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ABSTRACT 
Fusion of close range photogrammery and the relatively new technology of terrestrial laser scanning methods offer new opportunities 
for photorealistic 3D models presentation, classification of real world objects and virtual reality creation (fly through). Laser 
scanning technology could be seen as a complement to close-range photogrammetry. For instance, terrestrial laser scanners (TLS) 
have the ability to rapidly collect high-resolution 3D surface information of an object.  The same type of data could be generated 
using close range photogrammetric (CRP) techniques, but image disparities common to close range scenes makes this an operator 
intensive task. The imaging systems of some TLSs do not have very high radiometric resolution whereas high-resolution digital 
cameras used in modern CRP do.  Finally, TLSs are essentially Earth-bound whereas cameras can be moved at will around the object 
being imaged.  This paper presents the result of an initial study into the fusion of terrestrial laser scanner generated 3D data and high-
resolution digital images.  Three approaches for their fusion have been investigated - data fusion which integrates data from the 
sensors to create synthetic perspective imagery; image fusion (synthetic perspective imagery and the intensity images); and model-
based image fusion (2D intensity image and the 3D geometric model). Image registration, which includes feature detection and 
feature correspondence matching, is performed prior to fusion, to determine the relative rotation and translation of the digital camera 
relative to the laser scanner. To overcome the differences in datasets, a feature and area based matching algorithm was successfully 
developed and implemented. Some results of measurements on interest points and correspondence matching are presented. 
The result of the initial study shows that most promise is offered by model-based approaches.  
                
 
 
1. INTRODUCTION 

Of recent, close range photogrammery (CRP) and the relatively 
new technology of terrestrial 3D laser scanning (TLS) are used 
to automatically, accurately, reliably, and completely measure 
or map, in three-dimensions, objects, sites, or scenes. Terres-
trial 3D laser scanner has the ability to rapidly collect high-
resolution 3D surface information of an object or scene. The 
available scanning systems extend to all objects types, almost 
regardless of the scale and complexity (Barber et al, 2001). The 
same type of data could be generated using close range photo-
grammetric (CRP) techniques, but image disparities common to 
close range scenes makes this an operator intensive task. The 
imaging systems of some TLSs do not have very high radiomet-
ric resolution whereas high-resolution digital cameras used in 
modern CRP do. Also, TLSs are essentially Earth-bound 
whereas cameras can be moved at will around the object being 
imaged. It is intuitive then to consider the fusion of data from 
the two sensors to represent the objects and scenes, and to cre-
ate models that are more complete, and thus easier to interpret, 
than a model created from the 3D point cloud data alone (El-
strom et al, 1998). This fusion, which is not application spe-
cific, can be useful in:  texture-mapping the point cloud to cre-
ate photo-realistic 3D models which are essential for variety of 
applications (such as 3D city models, virtual tourist informa-
tion as well as visualization purposes); extraction of reference 
targets for registration and calibration purposes ( El-Hakim and 
Beraldin, 1994); automation of 3D measurement (automatic ex-
terior orientation); 3D reconstruction; and if the data  is geo-
referenced, it can be readily incorporated into existing GIS ap-
plications. 

Fusing data taken from two different sensors requires that the 
multisensor data have to be correctly registered or relatively 
aligned and this paper therefore describes an approach to fuse 

high-resolution perspective 2D imagery and high-resolution 3D 
point cloud data. Our setup uses 3D point cloud data from 3D 
laser scanner and 2D intensity image from an independent CCD 
camera. These equipment provide independent datasets (ge-
ometry and intensity) and beg the question as to how can we 
accurately express these complementary datasets in a single ob-
ject centred coordinate system. Also, matching features be-
tween an intensity image and the geometry automatically in 
such a multi-sensor environment is not trivial task (Pulli and 
Shapiro, 2000). It can be close to impossible due to the fact that 
the datasets are independent, dissimilar (Boughorbal et al, 
2002), which differ in resolution, field of view, and scale. 

