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ABSTRACT 
Hydrological and erosion studies in Way Besai watershed in  Sumberjaya, West-Lampung, Sumatera, Indonesia, require assessment 
of slope and flow pathways. A Digital Elevation Model (DEM) was generated from aerial photographs (1:24.000) using a softcopy 
photogrammetry approach. Error of elevation in a DEM affects derived slope, topographic index and  catchment boundaries.  
Propagation of elevation error was evaluated on slopes both in a relatively flat terrain as well as in an undulating one. True elevation 
is unknown, but error can be estimated from uncertainty assessed with statistical methods following Monte Carlo simulation 
approach. Statistics grids as well as single parameters resulted were analyzed. Effects of DEM uncertainty on the derived slope is 
more pronounced in the flat terrain than in the undulating one. Within the scope and assumptions of this study, the effect of 
resolution on the slope uncertainty shows that higher resolution DEM creates larger slope uncertainty. Incorporation of spatial 
dependence in the assessment of error propagation has strong effects on the apparent error of slope. Therefore, spatial dependence of 
DEM uncertainty should be considered when assessing error in spatial data, especially if slope is to be derived from the DEM. 
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1. INTRODUCTION 
 
 
1.1 Background 
 
A good assessment of topography is of major importance in 
quantifying processes of erosion, sedimentation and water flow. 
Topography is commonly represented in a Digital Elevation 
Model, which can be produced from various sources and 
through different methods, and is used as a basis for modeling 
dynamic processes. 
 
To support hydrological and erosion studies conducted in Way 
Besai watershed, West-Lampung, Sumatera, Indonesia, two 
sources of Digital Elevation Model were used for the various 
levels of those studies. The whole watershed is covered by a 
DEM derived from Topographical Maps of 1:50,000, while for 
the sub-catchment level studies, a more detailed DEM was 
generated from aerial photographs of 1:24,000, which covers 
about 60% of the Way Besai watershed. The latter was able to 
capture micro relief in riparian areas that didn’t show on the 
topographic maps, but altered the views on slope and erosion. 
 
Error refers to difference between observed or recorded values 
and the corresponding true values (Hunter & Goodchild, 1997), 
supposing the latter is known. Root Mean Square Error (RMSE) 
is a valid statistical measure to estimate errors with the 
assumption that errors are random and normally distributed. 
  
In the production of spatial data, the true values are often 
unknown, or difficult to obtain. When the true value is 
unknown, uncertainty can substitute for the estimation of error. 
Uncertainty refers to lack of knowledge about the reliability of a 
measurement in its representation of the true value (Wechsler, 
2000) or simply lack of knowledge of the true value (Hunter & 
Goodchild, 1997). 
 

Because DEM error propagates to the derived products such as 
slope, DEM uncertainty also causes uncertainty in the derived 
products. For hydrological purposes, assessment of the 
uncertainty of e.g. the derived slope, topographic index and 
catchment boundaries is more important than uncertainty of the 
elevation itself.  
 
1.2 Objective of the Study 
 
The objectives of this study were to assess: 
1.  Effects of DEM uncertainty on the uncertainty of the 

derived slope, 
2.  Effects of the DEM cell resolution on the uncertainty of 

slope,   
3. Uncertainty of the derived slope when spatial dependence is 

incorporated compared to that when error is considered 
spatially-independent. 

 
 

2. DATA AND STUDY SITE 
 
 
The study site is part of Way Besai watershed, which almost 
coincides with the sub-district of Sumberjaya, located in 
Lampung Province, Sumatera, Indonesia. It covers a watershed, 
where large forest areas have been transformed over the past 
three decades into mosaics of smallholder coffee fields on 
slopes and rice paddies in the valleys. Ongoing studies of 
options for managing watershed functions include involvement 
by local governments and other stakeholders (Verbist, 2003). 
 
A 5km * 5km subset of the watershed was used for this study in 
Bodong area  covering Way Ringkik subcatchment, where 
various hydrological and erosion studies are conducted.  
 



 
Figure 1. General location of the study site 

 
Two contrasting sites within the subset were chosen: an 
‘Upstream site’ with undulating terrain, and a ‘Downstream 
site’ with relatively flat topography.   
 
