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ABSTRACT: 
 
Traditionally accuracy assessment of the classification results uses some collected reference data (ground truth). Ground truth 
collection is a time-consuming and money-swallowing activity and usually can not be done completely.  Uncertainty is an important 
subject in remote sensing that can appear and be increased sequentially in a chain of remote sensing from data acquisition, geometric 
and radiometric processing to the information extraction. Conceptually the relation between uncertainty and accuracy is an inverse 
relation. This relation can aid us to construct a relation between accuracy measures and uncertainty related measures. In this paper 
we investigate this relation using the generated synthetic images (for the sake of the reliability of the obtained results) and try to find 
an uncertainty related measure that has a strong relationship with the accuracy parameters like overall accuracy.We have found that 
among the uncertainty measures the mean quadratic score has the strong and reliable relationship with the commonly used accuracy 
measures. This relationship can be a good basis for the future investigations that lead to the classification based accuracy measures 
and avoiding some problematic data related issued of ground truth data collection. 
 
 

1. INTRODUCTION 

 
Uncertainty is an important subject in remote sensing which has 
recently attracted the attention of many researchers. It can 
appear in a chain of remote sensing from data acquisition, 
geometric and radiometric processing to information extraction 
with its value increasing sequentially during image processing 
and image analysis. A thematic map produced by a different 
approach and various satellite images must be reliable to be 
used in GIS. Therefore the source causing uncertainty to 
increase must be defined and modeled or removed. Having 
extracted any information from satellite imagery, the 
presentation of uncertainty as an indicator is essential for users 
and it is important to define a measure to quantify uncertainty. 
Goodchild (1995) argues that uncertainty is "generic and 
reasonably value-free, and implies nothing about sources or 
whether they can be corrected ". Stephanou and Sage (1987) 
said "uncertainty indicates lack of knowledge and is a concept 
to express the inability to be confident of and knowledgeable 
about the truth value of a particular data". The generic meaning 
of uncertainty implies that is if two individuals give the same 
answer to a question, one might be more certain than the other. 
A simple definition of uncertainty can then be “the probability 
of error”. 
 
In this research it we will try to answer the following questions:  

•  Is there any clean and formular relation between the 
uncertainty and the overall accuracy? 

•  If yes, is this relation independent from the source of 
uncertainty? 

•  Which uncertainty measure is more stable for showing 
accuracy? 

•  Which uncertainty measure isn’t sensitive to the source of 
accuracy? 

•   Can we define a shift and a scale factor for the uncertainty 
of the overall accuracy?    

 
 
 

2. UNCERTAINTY MEASURES  

Regarding the main concept of the research, we need to 
investigate possible uncertainty measures. Based on the 
information theory an information source from set of symbols 
{a1,a2,..an} generates a random of symbols . The probability of 
the event aj that the source will produce is P(aj) and  
 
 
 

    
(1) 

 
         

         I(aj)=Log(1/P(aj))=-Log(P(aj))                                   (2) 
 
 
The amount of self information attributed to event aj is 
inversely related to the probability of aj .The base of the 
logarithm in equation (2) determines the unit used to measure 
information. 
 
If k source symbols are generated, the low of large numbers 
stipulates that, for a sufficiently large value of k, symbol aj will 
(on average) be output k*p(aj). Thus the average self 
information obtained from k outputs is: 
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In image classification for a pixel, viewed as a statistical 
variable C, the uncertainty in class Ci is defined as: 
                         (5) 
 

                                                                                                  
(4)     

 
 
for i = 1,...,n, where X denotes the available data; the 
uncertainty is measured in bits. Generally, the true class of the 
pixel is not known and, as a consequence, the amount of 
information required revealing the pixel’s class is unknown. 
The entropy of the pixel is therefore defined as the expected 
information content of a piece of information that would reveal 
its true class. To this end, the entropy measure combines the 
uncertainties in the various classes of the pixel by weighting 
them by their probabilities: 
 
 
             

                                                                                                  
(5) 

