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ABSTRACT: 
 
Terrestrial laser scanners are becoming increasingly important for many fields of imaging applications, providing a great amount of 
3D positional information in a fast and efficient way. This information is always expressed by means of coordinates in a somewhat 
random 3D space defined by the scanner orientation, which changes whenever the scanner is moved. Therefore, targets are usually 
employed either for registration (i.e. for the referencing of the data in a common 3D space) or for referencing of the data into a local 
coordinate system.  
 
The use of targets for these purposes is a standardized process, which is invariably carried out by proprietary software. However, the 
algorithms used for the identification of targets (i.e. automated definition of the centre of the target) are not described by the 
software vendors. In this paper, methods for automating target identification which are based on fuzzy classification, gridding and 
averaging techniques are presented. Experiments are conducted using a Cyrax 2500 terrestrial laser scanner in laboratory conditions.  
The performance of the proposed methods is compared and assessed with reported methods from published literature. Furthermore, 
given the fact that due to reflectance topographic artefacts are observed on the surface of the reflective targets, experiments are also 
conducted for different scan angles and distances. 
 
 

1. INTRODUCTION 

Terrestrial laser scanning allows for detailed and precise 
documentation of objects of interest. In practice, collection and 
processing procedures are adapted to the type of application 
(e.g. use of different resolutions, acquisition of multiple, 
overlapping scans from different distances, points of view). 
However, regardless of the application (e.g. conducting 
metrological experiments, registering multiple scans, 
referencing the position of the data in a given coordinate system 
etc.), automatic target identification is a matter of great 
significance. Therefore, the need for a reliable and precise 
algorithm that identifies targets automatically is important. In 
this paper, the capabilities of a current commercial laser scanner 
system (Cyrax 2500) regarding target identification are 
explored and several new methods for automatic target 
identification are presented.  
 
The second section of the paper gives a brief overview of the 
Cyrax 2500 system and presents two experiments conducted for 
evaluation of the repeatability of collected data from multiple 
scans. In the third section, the way that target centres are 
determined using the Cyclone software is described along with 
several methods for target identification proposed in published 
literature. The properties of the reflective targets are thoroughly 
examined and new algorithms for target identification are 
described. In the final section, experiments conducted to 
evaluate the stability, reliability and accuracy of the proposed 
methods are described and comparative results are presented.  

2. SYSTEM OVERVIEW AND REPEATABILITY 
CHECK 

The experiments presented in this paper were all conducted 
using a Cyrax 2500 laser scanner. The instrument has a field of 
view of 40o by 40o, and operates with a green laser beam of 
532nm. The spot size is less than 6mm for distances up to 50m, 
distances are measured with an accuracy of ± 4mm and the 
angles are measured with an accuracy of ± 60micro-radians. 
The accuracy in the position of single points is, according to the 
manufacturer, approximately ± 6mm for distances that range 
between 1.5m – 50m. The scan rate is very high, namely 1000 
pts/second. The system is operated using a laptop and the 
processing of the data can be carried out using the Cyclone 
software suite (www.cyrax.com).  
 
Measurement repeatability is a very important property for a 
laser scanner system. In order to evaluate this property for the 
Cyrax 2500 system, two experiments were conducted. The 
former involved scanning four targets mounted on four pillars 
of the internal EDM calibration baseline of NTUA. The latter 
involved the scanning of five targets placed on a wall.  
 
For both cases, nine scans were collected for each one of the 
targets. The collected data were exported into an ASCII format 
which contains the cartesian coordinates in the scanner’s system 
along with the signal strength (reflectivity) for each point in the 
scan. The selection of the target image from each point cloud 
was performed through the proprietary Cyclone software.  
 



 

 
In each scan, the mean X, Y and Z values were calculated for 
each of the targets. Also, in order to evaluate the repeatability 
of the reflectivity, the mean value and standard deviation were 
calculated. Another part of the process was the calculation of 
the radiometric centre of each target i.e. the weighted mean X, 
Y and Z values, using the reflectivity as a weight. Using the 
derived mean values, the standard deviation was calculated for 
each one of the targets. Furthermore, in order to see how the use 
of reflectivity values implemented in the calculations affects the 
results, the mean absolute difference of the mean and the 
weighted mean values were calculated in each case. These 
calculations, though fairly simple, provide an efficient way to 
evaluate the repeatability. 
 