 

3. METHODS AND PROCEDURES 
 
 

The overall methods in this study can be seen in the flow 
diagram in Figure 2. 

 
Figure 2. Overall  flow diagram of the study 

 
The DEM was generated from aerial photos of 1:24,000, using 
softcopy photogrammetry methods in the Orthoengine Module 
of PCI Geomatica 8.2.3. The originally-generated DEM is in 5 
m resolution. 
 
3.1 Root Mean Square Error (RMSE) 
 
Root Mean Square Error (RMSE) is measured from discrete 
sample points and is commonly used to estimate error or 
uncertainty in locations where error was not measured directly 
(Holmes, 2000). For DEM, RMSE refers to the degree of 
differences between interpolated values and the “most 
probable” elevation -- so as not to use the term “true” elevation, 
which is normally considered unknown--. Methods for 
obtaining the sample points include GPS measurements, 
triangulation points, or a DEM of higher accuracy.  
 
In this study, high accuracy GPS measurements were done with 
carrier phase processing, utilizing Trimble Pro XR as the rover 
and Trimble Base Station as the base station. The accuracy of 
this method goes up to sub-meter for horizontal (GPS Tutor, 
1998) and approximately 1-2 m for vertical accuracy 
accordingly. Thirty-five high accuracy elevation points were 

collected and a subset of 14 points was used to give an error 
indication of the DEM generated. 
 
3.2 DEM Perturbation using Monte Carlo Simulations 
 
The number of GPS measurements is often limited due to time 
or budgetary constraints. Modeling offers a way out to assess 
the effects of error in elevation on the derived products. 
 
To simulate the error over the whole surface of a DEM, a grid 
of random errors (random field) was generated and perturbed to 
the original DEM using Monte Carlo method.  Monte Carlo 
method can be loosely described as statistical simulation 
method that utilizes sequences of random numbers according to 
a certain statistical distribution.   Any statistical distribution can 
actually be used to generate the random errors, but the Gaussian 
normal distribution is most commonly used.  When additional 
information is available about the structure of errors in a data 
set, the Gaussian model should be replaced with a more 
accurate representation (Hunter and Goodchild, 1997). 
 
In this study, random fields were created with the same 
geospatial extent of the DEM and with the properties based on 
the statistics of the error indication of the DEM; mean = 0 and 
standard deviation = RMSE obtained from validation ( µ= 0, σ= 
RMSE). The random fields were created for N number of times 
(N simulations) to perturb the DEM. 
 
The 14 samples for elevation validation were considered 
insufficient to represent the magnitude of error over the whole 
study site. Therefore in generating the random fields for 
perturbing the original DEM, instead of using only 10 m as the 
elevation RMSE, a series of assumed elevation RMSE's of 5, 
10, 15 and 20 m were used. 
 
3.2.1 N Optimum. The optimum number of simulations was 
derived from Wechsler (2000) based on the Law of Diminishing 
Return. A grid of standard deviation values is obtained for each 
N. From each standard deviation grid, a standard deviation is 
calculated and kept. The observation is done on the increments 
of 25. Once the difference of standard deviation estimated from 
the sequential N falls at 5%, the N optimum (Nopt) is reached. 
This procedure is applied across the perturbed DEMs with 
different perturbation layers (different assumed RMSEs). 
 
Five hundred simulations were run to each initial DEM RMSEs 
(5, 10, 15, and 20 m) and then the average values of the 
resulting RMSE grid for each 25 increments were taken out. 
Observation was done to see when the 5% difference is reached. 
 
3.2.2 Sensitivity Analysis. Various RMSEs were used as the 
statistics for the random field. Sensitivity tests (Jorgensen, 
1994) were then conducted to observe the effects of the variable 
DEM RMSEs to the RMSEs of the derived products.  
 
Two types of perturbation layers were used for the simulation, 
i.e. Random field and Spatially-dependent field. These 
perturbation filters are explained in the following sections. 
 
