constant height level (left side of Figure 
1). Several heights of the lakes near the bank are higher than the 
mean lake heights. 
At the right side of Figure 1 the roads are not modelled 
correctly in the corresponding part of the DTM. The slopes 
perpendicular to the driving direction are identical to the mean 
slope of the corresponding part of the DTM. There are no 
breaklines on the left and the right borders of the roads. Also, 
some neighbouring triangles of the DTM TIN show rather 
different orientations. 
 

Correct integration 

If we divide the topography into different topographic objects 
(road, river, lake, building, etc.), like the data of a GIS, there 
are several objects which have a direct relation to the third 
dimension. These objects contain implicit height information: 
For example, a lake can be described as a horizontal plane with 
increasing terrain at the bank outside the lake. To give another 
example, roads are usually non-horizontal objects. We certainly 
do not know the mathematical function representing the road 
surface, but we know from experience and from road 
construction manuals that roads do not exceed maximum slope 

and curvature values in road direction. Also, the slope 
perpendicular to the driving direction is limited. 
Of course, all other objects are related to the third dimension, 
too. But it is difficult and often impossible to define general 
characteristics of their three-dimensional shape. For example, 
an agricultural field can be very hilly. But it is not possible in 
general to define maximum slope and curvature values because 
these values vary from area to area. 
The objects containing implicit height information which need 
to be considered for the semantically correct integration can be 
divided into three different classes (see Table 1). The first class 
contains objects which can be represented by a horizontal plane. 
The second class describes objects which are composed of 
several tilted planes. The extent of the planes depends on the 
curvature of the terrain; the planes should be able to adequately 
approximate the corresponding part of the original DTM. The 
last class shown in Table 1 describes objects which have a 
certain relation to other objects. Bridges, undercrossings and 
crossovers contain a certain height relation to the terrain or 
water above or beneath. 
 

Object Representation 
Sports field, race track, 
runway, dock, canal, lake, 
pool 

Horizontal plane 

Road, path, railway, 
tramway, river 

Tilted planes 

Bridge, undercrossing, 
crossover 

Height relation 

 
Table 1: Some topographic objects and their representation in 

the corresponding part of the terrain 
 
To integrate a DTM and a 2D topographic GIS data set in a 
semantically correct sense, the implicit height information of 
the mentioned topographic objects has to be considered. That 
means, after the integration process the integrated data set must 
be consistent with the human view of the topography and the 
height representations as shown in Table 1 have to be 
represented correctly. 
 

3. AN ALGORITHM FOR THE SEMANTICALLY 
CORRECT INTEGRATION 

The aim of the integration is a consistent data set with respect to 
the underlying data model taking care of the semantics of the 
topographic objects. 
Topographic objects which are modelled by lines but which 
have a certain width, are first buffered. The buffer width is 
taken from the attribute “width” if available, otherwise a default 
value is used. Thus, the lines are transformed into elongated 
areas, the borders of which are further considered. The next step 
of the algorithm is a non-semantic integration of the data sets. 

 
Figure 1: Results of the integration of a DTM and a 2D vector data set without considering the semantics of the topographic objects, 

left: lakes, right: road network 



It is based on a constrained Delaunay triangulation using all 
points of the DTM (mass points and structure elements) and the 
polygons of the topographic objects of the 2D GIS data (section 
3.1). The linear structure elements from the DTM and the object 
borders are introduced as edges of the triangulation, the result is 
an integrated DTM TIN. 
Then, certain constraints are formulated and are taken care of in 
an optimization process (section 3.2). In this way, the 
topographic objects of the integrated data set are made to fulfill 
predefined conditions related to their semantics. The constraints 
are expressed in terms of mathematical equations and 
inequations. The algorithm results in improved height values 
and in a semantically correct integrated 2.5D topographic data 
set. 
A basic assumption of our approach is that the general terrain 
morphology as reflected in the DTM is correct and has to be 
preserved also in the neighbourhood of objects carrying implicit 
height information. Therefore, any changes must be as small as 
possible. A second assumption is that inconsistencies between 
the DTM and the topographic objects stem from inaccurate 
DTM heights and not from planimetric errors of the topographic 
objects. 
 