Table 1 shows the results from the target data collected at the 
baseline. In Table 2 the results for the case of the targets on the 
wall are given. The small standard deviation in both cases 
indicates that the repeatability of the scans is very high. 
Regarding the mean absolute differences, in the first case they 
appear to be rather small. This can be attributed to the fact that 
the acquired point clouds for each one of the targets were 
trimmed before any computations, so that the remaining points 
would describe only the target. However, this was not the case 
for the targets on the wall. The whole area that was scanned for 
each one of the targets was exported. This resulted in 
differences of a few millimetres, especially along the X and Y 
directions.  
 
The above results indicate that the repeatability of the 
measurements is very high and that the reflectivity should 
definitely be used in order to identify the centre of the target.  
 
 

3. ALGORITHM PRESENTATION 

When Cyrax retroreflective targets are available, it is possible 
to define the position of their centres using the proprietary 
software. However, this is possible only during the data 
collection stage because of the way that this process is 
implemented. Specifically, the scanner acquires the data needed  
for defining the centre of the target after the user has selected a 
point near the actual centre of the target using the viewer of the 

 
 software. The scanner then performs a dense scanning around 
the depicted position. A grid of 38x38 points is created and the 
centre of the target is defined using these data. The density of 
the scan data at this stage is found to be of approximately 1mm. 
However, the way that the centre of the target is defined 
remains unknown.  
 
Although not very well documented, the topic of automatic 
target identification has been previously addressed in the 
literature (Gordon et al., 2001; Lichti et al., 2000)]. In Lichti et 
al. (2000) three different methods are described. The first 
defines the centre of the target as the position with the 
maximum radiance. The second defines the centre by the mean 
position of the radiometric centre of the 4 strongest returns. The 
third algorithm defines the centre of the target as the 
radiometric centre of all returns. These methods will be referred 
to henceforth as ‘maxrad’, ‘maxrad4’ and ‘radcent’, 
respectively. In the following experiments, these methods will 
be applied and used for comparison purposes with the new 
developed methods. 
 
All the aforementioned methods have significant flaws that are 
not mentioned in the literature. The methods ‘maxrad’ and 
‘maxrad4’ often fail because the position with maximum signal 
strength does not always correspond to the actual centre of the 
target. This is clearly shown in Figure 1 which shows part of a 
target with three different markers indicating the position of the 
centre as calculated using each of the three aforementioned 
algorithms. The red points correspond to points of the target 
with a relatively large value of reflectance. They also show the 
topographic artefacts that are observed for the highly reflective 
areas of a target. In Figure 1a, a front view of the target and the 
calculated centres is given, whereas in Figure 1b, the same 
target is presented from a different angle for visualisation 
purposes.  
 
In both figures, the ‘maxrad’, ‘maxrad4’ and ‘radcent’ positions 
of the centre are indicated in black, green and blue respectively. 
It is obvious that the ‘radcent’ algorithm has the best 
performance in this case. This was also confirmed by several 
experiments that were conducted and will be presented in the 
following section.  

Table 1: Results for repeatability check for the case of the baseline targets 

 Standard deviation of mean 
position (m) 

Standard deviation of  position of radiometric 
centre (m) 

Mean of absolute differences 
(m) 

target X Y Z Xrad Yrad Zrad Rmean  (DX)  (DY)  (DZ) 
1 2.30E-04 4.41E-05 3.35E-04 2.00E-04 1.56E-04 4.03E-04 1.34E+00 0.0007 0.0004 0.0010 
2 8.33E-05 8.33E-05 2.73E-04 7.26E-05 1.41E-04 3.00E-04 1.30E+00 0.0006 0.0007 0.0007 
3 8.33E-05 1.13E-04 1.05E-04 1.20E-04 2.60E-04 1.48E-04 1.89E+00 0.0007 0.0006 0.0015 
4 2.19E-04 2.11E-04 2.00E-04 3.69E-04 3.10E-04 2.15E-04 4.27E+00 0.0004 0.0013 0.0024 

mean 1.54E-04 1.13E-04 2.28E-04 1.90E-04 2.17E-04 2.67E-04 2.20E+00 0.0006 0.0007 0.0014 

Table 2: Results for repeatability check for the case of the targets on the wall 

 Standard deviation of mean 
position (m) 

Standard deviation of  position of radiometric 
centre (m) 