3.3 Random Field - Unfiltered 
 
The first approach of perturbation assumes that error is 
spatially-independent with a normal distribution and mean = 
zero. The random field generated based on that assumption was 
added to the original DEM as a single DEM realization to be 
tested, of which N realizations would be simulated. 
 



This pure random approach is a “worst case uncertainty 
assessment”, as also suggested by Wechsler (2000). 
 
3.4 Spatially-dependent Field – Filtered 
 
In reality, elevation error is not purely random because of the 
spatial autocorrelation nature of elevation and so is the error 
(Hunter and Goodchild, 1997; Holmes, 2000; Wechsler, 2000). 
  
3.4.1 Semivariograms: Semivariogram analysis can 
characterize spatial data by relating the semivariance between 
two sample points to the distance that separates them. The 
distance interval is called lag. The important properties of 
semivariogram for the characterization of spatial dependence 
are: sill and range. Range is the value of lag (h) when it levels 
off, which shows the distance that the data are spatially 
dependent. Sill is the semivariance value in the maximum 
distance of spatial dependence (range) (Figure 3a). 
 
However, for topographic surface, it is very unlikely that the 
semivariogram will reach sill, unless the strength of the 
geologic properties limits the maximum elevation (Holmes, 
2000). In the semivariogram of topographic data, very likely the 
variability increases infinitely within the area under study 
(Figure 3b). 

 

 
(a) 

 
(b) 

Figure 3. (a) Range and Sill in a semivariogram; (b) 
semivariogram with infinite increase of spatial variability 
(picture courtesy of The Idrisi Project) 
 
In the case of topographic data, directional semivariograms can 
be calculated to obtain distance of spatial dependence. By 
simultaneously plotting them, the distance over which all the 
semivariograms show similar behavior can be used as the 
distance of spatial dependence. 
 
Semivariogram Analysis was conducted using Spatial 
Dependence Modeller under Idrisi32. Both Upstream and 
Downstream sites were analyzed and the directions applied 
were omni directions, 45°, 90° and 180 °. 
 
3.4.2 Weighted-mean filter. The perturbation layer developed 
in this second approach is called “weighted-mean filter” which 
is developed following a method by Wechsler (2000).  This 

filter is composed of several layers, with the original values 
being from the random field generated. Each layer is like a 
‘square ring’ surrounding the central cell which uniformly 
contains the values of ‘mean * weight’. The weight assigned to 
each layer becomes decreasing as the layer moves farther away 
from the central cell. The size of the filter comes from the 
spatial dependence distance (SDD) obtained from 
semivariogram analysis. For example, if the  SDD is 50 m, 
which means the SDD from the central cell is 50 m, then the 
filter size is 100 m. The total weighted-mean values are 
obtained as the sum of the total layers.  
 

 
Figure 4.  Example of weight layer, of 4*4 window 

 
The formula for this method is as follows (Wechsler, 2000): 
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where:  µ(Li) =  mean of the values in layer i, i.e. mean of the 

random field cells in the ring 
 i       = layer number  
 TL  =  total number of layers 
 
3.5 Slope as a DEM-derived Topographic Feature 
 
The derived topographic parameter to be tested in this study is 
slope.  Slope is defined as the increase in vertical direction (dz) 
per distance in horizontal direction (dx). The calculation of 
slope takes the eight neighboring cells or 3x3 cell window. The 
method follows ‘third-order finite difference’ by Horn (1981) 
(PCRaster Environmental Software). 
 
Error in elevation propagates to the slopes derived and the 
uncertainty of the slope is observed by deriving the perturbed 
DEM into slope grids and calculating the slope RMSE by the 
end of the simulation. 
 
3.6 Simulation Procedures 
 
In conducting the simulation, the dynamic modeling tool of PC 
Raster was used. 
 
For each N, a random field of normal distribution (µ= 0, σ= 
RMSE) was generated and was added to the original DEM, each 
time with a non-repetitive random field perturbation. After Nopt 
times, a grid of elevation RMSE was obtained as the simulation 
output. The same procedures were applied in assessing the 
uncertainty of the derived product, in this case, slope. For each 
N, after the perturbation, slope grid was calculated, and after 
Nopt times, the final slope RMSE grid was obtained.  
 