This paper focuses on three distinct approaches to the multisen-
sor fusion task. The first one is data fusion which integrates 
data from the two sensors (3D point cloud data and 2D inten-
sity image). The advantage is that the existing traditional image 
processing algorithms can operate on this generated synthetic 
image. Also, to register this image to intensity image is much 
easier task that registering the 2D image into the 3D point 
clouds directly. The second one, on the other hand, is image fu-
sion which involves feature detection and feature correspon-
dence matching between the generated synthetic image and the 
intensity image acquired with digital camera. The third one 
which is the model-based image fusion is to relate each pixel in 
the 2D intensity image data to its corresponding sampled 3D 
point on the object surface. The task is to determine the rela-
tionship the coordinate systems of the image and the object. 
The result of this procedure is that the intensity image and the 
geometric model are positioned and oriented in the same coor-
dinate systems.  

In section 2 of this paper, the data multisensor data fusion 
methodology and integration models are discussed. Section 3 
deals with the multisensor image matching procedure. Section 
4 describes the mode-based image fusion. The results are dis-



 
 

cussed in section 5 and conclusions and discussions of future 
works are outlined in section 6.  

 
2. MULTI-SENSOR DATA FUSION 

Multi-sensor data fusion refers to, in our context, the 
techniques for the combination of datasets from the 3D point 
cloud data and the 2D image (i.e. intrinsic parameter of the 
CCD camera) to create a new dataset. The input to this process 
is 3D data from 3D laser scanner, the 2D intensity image from 
independent CCD camera, and the intrinsic camera parameters. 
These sensors are not calibrated. Detailed description of the 
coordinate systems of the 2D and the 3D sensors, data capture 
and processing is available in Forkuo and King (2004).    
 
2.1.1 3D Point Cloud  
 
Cyrax 2500 Laser Scanner was used to carry out the laser scan-
ning to acquire a discrete representation of the object. More de-
scription of the laser scanner used in this experiment can be 
found in (Forkuo and King, 2004; CYRA, 2004). Figure 1 
shows a screen capture of pseudo-colored 3D point cloud data 
of the test area. The 3D point cloud allows for the construction 
of a 3D surface Model of the scene. The resolution of the scan, 
which controls the number of points recorded in a scene and 
the level of detail visible in a scan (Barber and Bryan, 2001), is 
simply the smallest change in distance that the scanner is capa-
ble of detecting.  

 
Figure 1 A screen capture of Pseudo-colored 3D point cloud  
 
2.1.2 2D Intensity Images 
 
A series of images were taken at different direction and 
position (as depicted in figure 2.2) by the digital CCD camera 
(Nikon D1x), which produces an image of at the size of 
23.7mm x 15.6mm width. These images are called real camera 
images (RCI) and one of these images is represented in figure 
2. This camera provides a digital image with the resolution of 
3008 by 1960 pixels at true color mode.  
 
2.2 Backprojection of Laser Scanning Data 

Multi-sensor mathematical model is a physical model that de-
scribes the integration of 3D laser range camera and the CCD 
camera (Forkuo and King, 2004). We use the photogrammetric 
principles of collinearity condition with no systematic correc-
tion parameters as the basis for the implementation of the trans-
formation of 3D point cloud data to suitable 2D shape informa-
tion. For details on the collinearity model and the subsequent 
steps in fusing the dataset, see Forkuo and King (2004). 

                            
     Figure 2 Real Camera Image (RCI) 

                      
2.3 The Synthetic Camera Image 

This task is to represent the results of the collinearity equation 
(discrete x, y) points as image, which could be used in the im-
age-to-image registration task discussed in section 3. A more 
detailed description can be found in Forkuo and King (2004). . 
By way of definition, interpolating the backprojected laser 
point (which contains irregular point spacing) into a regular 
grid at an even spacing using the intensity values generates 
what is termed “the Synthetic Camera Image” (SCI). There are 
two options related to this interpolation. First option is to gen-
erate the SCI by keeping the original resolution of the point 
cloud data and the compute a new pixel size. The second op-
tion, on the other hand, is to keep the pixel size of the real 
camera image and then compute the number of pixels or the 
resolution. In this paper, this option is used to generate the SCI. 
The interpolated data was then modeled by f (x, y) = I, where 
(x, y) is the pixel position and the I , the corresponding inten-
sity value which is mapped to a grayscale. Conventional image 
processing techniques such contrast stretching and image en-
hancement were then used to produce the final image in figure 
3. It is obvious that the geometric features in the SCI are easier 
to detect than those in the laser range data. This image offers a 
major advantage to interactively (controlled by human opera-
tor) or automatically conjugate matching with the intensity im-
ages produced by digital camera.  