3.1 Non-semantic data integration 

As mentioned in section 1.2 there are several approaches for the 
integration of a DTM and 2D topographic GIS data based on a 
TIN. Because Lenk’s approach has some advantages, we use a 
variant of his algorithm. First, a DTM TIN is created using the 
DTM mass points and the structure elements in a constrained 
Delaunay triangulation. Second, the heights for the topographic 
objects are derived using the height information of the TIN by 
interpolating a height value for each object point. Next, the 
points of the polygons representing the topographic objects are 
introduced into the TIN by re-triangulating the neighbourhood 
of the objects. Here, the Delaunay criterion is not re-
established. Then, the object lines are considered as constraints. 
This is done in such a way, that the intersection points between 
the object polygons and the edges of the DTM TIN (Steiner 
points) are introduced as new points. The edges of the DTM 
TIN and the lines of the object polygon are split. 
 

  
 
Figure 2: Integration of a DTM and an object “lake”, a) original 

DTM TIN and object “lake”, b) integrated data set 
 
Figure 2 shows an example of the integration of a DTM and an 
object “lake” of a 2D GIS data set. The original points of the 
bounding polygon of the lake are shown in light blue. After the 
integration, the intersection points between the DTM TIN and 
the object polygon are new points of the integrated data set 
(Figure 2b, coloured by black). 
Another example is given in Figure 3. A road is an object 
modelled by lines (Figure 3a, black line) which is buffered 
using an attribute “road width”. First, all intersection points 
between the middle axis and the DTM TIN are estimated 

(Figure 3a, light grey points of the centre axis). This is done 
because every triangle has a different inclination and the middle 
axis should be best fitted to the terrain represented by the initial 
DTM TIN. After buffering the left and right side of the road 
contain as much points as the centre axis. Then, the object is 
triangulated in such a way that the cross sections situated at the 
points of the road centre axis border the triangles of the object 
TIN. Thus, it is garanteed that for a profile a change in slope is 
allowed. The bordering polygon is then introduced using the 
variant of Lenk’s algorithm (Figure 3b). 
 

  
 
Figure 3: Integration of a DTM and an object “road“, a) original 

DTM TIN and object “road“ after buffering, b) 
integrated data set 

 
3.2 

3.2.1 

Optimization process 

As mentioned, there are topographic objects of the 2D GIS data 
which contain implicit height information. Within the integrated 
data set these objects have to fulfill certain constraints which 
can be expressed in terms of mathematical equations and 
inequations. To fulfill these constraints or to achieve semantic 
correctness, the heights of the DTM are changed. Up to now the 
horizontal coordinates of the polygons of the topographic 
objects are introduced as error-free. 
The heights of the topographic objects are estimated within an 
optimization process which is based on a least squares 
adjustment; these values are unknown parameters. The heights 
of the corresponding part of the DTM are introduced as direct 
observations for the unknown heights at the same planimetric 
position. Equality constraints are introduced using pseudo 
observations. Thus, a Gauss-Markov adjustment model is used 
and the adherence to the constraints is controlled via weights 
for the pseudo observations. Furthermore, inequality constraints 
are introduced. The resulting inequality constraint least squares 
adjustment is solved using the linear complementary problem 
(LCP) (Lawson & Hanson 1995; Heipke 1986; Fritsch 1985; 
Schaffrin 1981). 
 

Basic observation equations: The heights which 
correspond to the topographic objects of the 2D GIS data and 
the heights of the neighbouring terrain are introduced as: 
 
  (1) iii ZZv −=+ ˆˆ0
 
The height Zi refers to the original height, the value  denotes 
the unknown height which has to be estimated. 

iẐ

 
In order to be able to preserve the slope of an edge connecting 
two neighbouring points Pj and Pk of the DTM TIN (one of the 
two points is part of the polygon describing the object, the other 
one is a neighbouring point outside the object) and thus to 
control the general shape of the integrated TIN additional 
observation equations are formulated: 



  (2) kjjkkj ZZvZZ ˆˆˆ −=+−

 
3.2.2 Equality and inequality constraints: Each class of 
object representation (see Table 1) has its own constraints 
which will be derived in the following. 
 