To see the effects of resolution, the DEM was tested in three 
cell sizes: 5, 10 and 20 m. 



 
Similar procedure of simulation in PC Raster was applied to the 
filtered-perturbed DEM. At the end of Nopt simulation, 
similarly, the statistics grids of DEM as well as of slope were 
obtained. Due to computational limitations, for this method, 
only DEM with 20 m cell size was used. 
 
3.7 Assessment of Output 

To comply with the objectives, the following statistics were 
used to evaluate the level of uncertainty: 

1) Grids of elevation RMSE and slope RMSE, which are 
defined as: 
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where: iŶ  =  estimator of the parameter iY . In this study, the 

iY  is the original data, DEM or slope. 
 N  =  number of simulations.  
 
To avoid confusion between the RMSE as the input of assumed 
error for perturbation layer with the RMSE as the statistics for 
uncertainty, the term ‘initial DEM RMSE’  is used for the first 
and ‘output RMSE ’ for the latter. 
 
2) Average value of each RMSE grid (from 1) above) was 
used to observe the trends and effects of tested parameters on 
the variables of interests, i.e.: 
- Effects of initial DEM RMSE on slope RMSE 
- Effects of resolutions on slope RMSE 
 
3) The average grids of slope at the end of N simulations were 
also analyzed visually to see the resulting derived slope, and to 
compare those resulted from unfiltered perturbation and from 
filtered perturbation with the original DEM. 
 
 

4. RESULTS AND DISCUSSION 
 
 
From the elevation validation using GPS measurements, the 
difference in elevation resulted was an RMSE of 10.7 m. 
 
The simulations to determine N optimum for perturbation 
simulations gave result that across different initial RMSEs, the 
5% difference occurs between N =125 and N = 175.  Therefore, 
the number of simulations considered to be optimum was 150 
(Figure 5). 
 

 
Figure 5.  N optimum of the simulation 

 
4.1 Semivariogram Analysis.  
 
The results of Semivariogram show that  for the Upstream site, 
similar behavior of the semivariance is shown within the 
distance of approximately 375 m  while for the Downstream site 
it is within the distance of approximately 130 m (Figures 6 and 
7). Those distances were then used as the distances of spatial 
dependence (SDD) in filtering the random field to obtain 
“weighted-mean” filter. 
 

 
Figure 6. Semivariogram of the Upstream site 

 

 
Figure 7. Semivariogram of the Downstream site 

 
4.2 Sensitivity Analysis – effects of initial RMSE on slope 
RMSE 
 
The result shows that the increase of initial DEM RMSE affects 
the increase of slope RMSE following linear trend (Figure 8). 
For the higher resolution (5 m), the trend appears to be 
curvilinear, as the slope of the graph is smaller for the higher 
initial DEM RMSE. 
 
When comparing the two sites, for each initial DEM RMSE and 
each cell size, the slope RMSE is higher in the Downstream site 
than in the Upstream site. This result shows perturbation has 
stronger effects in adding variability to the original elevation 
variability in the flat area than in the undulating area. 
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Figure 8.  Sensitivity of initial DEM RMSE on Slope RMSE 



In this case study, taking the RMSE of 10 m, for the Upstream 
site (undulating terrain), the slope  uncertainty  is 9° (for 20 m 
cell size ) up to 22° (for 5m cell size),  and for the Downstream 
site (flat terrain) 11° (for 20 m cell size) up to 35° (for 5 m 
resolution ). 
 
4.3 Effects of Resolution on Slope RMSE 
 
Slope RMSE decreases with increase of cell size following a 
negative power trend (Figure 9) but less strong than expected if 
all effects are due to the large number of random variables 
involved. 
 
Because in this case error is assumed to be randomly 
distributed, more slope variability occurs for the surface with 
smaller cell size than that with bigger cell size. The increase of 
cell size to some extent brings smoothing effects and with 
similar error of the elevation, the slope RMSE is lower. 
 