 
 
   
As another measure of weighted uncertainty, the quadratic 
score (Glasziou and Hilden, 1989) is briefly discussed here. The 
quadratic score is built on the notion of confirmation. The 
uncertainty in a single class for a pixel is the amount of 
probability required to establish this class with complete 
accuracy. The uncertainty in class Ci isdefined as 1-P(C=Ci/X), 
where X once more denotes the available data. The quadratic 
score of the pixel is then: 
 
 
                
QS =                                                                                                
       (6) 
 
 
 
This measure exhibits the same behavior in its minimum and 
maximum values as does the entropy measure. The two 
measures differ, however, in their slopes as is shown in 
Figure(1). The slope of the entropy measure is steeper than the 
slope of the quadratic score. As a result, the entropy measure 
for example more strongly weighs small deviations from 
probabilities equal to zero or one than the quadratic score. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 1.  Relation between quadratic score and entropy 

As can be seen in Figure(1) we can argue that when entropy is 
increased we have a lot of chaos information (many objects are 
in  a given pixel) and we are not certain about the labeling 
(class) of the pixel. This means we have considerable 
radiometric overlap between classes and vice versa. When 
uncertainty is decreased we have less chaos and we are more 
certain about labeling of desired pixels. Therefore radiometric 
overlap between classes is low; as a result they are separated 
from each other.  
 
We can use this concept to design a relation between 
uncertainty and accuracy of classified images. Thus as will be 
shown (section 3.2) the amount of uncertainty is a good 
indicator to investigate the accuracy of a map. Traditional 
approaches for accuracy assessment of thematic maps use 
ground truth. However, usually this ground truth is usually 
inherently unreliable. Hence, it is not a good idea to compare 
the extracted information (with a specific level of uncertainty) 
with a reference data set that is uncertain itself.  
     
Ground truth could be non-representative (i.e. only partly 
covering the general characteristics of a particular land cover 
class), insufficient, incomplete (overlooked classes) or even 
outdated and thus lay an unstable foundation for accuracy 
assessment. Additionally the collection of this data is often a 
time-consuming and money-swallowing activity which in order 
to get rid of which, it is simply replaced by a visual inspection 
of some cartographic document or the image itself. 
 
 

3. TESTS 

Regarding the mentioned questions in the section 2, we have 
investigated the inverse relation between uncertainty and 
accuracy. To this end we have produced some synthetic images 
and (using some well known ground truth) and have classified 
them. Finally some accuracy and uncertainty related measures 
(URMs) have been calculated. Relation between these 
parameters is the major theme of the experiment.  
 
3.1 Generation of the Synthetic Images  

In this case study some synthetic images are used generated by 
a simple algorithm. For each image 3 spectral bands have been 
generated. Firstly in order to simulate the imaging process and 
generation of these bands in each case, we generate a ground 
truth map.  This is used to generate the spectral bands of the 
synthetic images and in addition to evaluate the actual accuracy 
of the classification results. The general ground truth map has 
10 spectral classes with the various radiometric overlaps 
between them. This ground truth map can be generated 
automatically or manually. In this case study this map has been 
generated manually and regarding the real world it was tried to 
include various shapes of the possible objects [Figure 2.A]. 
 
It was assumed that the statistical distribution of the image data 
(pixel values) is a multi dimensional normal distribution. This 
assumption doesn’t affect the final results and just simplify the 
band generation and avoid the wrong assumption of the 
distribution of the data that is used in the maximum likelihood 
(MLH) classification. For generation of the images we have to 
consider some values for mean and variance vectors. Therefore 
we have a mean and variance value for each class per band 
(totally 30 values for means and 30 values for the variances). 
Covariances between all of the bands were assumed to be zero 
for the sake of simplicity and the little effect of them. 