  
Figure 3. The generated Synthetic Camera Image 

 
 



 
 

3. MULTISENSOR IMAGE FUSION  

In many image processing applications it is necessary to com-
pare multiple images of the same scene acquired by different 
sensors or image taken by the same sensor but at different times 
or from different locations. This section describes the process 
of matching multi-source data of the same scene acquired from 
different viewpoints and by different. The purpose of multi-
sensor image matching in this paper is to establish the corre-
spondence between RCI and SCI, and to determine the geomet-
ric transformation that aligns one image with the other. Exist-
ing multi-sensor image matching techniques fall into two broad 
categories: manual image and automatic image matching the 
implementation and results of manual multi-sensor image 
matching, which includes, interior, relative and absolute orien-
tations using two different types of software for comparison 
purposes, has been discussed in Forkuo and King (2003). The 
manual measurement was necessary to understand the key is-
sues such as geometric quality, both spatial and geometric reso-
lutions of the generated synthetic camera image.  

 

3.1 Automatic Multisensor Image matching 

Once the 2D intensity image has been generated from the 3D 
point cloud, the location of corresponding feature in the Syn-
thetic Camera Image (SCI) and the Real Camera Image (RCI) is 
determined. The most difficult part of the automatic registration 
is essentially the correspondence matching: Given a point in 
one image, find the corresponding point in each of the other 
image(s). Although the automatic correspondence is not a prob-
lem for vertically oriented images, it is still a problem in the 
terrestrial case and it is even much complex in terrestrial multi-
sensor case. It can be observed that, since both image types are 
formed using similar mechanisms, the location of many objects 
are identifiable in each image. However, there are differences 
in illumination, perspective, reflectance as well as lack of ap-
propriate texture (Milian et al, 2002) between these images. 
Also, images from different sensors usually have their own in-
herent noise (Habib and Alruzouq, 2004). Furthermore, the 
automatic registration problem can be complicated, in our case, 
by differences in image resolution and scale, and low image 
quality (especially with the SCI).  One approach to automati-
cally overcome the correspondence problem is both area and 
feature based approach was used (Dias et al, 2002). The first 
step for correspondence matching or simply pairwise matching 
is the extraction of features, generally interest points from both 
images using Harris corner detector. Initial correspondence be-
tween these points is then established by correlating regions 
around the features. The similarity is then judged by the accu-
mulated development of corresponding interest points in the 
two images (Rothfeder et al, 2003). We have discussed the 
matching algorithm which consists of feature extraction process 
followed by the cross correlation matching in Forkuo and 
Bruce (2004). 

 
3.1.1 Automatic Feature Detection and Extraction 
 
The automatic registration problem requires finding features 
(edges, corners) in one image and correlates them in another. 
For this paper, Harris corner detector as proposed in Harris and 
Stephens (1988) is used detect and extract corners in both im-
ages. This operator has been widely used and it has been shown 
to be robust to viewpoint changes (i.e. image rotations and 
translations) and illumination changes (Dufournaud et al, 2004; 

Rothfeder et al, 2003). However, the Harris point detector is 
not invariant to changes in scale (Dufournaud et al, 2004. It 
uses a threshold on the number of corner extracted based on the 
image size. The number of corners detected in images is vari-
able (Rothfeder et al, 2003) and in figure 4, the two images are 
shown with the detected corners features. Once feature points 
are extracted from image pair, correspondence matching can be 
performed. 