Mean of absolute differences 
(m) 

target X Y Z Xrad Yrad Zrad Rmean  (DX)  (DY)  (DZ) 
1 5.16E-05 1.43E-04 4.83E-05 4.83E-05 5.16E-05 8.76E-05 1.46E-01 0.0127 0.0124 0.0038 
2 1.40E-08 8.76E-05 3.16E-05 0.00E+00 4.71E-05 5.27E-05 1.37E-01 0.0091 0.0007 0.0024 
3 4.22E-05 1.49E-04 4.71E-05 3.16E-05 1.43E-04 1.05E-04 2.29E-01 0.0033 0.0099 0.0021 
4 0.00E+00 9.49E-05 7.89E-05 4.83E-05 6.75E-05 1.06E-04 2.22E-01 0.0086 0.0070 0.0022 
5 3.16E-05 1.14E-04 8.23E-05 4.22E-05 5.68E-05 9.94E-05 4.10E-01 0.0099 0.0068 0.0019 

mean 2.51E-05 1.18E-04 5.77E-05 3.41E-05 7.32E-05 9.02E-05 2.29E-01 0.0087 0.0074 0.0025 



 

 

 
Thorough examination of several targets has revealed that the 
parts of the data that correspond to the highly reflective areas of 
the target are quite noisy. Several points seem to deviate from 
the surface of the target introducing topographic artefacts. On  
the other hand, this phenomenon does not occur in areas of 
lower reflectance. This is visible in Figure 2, where a model of 
the surface of the target is presented. Therefore, in order to 
determine the centre of the target as precisely as possible, it is 
critical to classify the points of the point cloud according to  

 
 their reflectance. This is considered to be the key to precise 
automatic target identification, because classifying based on 
reflectance allows for thorough examination of the properties of 
the target. Knowing the properties of the target is a very good 
basis for developing more sophisticated methods of target 
identification. 
 
Given the fact that reflectance varies according to the distance 
between the scanner and the target and according to the angle 
by which the target is viewed, it is very difficult to model the 
reflectance. Therefore, classification of the data using 
thresholds cannot be a solution. Other forms of classification, 
which require the user to give training data, are also considered 
inappropriate, as this would lead to a semi-automatic solution. 
A method that would classify the data into the desired 
categories without any input from the user is required. One such 
method is the fuzzy clustering technique.  
 
Clustering of numerical data forms the basis of many 
classification and system modelling algorithms. The purpose of 
clustering is to identify natural groupings of data from a large 
dataset so as to produce a concise representation of a system's 
behaviour. Therefore, this kind of processing is ideal for the 
case of targets. In order to create the fuzzy clusters, the Fuzzy 
Logic Toolbox of Matlab was used.  
 
Fuzzy c-means (FCM) is a data clustering technique wherein 
each data point belongs to a cluster that is, to some degree, 
specified by a membership grade. This technique was originally 
introduced by Bezdek (1981) as an improvement on earlier 
clustering methods. It provides a method that shows how to 
group data points that populate some multidimensional space 
into a specific number of different clusters. The Fuzzy Logic 
Toolbox command line function ‘fcm’ starts with an initial 
guess for the cluster centres, which are intended to mark the 
mean location of each cluster. The initial guess for these cluster 
centres is most likely incorrect. Additionally, fcm assigns every 
data point a membership grade for each cluster. By iteratively 
updating the cluster centres and the membership grades for each 
data point, fcm iteratively moves the cluster centres to the 
"right" location within a data set. This iteration is based on 
minimizing an objective function that represents the distance 
from any given data point to a cluster centre weighted by that 
point's membership grade. The output of the ‘fcm’ command 
line function is a list of cluster centres and several membership 
grades for each data point. Before describing the new 
algorithms that were developed, it is useful to give an example 
of the way that fuzzy clustering can substantially aid in data 
interpretation for the case of the targets. 
 
The ‘fcm’ function is used to group the points of a target into 
three classes based on their reflectance. One class comprises the 
points of high reflectance, the second class consists of the 
points of low reflectance and the last class consists of the points 
of moderate reflectance. In Figure 3, a single target is shown 
from two different scan angles. The points that belong to the 
first class are depicted in red, the points of the second class are 
depicted in blue, and the remaining points are shown in green. 
The first image of Figure 3 presents the target scanned with the 
z-axis of the scanner system forming an angle of 90o degrees 
with the surface on which the target belongs. In the second 
image this angle is 45o degrees.  
 
 
 

Figure 1: a) Front view of a target. b) The same target 
viewed from a different angle. In both cases, only the 
points of the target that correspond to highly reflective 
areas are presented for visualisation purposes. The maxrad, 
maxrad4 and radcent calculated positions of the centre are 
indicated in black, green and blue respectively. 

Figure 2: Surface model for a reflective target. 