 

Regarding these assumptions, spectral bands for the various 
case studies presented in this paper were generated. Algorithm 
firstly considers the class number of the pixels gathered from 
the ground truth map. Then it searches the mean and variance 
matrices and selects the corresponding values for mean and 
variance vectors considering the class number. After that using 
these signatures the pixel value per band is generated using a 
function that returns a vector of random numbers having the 
normal distribution, this algorithm repeats for each pixel until 
all of the pixels have their appropriate values in the 3 bands. 
Figure 2 shows a sample ground truth map and generated color 
composite image. 
 
3.2 Investigating Relationship between Accuracy and    
Uncertainty 

The mentioned algorithm (Section 3.1) was used to produce the 
desired images to perform the experiments on them. Some 
constraints and conditions were applied on the all of the 
experiments. Size all of the images is 512 × 512 pixels and have 
been generated using the algorithm explained at section 3.1. For 
the classification of the images it was decided to use maximum 
likelihood  classification because of the relative powerful ability 
to classify images, also this method is available at the most 
image processing softwares. Additionally the results of this 
method are per pixel probabilities and labels which permit us to 
evaluate and calculate pixel by pixel quadratic score and 
accuracy values. All of the cases were done based on the equal 
prior probability assumption of the classes.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                      Figure 2.  The generated ground truth map (A)    
                 and the corresponding sample synthetic image (B). 

 

As Masseli and et.al (1994) have noted and the authors have 
investigated the mean of entropy values has not a 
straightforward and certain relationship with accuracy 
measures. Therefore we choose the mean quadratic score 
(MQS) which shows a strong linear regression between the 
overall accuracy (OA) and kappa coefficient (K) (as the 
accuracy measures) and this uncertainty measure. 
 
In order to show the strong (inverse) relationship between 
classification uncertainty related measure and accuracy of the 
classification some images were generated by changing the 
radiometric overlap between the various classes. This was done 
simply by altering the mean and variance values. When two 
classes have more similar values then radiometric overlap 
between them also increased accordingly.  The closer mean 
vectors the higher radiometric overlap. Also using the large 
values for the variances can lead to the more radiometric 
overlap. 
 
Regarding this logical assumption the mean and variance values 
of the classes were changed 11 times and then 11 data sets were 
obtained. Having applied the maximum likelihood classification 
on the data sets; 11 overall accuracies and corresponding mean 
quadratic scores and kappa coefficients were calculated. Figure 
3 shows the approximately linear relationship between overall 
accuracies and kappa coefficient and corresponding mean 
quadratic scores. 
 
 
 
 

 

 
Figure 3.  Relationship between MQS and OA (A)   and    

relationship between QMS and K(B). See the strong linear 
relationship between accuracy and uncertainty parameters. 
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This relationship can be seen between various data sets and 
have been investigated by the authors. However the obtained 
regression formula changes for various cases but the strong 
linear relationship between MQ and accuracy measures is 
preserved.  This is the predicted relationship at previous section 
and confirms the mentioned relation between uncertainty and 
accuracy.  

 
4. DISCUSSION 

The obtained linear relationship between mean quadratic score 
and overall accuracy is a good representation of the famous 
inverse relation between accuracy and uncertainty. In the other 
hand this relation can help us to guess the probable value of the 
accuracy parameters (which need to collect some reference 
data) without any field observations. Although we can't define 
the exact value of these parameters but the estimated 
approximate values will be near the real values to some extent. 
This is caused from this fact that some environmental and 
procedural parameters influence the estimated linear 
relationship and then in some cases slop and intercept of the 
regression line can be the other values. 
 
Generally all of the factors involved in the accuracy assessment 
process can affect the final estimated accuracy values and 
therefore it may compute some different values for a given 
classification. Some of these factors have been listed by 
Congalton (1991) as: ground data collection, classification 
schema, spatial autocorrelation, sample size and sampling 
scheme. 
 