 
3.1.2 Correspondence matching 
 
This section concentrates on determining corresponding 
between two sets of extracted interest points that were detected 
with Harris corner operator. To match these features 
automatically, the zero mean normalized cross correlation 
(ZNCC) measure, which is invariant to varying lighting 
conditions (Lhaullier and Quan, 2000) is used. This method 
uses a small window around each point to matched (this point 
becomes the center of a small window of gray level intensities), 
and this window (template) is compared with similarly sized 
regions (neighborhood) in the other image (Rothfeder et al, 
2003). In other words, the ZNCC method is based on the 
analysis of the gray level pattern around the detected point of 
interest and on the search for the most similar pattern in the 
successive image (Giachetti, 2000). Each comparison yields a 
score, a measure of similarity. The match is assigned to the 
corner with highest matching score (Smith et al, 1998).  
 
By selecting a suitable patch size (correlation window) and 
threshold for the matching process reduces the number of 
detection of false correspondence pairs. However, in our case, 
the number of mismatches (referred to as outliers) may be quite 
large (as can be observed in figure 5). This occurs in particular 
when some corners cannot be matched. Also, there are likely to 
be several candidates matches for some corners which are very 
similar (Smith et al, 1998). These correspondences are refined 
using a robust search procedure such as the RANdom SAmple 
Consensus (RANSAC) algorithm (Capel and Zisserman, 2003; 
Fischler and R. C. Bolles, 1981). This algorithm allows the 
user to define in advance the number of potential outliers 
through the selection of a threshold. The best solution is that 
which maximizes the number of points whose residuals are 
below a given threshold. Details can be found in   Fischler and 
R. C. Bolles (1981). Once outliers are removed, the set of 
points identified as inlers may be combined to give the final 
solution (RANSAC inliers) and the result is shown in figure 6. 
These inlying correspondences are used in the model-based 
image fusion.  
 
4. MODEL-BASED IMAGE FUSION 

In this context, model-based fusion is the process of establish-
ing a link between each pixel in the 2D intensity image data to 
its corresponding sampled 3D point on the object surface. The 
task is to determine the relationship the coordinate systems of 
the image and the object by photogrammetric process of exte-
rior orientation. The exterior orientation process is achieved in 
two steps. For the first step, we relate each matched pixel of the 
extracted feature in the SCI data to its corresponding 3D point 
from the point cloud data using interpolation constants. That is, 
the automatic link between the object coordinate system and 
the image coordinate system has been established. This means 
that the image coordinate, object coordinates and the returned 
laser intensity for the centre of each pixel are generated. 



 
 

 This 3D point is used as ground control point for the automatic 
exterior orientation solution.  In the second step, the matches 
between the RCI and SCL, and their corresponding object co-
ordinates are used for the exterior orientation computation with 
simultaneous bundle adjustment approach. This computation, 
which is control point-point-free method, has important appli-
cations in terrestrial photogrammetric engineering (Styliadis et 
all, 2003). Also, solving the camera positions and orientations, 
the RCI can be reprojected into the point cloud surface to pro-
duce the photorealistic model. 

 

5. RESULTS AND ANALYSIS 

Figure 4 shows the results of the several hundreds “interest 
points” detected (denoted with asterisks) automatically using 
the Harris feature detector. As can be observe on both images,  
most of the points of interest found in two images have corre-
spondences. The ZNCC has been implemented to match the 
corners in SCI, with the ones in RCI and the results of them are 
superimposed on the images (figure 5). The matches are shown 
by the line linking matched points to their position in the other 
images. The feature point selection found approximately 800 
points of interest and with the ZNCC measure, using a match-
ing patch size of (17 x 17) pixels, using integer pixel locations, 
and correlation threshold of 0.8, there were 300 correspon-
dences. As can be observed in figure 5, a relatively large num-
ber of mismatches occurred. These correspondences were re-
fined with RANSAC algorithm and out of the 300 
correspondences, about 160 points were discovered as inliers. 
As can be seen in figure 6, there are large number good corre-
sponding sets of points for the orientation procedure.  It should 
be noted that the size of the matching window has a significant 
impact on the quality of the matches. Also, the quality of the 
digital images, particularly the SCI influences, the accuracy and 
the success of the matching process. However, the initial results 
demonstrate the ability of the ZNCC algorithm to match auto-
matically measured points of interest.                                                                       