 

 

For targets scanned with the scanner facing directly the surface 
on which the targets belong, a rather strong pattern appears. All 
points are classified in the correct classes. When the scanning 
angle increases, the classes of higher and medium reflectance 
appear to get confused. Furthermore, the points that belong to 
these classes are distributed unevenly. This indicates that the 
results of the ‘radcent’ algorithm will be poorer, due to the fact 
that the weighting will be forcing the centre of the target 
towards the centroid of the class that consists of the points with 
the highest reflectance.  
 
Another interesting aspect is that the class that consists of the 
points with low reflectivity presents the same behaviour in all 
cases. Taking all of these into account, two algorithms were 
developed. 
 
The first algorithm is named ‘fuzzypos’. The initial step for this 
algorithm is to classify the points of the target according to their 
reflectivity. Using the ‘fcm’ function, it is required that all 
points are classified into three classes. After classification is 
completed, the classes are recognized by calculating the mean 
value of the points that are assigned to each one of them. 
Finally, the coordinates of the centre of the target are derived 
by simply calculating the mean position using the two clusters 
with the largest mean reflectivity values. This process yields 
substantially better results than the ‘radcent’ algorithm, as no 

weighting occurs. In this case, weighting is redundant because 
the two classes that are used cover the whole reflective area of 
the target. 
 
The second algorithm, named ‘fuzzyposfine’, uses initially the 
‘fuzzypos’ algorithm to calculate the centre of the target.  
Afterwards, a plane is fitted on the surface of the target and 
using the parameters of the plane, the ω and φ rotations of the 
surface are calculated. The origin of the system is transferred to 
the calculated centre of the target, and the rotations are applied 
in order to transform the points of the target to the XY-plane of 
the new system. Then, a square area of 5cm x 5cm centered at 
the origin of the new system is selected and only the data 
contained in that very area are used hereafter. The classification 
process is repeated, and the points that belong to the class with 
the lowest mean reflectance value are used for estimating the 
centre of the target. This class has been found to correspond to 
the circular area of low reflectance, which surrounds the centre 
of the target. By calculating the centre of this cluster and 
transforming back to the original system, the coordinates of the 
centre of the target are derived. These algorithms may seem 
rather complex but the quality of the results is significantly 
better than any other seen in the literature. This is confirmed by 
the experiments presented in the following section.  
 
Two more groups of algorithms were developed using grid and 
tin surface models. The first group is based on gridding. Using 
the Matlab function griddata, a grid is created for the target 
using the coordinates of the points of the point cloud. In order 
to achieve better results, the data are statistically processed for 
the noise to be removed. Specifically, a plane is fitted on the 
surface of the target and the standard deviation of the distance 
between the points and the surface is calculated, but only the 
points that are within ± 1.96 σ (95% level of confidence) from 
the calculated surface are kept. The spacing of the grid is set to 
5mm and the surface model of the target is created. Using the 
grid, a model for the reflectance is also calculated. Using the 
two grids, two algorithms were created. The first one is named 
‘gridrad’ and calculates the centre of the target in the same way 
the ‘radcent’ algorithm does, by using the information of the 
two grids. The second algorithm is named ‘fuzzygridrad’ and 
applies the ‘fuzzypos’ algorithm for the data of the grid. The 
second group of these algorithms is based on delaunay 
triangulation. The two new algorithms are named ‘delrad’ and 
‘fuzzydelrad’ and the only difference to the previous ones is the 
model used.  
 
 

4.  EXPERIMENTS AND RESULTS 

Several experiments were conducted to evaluate the 
performance of the new algorithms and compare it with the 
performance of the algorithms mentioned in literature. In 
particular, two series of experiments were designed and 
conducted. The first series, involved scanning several targets 
that were mounted on the pillars of the EDM internal 
calibration baseline at NTUA. Multiple scans of the targets 
were obtained from two positions. The second series involved 
the scanning of five targets that were mounted on a wall. The 
scanning in this case was carried out from various distances and 
angles. The data collected for both cases were subdued to 
processing in order to evaluate both the internal and external 
accuracy of the results produced by the aforementioned 
algorithms. 
 

Figure 3: A single target scanned from different positions. 
The angle that is formed by the z-axis of the scanner and 
the surface on which the target belongs is 90o for the first 
and 45o for the second image respectively. 