Two major aspects of the ground data collection are sampling 
schema, and sample size. These two issues affect the overall 
accuracy estimation and therefore can lead to bias estimation of 
the accuracy. Thus if we change any parameter that have a 
major influence on the estimated accuracy  (e.g. sampling 
schema); we have a different value for accuracy and therefore 
MQS can not have a fixed relationship with the all of these 
different accuracies that are for a particular classification. 
Considering this problem we investigated the relation between 
the accuracy and the sample size and concluded that a sample 
size between 70-100 pixels per class can lead to a reliable 
accuracy assessment. However, generally this depends on some 
environmental aspects [Congalton, 1991]. 
 
Sampling scheme also can have a notable effect on the accuracy 
assessment. Congalton (1988) notes that it is the spatial 
complexity of a given environment which dictates the 
appropriate sampling scheme(s) to be used for creating error 
matrices necessary to assess the accuracy of maps generated 
from remotely sensed data. Thus each strategy for sampling and 
ground truth gathering can affects the overall accuracy and 
consequently the relationship between MQ and OA. 
 
Some of the objects properties have influences on the 
uncertainty and accuracy derived from the classification results. 
Geometric properties (e.g. objects size), spectral properties (e.g 
spectral similarity) of the objects are two major aspects that 
influence both of accuracy and uncertainty measures. Although 
these object properties present in the uncertainty and accuracy 
relation but have not the same effect on the accuracy and 
uncertainty. Therefore they prevent establishing a robust 
relationship between uncertainty and accuracy measures. As a 
consequence of this problem, we can not propose a valid fixed 
formula that gets uncertainty measure and gives the accuracy 
value for all cases. 

As a consequence we can use the mean quadratic score as a cost 
free parameter that can tell us how much the classification is 
reliable without any need to collect the ground truth data. In 
comparing the individual classification results that have the 
same classification algorithm but have been done by different 
persons this parameter can be used. The smaller MQS the more 
accurate result. In the other way if we classify some data and 
after that perform some modifications on the entered data (or 
the other parameters) and then perform a new classification thus 
we can see the results of these modifications by estimating the 
MQS for both of the classifications and comparing them. Again 
that classification which gives the smaller value for the MQ can 
be selected as the better classification. 
 
 

5. CONCLUSION 

In this paper a linear relation between an uncertainty measure 
and an accuracy parameter has been investigated. The 
uncertainty measure that used the mean quadratic score with the 
overall accuracy and kappa coefficient was chosen as the 
commonly used accuracy measures.  The famous inverse 
relationship between uncertainty and accuracy has been 
confirmed by this experiment and a strong relation between an 
averaged uncertainty value (MQS) and an averaged accuracy 
value (OA) have been found. 
 
Although we have mentioned that these parameters are 
influenced by the various factors but we can use the MQS in 
comparing different classifications (not classifiers!). In fact this 
is the MQS that can be used to compare the reliability and 
performance of the classifications and the obtained relation 
(between OA and MQS) can not be used to predict the exact 
accuracy of the classification result. This is caused from this 
fact that both of the accuracy and uncertainty are influenced by 
some various factors that can alter the parameters of the linear 
relation. Among these effective factors the sampling scheme, 
sample size, classification procedure, and objects properties are 
some the most important effective parameters on the accuracy 
assessment and uncertainty analysis process.  
 
In this study maximum likelihood classifier was used as a 
common procedure in the classification literatures. This 
procedure is able to produce probability vectors that are used to 
calculate the quadratic score. Therefore if any classifier that can 
not produce such information is used then we can not compute 
an uncertainty measure. Using another classifier such as 
minimum distance or artificial neural networks we should 
define an appropriate uncertainty measure and then test it 
whether it has any straight relation with the accuracy measures. 
This is a topic for the future investigations but as a general 
consequence it is anticipated that the linear relationship 
between MQS an OA will be remain. 
 
We have found that among the uncertainty measures the mean 
quadratic score has a strong and reliable relationship with the 
commonly used accuracy measures. This relationship can be a 
good basis for the future investigations that can lead to the 
classification based accuracy measures and avoiding some 
problematic data related issues of ground truth data collection. 
The other uncertainty measures can be tested to define whether 
they have any stronger and more stable relation than the one we 
have found? 
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