Horizontal plane: Heights of objects which represent a 
horizontal plane must be identical. This means, that points Pl 
with a height Zl and planimetric coordinates Xl,Yl situated inside 
the object boundary (see Figure 4a, black points) must all have 
the same value  which has to be estimated in the 
optimization process. These height values lead to the following 
observation equation: 

HPẐ

 
  (3) lHPl ZZv −=+ ˆˆ0
 
Additionally, the heights of the bounding polygon points of the 
topographic objects must be identical to the height of the 
horizontal plane. The height difference between the unknown 
object height and the calculated height is used to formulate an 
additional pseudo observation (see Figure 4a, dark grey points): 
 
 ( )wvummmHPm ZZZYXZZv ,,,,ˆˆ0 −=+  (4) 
 

  
 
Figure 4: Equality and inequality constraints of an object “lake” 
 
The neighbouring terrain of the horizontal plane is considered 
using the basic observations (1) and (2) (see section 3.2.1). If 
the object represents a lake it is necessary to use a further 
constraint which represents the relation between the lake in 
terms of a horizontal plane and the bank of the lake whose 
unknown height values  have to be higher than the height 
level of the lake: 

iẐ

 
  (5) iHP ZZ ˆˆ0 −> av0 +=
 
It is set up for all points marked in black in Figure 4b. 
 
Tilted planes: The objects treated in this paper which can be 
composed of serveral tilted planes are elongated objects. In 
longitudinal direction these objects are not allowed to exceed a 
predefined maximum slope value sMax: 
 

 
no

on
Max D

ZZs
ˆˆ −

≥  (6) 

 
The example in Figure 5 shows a road which is modelled by 
lines and then buffered using the attribute “road width” of the 
GIS data base. Here,  and  are the unknown height values 

of successive points P

nẐ oẐ

n and Po in driving direction of the road 
(Figure 5a). Dno is the horizontal distance between these points. 
 

  
 
Figure 5: Equation and inequation constraints of an object 

“road” 
 
In addition, the difference between two successive slope values 
which is comparable to the vertical curvature of the object is 
restricted to the maximum value dsMax (Figure 5a): 
 

 
op

po

no

on
Max D

ZZ
D

ZZds
ˆˆˆˆ −

−
−

≥  (7) 

 
In case of a road, the points Pn, Po and Pp are successive points 
of the middle axis of the object. 
Assuming a horizontal road profile in the direction 
perpendicular to the middle axis the height values of 
corresponding points must be identical: 
 
  (8) qnnq ZZv ˆˆˆ0 −=+

 
The values  and  represent point heights of the centre 
axis and the left or the centre axis and the right side of the 
buffered object (Figure 5b). These constraints are introduced for 
all cross sections whose centre point results from the 
intersection between the DTM TIN and the object centre axis 
(Steiner points). Those cross sections whose centre points are 
original points of the object middle axis are not used to form 
this kind of constraint because in the original points the road 
may show a change in horizontal direction and slope (Figure 
5b, profile p

nẐ qẐ

2). Consequently the cross section is not horizontal. 
 
Finally, the points of any two neighbouring cross sections and 
the points in between have to represent a plane: 
 
  (9) rrrr ZYaXa ˆˆˆˆˆ 210 −++
 
In Figure 5b the points of the neighbouring profiles p3 and p4 as 
well as the red point in between represent a point Pr of equation 
(9). These points have to represent a plane with the unknown 
coefficients . X210 ˆ,ˆ,ˆ aaa

r

r,Yr are the planimetric coordinates of 

point Pr,  is the height of PẐ r which has to be estimated. A 
special case is the treatment of the points of a cross section 
involving an original object point of the 2D road centre axis. As 
an example let’s consider the profile p2 of Figure 5b. Equation 
(9) is set up twice, once for the horizontal profile p1 and the 
centre point of profile p2 (and any point in between), and again 
for the horizontal profile p3 and the centre point of profile p2 
(and any point in between). After the optimization process the 
intersection line of the two neighbouring planes can be 



calculated. This straight line represents the non-horizontal 
profile p2. 
 