 

For the first series of experiments, four targets mounted on the 
pillars of the EDM calibration baseline were scanned. The 
targets were placed at various distances that ranged from 3m to 
25m. The scans of the same targets were collected from two 
different positions, A and B. At position A, four scans of 1mm 
spacing were acquired along with a fine scan for each one of the 
targets. At position B, nine scans of 1mm spacing and a fine 
scan for each one of the targets were collected.  
 
For the A position, the centres of the targets were calculated 
using the fine scans, a single and four merged scans. For the B 
position, the centres of the targets were also calculated for nine 
merged scans. In both cases, using the coordinates of the targets 
as derived from the fine scans as reference, and the coordinates 
of the targets that were calculated for the other datasets of the 
same position, the transformations were calculated. Also, the 
mean absolute error was derived in order to evaluate the 
internal accuracy of the algorithms. The results are summarized 
in Table 3. Clearly, the performance of the ‘fuzzyposfine’ 
algorithm is superior. 
 
This is also confirmed by the results presented in Table 4. 
These results were derived using data from the second series of 
experiments. Five targets that were mounted on a wall were 
scanned 10 times each from a distance of approximately 5m 
with the scanner facing directly the targets. For each one of the 
targets a broad area containing the target was scanned. In order 
to create the reference dataset, a single scan for each one of the 
targets was used. For the reference dataset, the data were 
trimmed so as to contain only the target. The other data were 
exported as collected (along with the area that was surrounding 
the target). Three datasets were created using a single, four 
merged and nine merged scans for each one of the targets. The 
‘fuzzypos’ and ‘fuzzyposfine’ algorithms once again perform 
better, indicating that these algorithms have a very high internal 
accuracy. The results of the ‘fuzzygridrad’ and ‘fuzzydelrad’ 
algorithms are also quite satisfactory in both cases.  
 
The second part of the results refers to the evaluation of the 
external accuracy of the algorithms. In the results to be 
presented, both single and multiple scans collected from 
different positions of the scanner are used.  
 
For the case of the targets of the EDM baseline, the process of 
calculating the mean absolute error was carried out using the 
fine scan, a single scan and four merged scans from positions A 
and B. Additionally, using the fine scans, the centres of the 
targets were determined using the Cyclone software and the 
registration process was carried out for the data that were 
selected from the two positions of the scanner. The mean 
absolute error of the transformation as derived by the Cyclone 
software was 1mm. This value is used later on for the 
evaluation of the algorithms.  
 
In Table 5, the results for the evaluation of the external 
accuracy of the algorithms are presented. In this case, using the 
fine scans, only the ‘fuzzyposfine’ algorithm gives a Mean 
Absolute Error equal to that of the Cyclone software. 
Additionally, using the other datasets, the results yielded by this 
algorithm are better than 1mm (i.e. 0.7mm for single scan 
datasets and 0.8mm for datasets of four merged scans).  
 
 
 
 
 

 

 

 

 
 

Table 6: External accuracy evaluation experiment (2) 
  Mean Absolute Error (mm) 

3m 10m  DATA 
90o 45o 15o 90o 45o 15o 

Mean 
Error 
(mm)

radcent 4.2 4.9 6.4 4.4 5.1 5.8 5.1 
maxrad 15.0 14.4 21.0 25.4 23.1 19.6 19.8 

maxrad4 14.0 10.7 15.5 7.3 11.2 18.5 12.9 
fuzzypos 0.6 0.9 1.2 0.9 0.7 1.2 0.9 

fuzzyposfine 0.4 0.6 0.7 0.4 0.4 0.4 0.5 
gridrad 4.8 5.2 7.5 4.4 5.2 6.4 5.6 
delrad 3.3 4.1 5.3 3.5 4.1 4.7 4.2 

fuzzygridrad 1.9 1.9 2.9 1.6 1.8 2.6 2.1 

M
ET

H
O

D
 

fuzzydelrad 2.0 1.8 2.7 1.4 1.4 2.3 1.9 
 

Table 3: Internal accuracy evaluation experiment (1) 
 Mean Absolute Error (mm) 

Position A Position B DATA 
1sc 4sc 1sc 4sc 9sc 

Mean 
Error 
(mm) 

radcent 1.2 1.2 0.8 0.6 0.6 0.9 
maxrad 16.8 17.4 13.2 9.2 9.4 13.2 

maxrad4 14.0 14.5 13.7 13.1 14.7 14.0 
fuzzypos 0.7 0.7 0.6 0.4 0.4 0.6 

fuzzyposfine 0.6 0.6 0.5 0.2 0.1 0.4 
gridrad 1.0 1.4 0.4 0.9 1.0 0.9 
delrad 0.4 1.0 1.1 1.0 1.6 1.0 

fuzzygridrad 0.8 0.6 0.7 0.5 0.7 0.7 
fuzzydelrad 0.9 1.2 1.1 1.7 1.8 1.3 

Table 4: Internal accuracy evaluation experiment (2) 
  Mean Absolute Error (mm) 
 reference data 
 