Tables 1 and 2 present the values of the exterior orientation and 
the accuracy of the measurements for two real scenes. The ini-
tial results of the first scene which includes, feature detection 
and correspondence matching, are presented in Forkuo and 
King (2004). To verify the validity of the matching algorithm, 
the result of the second real scene is also presented in table 2. 
Both scenes were acquired with the same laser scanner and 
digital camera. It could be seen that the camera position for the 
SCI for both scenes has zero coordinates (i.e. 0=Z =Y =X ooo ), 
with angular rotation parameter also equal to 
zero )0( =κ=ϕ=ω . These exterior orientation parameters of 
laser scanner do confirm the assumption already discussed in 
Forkuo and King (2004). The same table also contains the ac-
curacy of the bundle adjustment in terms of the root mean 
square error of the object point coordinates and of the image 
measurements. The accuracy in X (MX= 0.001m), in Y (MY= 
0.001m) and in Z (MZ=0) for both scenes and the overall accu-
racy in the object space coordinate determination for both 
scenes (MXYZ) is within 0.001m. Also, the accuracy for the 
image measurement for both x (Mx = 0.017) and y (My = 
0.010) for real scene one and for x(Mx =0.014) and 
y(My=0.018) for real scene two is within two pixels. However, 
the accuracy of the measurement can vary significantly by look-
ing into important factors such as the resolutions and the qual-

ity of the images, employing sub-pixel processing techniques, 
camera calibration and possibly number of images. 

 

 Exterior Orientation Parameters 

 oX  oY  oZ  ω  ϕ  κ  

SCI 0 0 0 0 0 0 

RCI 0.249 0.345 1.610 -4.108 2.943 -0.607 

RMS  Residual  

Object  Space Coordinates                             image coordinates 

MX MY  MZ MXYZ  Mx My 

0.001 0.001 0 0.001  0.017 0.010 

 
Table 1: Exterior Orientation Parameters of real scene 1 

(Positional unit: meter; Angular unit: degree) and 
Measurement Accuracy 

 
 

 Exterior Orientation Parameters 

 oX  oY  oZ  ω  ϕ  κ  

SCI 0 0 0 0 0 0 

RCI 0.021 0.238 1.151 -1.633 -0.212 -1 153 

RMS  Residuals  

  Object  Space Coordinates (m)                            image coordinates(mm) 

MX MY  MZ MXYZ  Mx My 

0.001 0.001 0 0.001  0.014 0.018 

 
Table 2: Exterior Orientation Parameters of real scene 2 

(Positional unit: meter; Angular unit: degree) and 
Measurement Accuracy 

 
6.     CONCLUSIONS 

The fusion of the 2D images and 3D point cloud has been as-
sessed, and a synthetic image has been generated by integrating 
information from the two sensors. Features have detected, ex-
tracted and matched to develop geometric relationship between 
the digital camera and laser scanner. The initial results show 
that we have successfully obtained corresponding points in 
both images. Bundle adjustment is used to reconstruct the 3D 
object space coordinates and to recover camera positions. The 
accuracy of the object coordinate determination is with 0.001m 
and for the image coordinate measurement; the measurement 
error is within two pixels.  However, future research will con-
centrate on investigating the effect of resampling the RCI to a 
smaller size and the use of combined edge and corners ap-
proach instead of only corners. Also, the impact of camera cali-
bration, particularly, lens distortion, on the matching results 
will be investigated. The RANSAC algorithm has been imple-
mented to filter false correspondences. However some further 
developments of the algorithm are still required.  

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

                        
                      Figure 4: Detected Corner Features superimposed on the images  
 

 

 

 

 

 

 

 

 

 

 

 

 

                             
                   Figure 5: The Detected Correspondences of both pairs 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
                    Figure 6: The Final Verified Detected Correspondences of both pairs (RANSAC inliers) 
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