3.2.3 

4.1 

4.2 

Inequality constrained least squares adjustment: 
The basic observation equations (section 3.2.1) and the equation 
and inequation constraints (section 3.2.2) have to be introduced 
in the optimization process which is based on an inequality 
constrained least squares adjustment. The stochastic model of 
the observations (basic observations and equation constraints) 
consists of the covariance matrix which can be transformed into 
the weight matrix. Assuming that the observations are 
stochastically independent, the diagonal of the weight matrix 
contains the reciprocal accuracies of the observations. To fulfill 
the equation constraints the corresponding pseudo observation 
has to have a very high accuracy and the corresponding 
diagonal element of the weight matrix has to be large. The 
possibility to solve the optimization process, i.e. the semantic 
correctness of the resulting integrated data set depends on the 
choice of the individual weights. The algorithm is formulated as 
the linear complementary problem (LCP) which is solved using 
the Lemke algorithm (Lemke, 1968). For more details see Koch 
(2003), the LCP is explained in detail in Lawson & Hanson; 
1995; Heipke, 1986; Fritsch, 1985 and Schaffrin, 1981. 
 

4. RESULTS 

The results presented here were determined using simulated and 
real data sets. Two different objects were used - a lake which 
can be represented by a horizontal plane and a road which can 
be composed of several tilted planes. The simulated data consist 
of a DTM with about 100 height values containing one 
topographic object. The heights are approximately distributed in 
a regular grid with a grid size of about 25 meters. 
The real data consist of the DTM ATKIS DGM5, a hybrid data 
set containing regularly distributed points with a grid size of 
12,5 m and additional structure elements. The 2D topographic 
vector data are objects of the German ATKIS Basis-DLM. 
Three different lakes were used bordered by polygons. The 
objects are shown on the left side of Figure 1. 
 

Simulated data 

In case of a lake, the basic observation equations (1) and (2), 
the equation constraints (3), (4) and the inequation constraint 
(5) are used. The unknown lake height is identical to the mean 
value of the heights inside the lake. This is true if the 
neighbouring heights outside the lake are higher than the mean 
height value, i.e. if the inequation constraints (5) are fulfilled 
before the optimization begins. It is also true if neighbouring 
heights outside the lake are somewhat lower than the mean 
height value and equation (3) has a very high weight. Here, 
equation (3) was given a weight of 106 times higher than all 
other observations. Equation (4) had a rather low weight 
because the heights are not original heights of the DTM. 
After the optimization process the equation and inequation 
constraints are fulfilled, and thus the neighbouring heights 
outside the lake are higher than the estimated lake height. All 
heights inside the lake and at the waterline have the same height 
level; the integrated data set is consistent with the human view 
of a lake. 
If some heights outside the lake are too low and the heights of 
the bank have a high weight, the lake height is pushed down. 
Then, the heights outside are nearly unchanged, consistency is 
again achieved. 
 