 
1scan 4scans 9scans 

Mean 
Error 
(mm) 

radcent 4.3 4.3 4.3 4.3 
 17.6 11.9 8.2 12.6 

DATA 10.4 8.4 8.9 9.2 
 0.2 0.2 0.2 0.2 
fuzzyposfine 0.2 0.1 0.1 0.1 

gridrad 4.7 4.7 4.7 4.7 
delrad 3.8 3.2 4.1 3.7 

fuzzygridrad 1.6 1.6 1.5 1.6 

M
ET
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O

D
 

fuzzydelrad 1.4 1.3 1.3 1.3 

Table 5: External accuracy evaluation experiment (1) 
  Mean Absolute Error (mm) 
 A fine A 1scan A 4scans 
 

DATA 
B fine B 1scan B 4scans 

Mean 
Error 
(mm) 

radcent 1.4 2.4 2.4 2.1 
maxrad 9.3 5.4 10.0 8.3 
maxrad4 5.1 3.3 10.5 6.3 
fuzzypos 1.4 1.2 1.2 1.3 

fuzzyposfine 1.0 0.7 0.8 0.9 
gridrad 1.4 1.6 1.8 1.6 
delrad 1.3 1.5 1.5 1.4 

fuzzygridrad 1.5 1.1 1.2 1.3 

M
ET
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O
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fuzzydelrad 1.4 1.3 1.2 1.3 



 

The second series of experiments involved the scanning of five 
targets that were mounted on a wall, from different angles and 
distances. The reference dataset is created using four merged 
scans for each one of the targets, collected from a 5m distance 
with the scanner facing the wall. The other datasets were 
acquired by scanning the same targets from distances of 3 and 
10 meters and with the z-axis of the scanner’s system forming a 
90o, a 45o and a 15o angle. This way, 6 datasets were created 
and the results derived following the same procedure as 
previously are summarized in Table 6.  
 
The results of the ‘maxrad’ and ‘maxrad4’ are very unstable, 
ranging from 7mm to more than 25mm. As for the results of the 
‘radcent’ method, the mean absolute error is within the 
accuracy specifications of ± 6 mm of the Cyrax system. The 
results of the ‘fuzzypos’ and ‘fuzzyposfine’ methods are once 
again the best, especially those of the ‘fuzzyposfine’ method 
(i.e. 0.4mm for every case at the 10m distance).  For the case of 
the 3m distance, it seems that as the angle becomes smaller, the 
Mean Absolute Error tends to be greater. The performance of 
the ‘fuzzyposfine’ method appears to be even better for the 10m 
distance, in comparison to the case of the 3m distance. As for 
the other methods, the results of the ‘gridrad’ and ‘delrad’ 
algorithms are similar to those of the ‘radcent’ algorithm. For 
the ‘fuzzygridrad’ and ‘fuzzydelrad’ algorithms, the results are 
also quite satisfactory, with a Mean Absolute Error of about 
2mm, which is also better than the accuracy specifications of 
the system. 
 
 

5. CONCLUSIONS 

In this paper, the repeatability of measurements obtained by the 
Cyrax 2500 laser scanner, a widely used system, has been 
examined. It was shown that the repeatability is high for all 
datasets collected in laboratory conditions. Furthermore, the 
properties of the Cyrax reflective targets were thoroughly 
examined and presented.  
 
A number of new algorithms for target identification have been 
proposed. With datasets collected in different experiments, both 
the internal and external accuracy of all of the algorithms was 
examined. It was shown that using Fuzzy clustering techniques 
gives insight to the processing of the data of the targets, and 
therefore it is highly recommended as a tool for further 
research. The results of the proposed methods, especially those 
of the ‘fuzzypos’ and ‘fuzzyposfine’ methods, are proved to be 
very accurate and reliable. These methods can be used when 
there is a high demand in accuracy, for instance for 
metrological experiments, deformation monitoring, registering 
multiple scans etc. They may be more demanding in 
calculations compared to other methods, but the results are 
substantially better.  
 
For future work, more experiments need to be conducted in 
order to evaluate the performance of the algorithms for various 
resolutions, greater distances and non-laboratory conditions. 
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