 
Figure 9. Effects of resolution on slope RMSE, example of 
initial DEM RMSE = 10 m 
 
4.4 Effects of Spatial-dependence  
 
4.4.1 Perturbation layer - unfiltered and filtered.  An 
example of unfiltered layer for perturbation (Figure 10a) shows 
randomly distributed error. In the filtered layers (Figure 10b and 
10c), clustered values are seen, with “decreasing” values as the 
function of distance. This effect is more clearly seen in the 
Upstream site (Figure 10b), because the distance of spatial 
dependence is bigger in this site than in Downstream site 
(Figure 10c). 
 

 
Figure 10. Perturbation layer (a) unfiltered; (b) filtered for 
Upstream site; (c) filtered for Downstream site 
 
4.4.2 Effects of spatial dependence on the slope grids. The 
final average slope grids by the end of simulations, both the 
unfiltered and filtered and in comparison with the original one 
are shown in Figure 11. Frequency distributions are shown in 

Figures 12 & 13.  From the unfiltered approach, there is an 
increase of low slopes into steeper slopes, which is the effect of 
“added” error. With the incorporation of spatial dependence, 
slopes are less elevated and the distribution is closer to that of 
the original slope grid. 
 

 
Figure 11.  Original slope grids and the resulting slope grids  
  

 
Figure 12. Frequency distribution of original slope, and slopes 
of unfiltered and filtered approaches in the Upstream site 
 

 
Figure 13. Frequency distribution of original slope, and slopes 
of unfiltered and filtered approaches in the Downstream site 
 
Despite the different magnitude, both perturbations create a 
larger frequency of steep slopes. However, the slopes of 
filtered-perturbed DEM stay closer to the original slopes than 
the unfiltered-perturbed ones. The shape of frequency 
distribution of slopes is maintained, i.e. normal for Upstream 
site and left-skewed for the Downstream one 
 
4.4.3 Effects of spatial dependence on the slope RMSE. The 
incorporation of spatial dependence, i.e. by applying weighted-
mean filter, decreases slope RMSE in the Upstream site into 



12% of the unfiltered one, and in the Downstream site into 27% 
(Figure 14). This result shows that the incorporation of spatial 
dependence of elevation error reduces the estimated error of 
slope. 

 

 
Figure 14.  Effects of spatial dependence on slope RMSE 
 
 

5.  CONCLUSION 
 
 
The increase of initial DEM uncertainty affects the increase of 
derived-slope uncertainty following a linear trend although for 
the higher resolution (5 m), the trend appears to be curvilinear, 
as the slope of the graph is smaller for the higher initial DEM 
RMSE. The slope uncertainty is larger in the Downstream site 
than in the Upstream site because the effects of similar 
magnitude of error to the original elevation variability are 
stronger in flat area than in undulating area. 
 
Slope RMSE increases by the increase of resolution (smaller 
cell size), which means that with a similar magnitude of error 
indicated, higher slope uncertainty occurs in higher resolution 
slope grids. This result shows the importance of choosing the 
optimum resolution so as to minimize big slope uncertainty. 
And as the result shows that higher slope uncertainty occurs in 
the flat area than in the undulating area, the decision of 
resolution is more crucial if the terrain under study is relatively 
flat than if it is undulating.  
 
The approach which considers that elevation error is random 
shows that initial DEM uncertainty affects derived-slope 
uncertainty in a much higher degree than if elevation error is 
considered spatially-dependent. Assuming that error is spatially-
dependent, error propagation from DEM to the slope error 
occurs in a lower magnitude compared to the propagation when 
error is considered random. And the magnitude of the reduction 
is bigger in the undulating terrain than in the flat terrain. 
 
This study is still in the preliminary stage, a few points for 
further improvement are considered important to note:  
1. With the spatial dependence assumption, the relationship 

between the spatial dependence of elevation and that of the 
error is yet to be studied further. The question should be 
whether spatial dependence of elevation error is linearly 
correlated with that of the elevation.  

2. Comparison of slope RMSE obtained as the DEM-derived 
feature with that obtained from field observation may result 
in a different magnitude of uncertainty. 

3. For overall outcomes of erosion and river flow, the 
frequency distribution of slopes, and thus of the error, is 
important to assess. However for spatially-explicit 
intervention, the demand is on the location aspects of the 
error/uncertainty. 
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