The second simulated data set represents a road with five initial 
polyline points. The maximum height difference is 6 m, the 
road length is 160 m and the width is 4 m. 
The investigations were carried out by using different weights 
for the basic observation equations (1), (2) and the equality 
constraints (8), (9). Furthermore, the inequation constraints (6) 
and (7) were used. Equation (1) was considered for all points of 
the bordering polygon, the points of the centre axis and the 
points outside the object which are connected to the polygon 
points. Equation (2) represents the connections to the 
neighbouring terrain. Using the same weight for all 
observations results in a road with non-horizontal cross sections 
and differences to the tilted planes. After the optimization 
process the inequation constraints are fulfilled and the 
maximum differences between the initial DTM heights and the 
heights of the integrated data set are in an order of half a meter. 
Using higher weights (106 times higher than other weights) for 
the basic equation (2) and the equation constraints (8) and (9) 
leads to horizontal cross sections and nearly no differences to 
the tilted planes. The maximum differences between the initial 
DTM heights and the heights of the integrated data set are 
somewhat bigger than the differences before. 
If just the equation constraints (8) and (9) have a high weight, 
the equation and inequation constraints are fulfilled exactly. 
However, compared to the results before, the terrain 
morphology has changed considerably. 
The results show, that a compromise has to be found between 
fulfilling the equation constraints and changing the terrain 
morphology. Using a higher weight of 106 leads to fixed 
observations, i.e. the equation constraints are fulfilled exactly. 
But, the terrain morphology is not the same as before. 
 

Real data 

The real data sets representing lakes consists of three ATKIS 
Basis-DLM objects with 294 planimetric polygon points. The 
DTM contains 1.961 grid points with additional 1.047 points 
representing structure elements (break lines). The semantically 
correct integration was carried out by using the same equations 
as in the simulations and high weights for the equation 
constraints (3) and for the basic observation equation (1) (106 
times higher than other weights). 
The number of basic observations and equation constraints is 
2.754; 533 parameters had to be estimated and the number of 
inequation constraints is 530. The results show, that all 
constraints were fulfilled after applying the optimization. The 
differences between the estimated lake heights and the initial 
mean height values are very small. The first mean height value 
is reduced by 2 mm and the second one by 4 mm. The third lake 
is 3,7 cm lower than the original mean height value which is 
caused by a higher number of heights at the bank which did not 
fulfill the inequation constraint (5). 
 

 
 
Figure 6: Residuals after the optimization process, blue: terrain 

is pushed down, red: terrain is pushed up 
 
Figure 6 shows the residuals after the optimization process. The 
blue vectors correspond to adjusted height values which are 



lower than the original heights. Red coloured vectors refer to 
heights which became higher. The figure shows that most of the 
heights inside the lakes became higher. Most of the points 
which became lower are situated at the border of the lakes. 
Nevertheless, a big part of the differences of the left lake 
became lower, too. Here, one of the data sets seems to be coarse 
erroneous. The maximum differences between the original 
heights and the estimated heights are -1,84 m and +0,88 m, 
respectively. The right side of Figure 7 shows the result of the 
semantically correct integration with respect of the results 
without considering the semantics of the lakes (Figure 7, left). 
The semantically correct integrated data set shows that all 
constraints are fulfilled. The height values inside the lake and at 
the water line have the same level. The terrain outside the lake 
rises. Summarized, it could be stated that most of the residuals 
are rather small in respect of the vertical accuracy of the DTM 
of half a meter. The estimated lake heights are nearly identical 
to the mean values of the heights inside the lakes, the 
constraints are fulfilled exactly. 
 

5. OUTLOOK 

This paper presents an approach for the semantically correct 
integration of a DTM and 2D topographic GIS data. The 
algorithm is based on a constrained Delaunay triangulation and 
a least squares adjustment taken into account inequality 
constraints. 
First investigations were carried out using simulated and real 
data sets. The objects used are lakes represented by a horizontal 
plane with increasing terrain outside the lake and roads which 
can be composed of several tilted planes. The results which are 
based on the use of different weights for the basic equations and 
equation constraints are satisfying. All predefined constraints 
can be fulfilled but a compromise between fulfilling these 
constraints and changing the terrain morphology has to be 
found. 
In the future the impact of blunders has to be investigated 
because height blunders or big differences to the equality and 
inequality constraints may cause a non-realistic change of the 
original height information of the DTM. 
Furthermore, the planimetric coordinates of the topographic 
objects were introduced as error-free. This may cause a 
erroneous height level of the topographic objects. Also the 
horizontal accuracy of the GIS objects has to be considered. 
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Figure 7: Results of the integration process, left: non-semantic integration, right: semantically correct integration 
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