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ABSTRACT: 
 
We present a method for 3D reconstruction of industrial sites using a combination of images and point clouds with a motivation of 
achieving higher levels of automation, precision, and reliability. Recent advances in 3D scanning technologies have made possible 
rapid and cost-effective acquisition of dense point clouds for 3D reconstruction. As the point clouds provide explicit 3D information, 
they have a much higher potential for the automation of reconstruction. However, due to the measurement principle employed by 
laser scanners and their limited point density, the information on sharp edges is not very reliable. It is precisely where images have 
superiority over point clouds. In addition images are required for visual interpretation, texture mapping, and modelling parts not 
visible in the point clouds. Moreover, image acquisition is more flexible, and the cost and time required for it is much lower than that 
of laser scanning, making their combined use essential for a cost-effective solution. These reasons led us to develop a modelling 
strategy that uses both images and point clouds in combination with a library of CAD primitives found in industrial scenarios 
represented as CSG (Constructive Solid Geometry) objects. The modelling pipeline in our algorithm starts from point clouds as the 
main data source for automation. First of all we segment the point cloud using surface smoothness and detect simple objects like 
planes and cylinders using Hough Transform. This is followed by fitting of CSG objects to a combination of segments. These fitted 
CAD models are used as registration targets for adding more scans to the project. Additionally, by fitting the projected edges to 
image gradients we register images to point clouds. Once we have a registered data set, manual measurements are added to images to 
model missing parts and to increase the reliability of modelling for portions where laser data is known to be noisy. The final phase is 
similar to bundle adjustment in traditional Photogrammetry as there we estimate pose and shape parameters of all CSG objects using 
all image measurements and points clouds simultaneously. We name this final phase Integrated Adjustment as it integrates all 
available information to determine the unknown parameters. 
The results of applying this method to data from an industrial site are presented showing the complementary nature of point cloud 
and image data. An analysis of improvement in quality of 3D reconstruction shows the benefits of the adopted approach. 
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1. INTRODUCTION 

As built CAD models of industrial sites are required for many 
purposes like maintenance, documentation, and training. 
Moreover, current research is focusing on applying Virtual and 
Augmented Reality for providing various services for training 
and operation in industrial environments. The implementation 
of these technologies requires accurate 3D models of industrial 
environments for various sub-processes like tracking and 
alignment of virtual and real objects. One such project on which 
the Section of Photogrammetry and Remote Sensing at TU 
Delft has been working since 2001 focuses on using Augmented 
Reality for providing various training services to industrial 
users (STAR, 2003). In contrast to Virtual Reality where 
everything has to be modelled explicitly, Augmented Reality is 
more flexible as it uses a mixture of real-time video and virtual 
objects and humans. As a result more realistic scenarios and 
services can be easily implemented without requiring explicit 
3D models for all the objects. At the same time the requirement 
for aligning the video frames to 3D objects becomes more 
critical. This necessitates more accurate 3D geometric models 

for the objects present in the surrounding environment, which 
are used as targets during tracking and alignment.  
 
Traditional techniques for modelling industrial environments 
use point and line Photogrammetry as it is much faster and 
convenient compared to manual surveys. An improved approach 
suitable for Photogrammetric modelling of industrial 
environments was presented by (Vosselman et al., 2003) which 
uses fitting of image edge measurements to back-projected 
contours of the CSG object in the image. This eliminates the 
measurement to CAD model conversion stage, which is 
required for point and line Photogrammetry based approaches. 
Additionally, inclusion of various internal and external 
geometric and parametric constraints greatly reduces the 
degrees of freedom. Thus the number of the required manual 
measurements is also reduced. Still, this process requires a lot 
of manual work, which is the major cost in any modelling 
project.  
 
The prospects of implementing any automatic strategy for 
industrial environments using only images are very dim; there 
are three main reasons for that. Firstly, there is no explicit 3D 
information in images; at least two images having good 



intersection are needed along with the information about 
corresponding points to calculate 3D coordinates. Secondly, the 
clutter which is a universal feature of most industrial sites 
combined with uncontrolled lighting makes the automatic 
object detection much more difficult. Thirdly, the information 
in images is contained mainly on the edges, as there the contrast 
is usually much better, while in the absence of some 
distinguishable marks the information about the 3D geometry of 
the rest of the surface is at best minimal. This becomes a major 
limitation as in industrial environments the curved objects are 
universally present, and for these objects only edge-localized 
information is not enough for automatic detection and fitting. 
All these limitation are successfully resolved by laser scanning 
techniques, where we get direct 3D information in the form of a 
point cloud making the job of object detection and fitting much 
easier. Furthermore, recent advances in 3D scanning 
technologies have made possible high-speed acquisition of 
dense and accurate point clouds at moderate costs (Laser 
Scanner Survey, 2003).  
 
The strengths of Laser Scanning do not mean that images lose 
all their utility. Actually the fact that images provide accurate 
information on edges becomes a source of strength if both 
image and point cloud data are simultaneously used. Most of 
the currently available laser scanners are using techniques based 
on either triangulation or time of flight. In point clouds acquired 
using either of them the data on edges is noisier compared to 
that on the surface of the scanned object. This has to do with the 
angle between the surface normal and the laser beam, which 
changes very rapidly near the edges of the object, making 
precise point cloud acquisition very difficult. Additionally, in 
the case of time of flight multiple reflected pulses lead to 
averaging of range measurements. This is especially true for the 
step edges. These limitations of scanning technologies make 
images a complementary source of information, especially on 
the edges of the objects. Acquisition of images as a supporting 
data source is not a problem, as cameras are still much faster 
and cheaper than currently available laser scanners. 
Additionally, images are much better for visual interpretation 
and are required for producing texture-mapped models for 
realistic visualization.  
 
Based on the above observation of the complementary nature of 
images and point clouds the modelling strategy that we have 
developed uses both data sources simultaneously and thus 

exploits all available information to achieve a more accurate 
estimation as well as higher levels of automation. The rest of the 
paper is organised as follows. In Section 2, we give a summary 
of the modelling pipeline. Section 3 provides details of fitting 
CSG objects to point clouds and to image edges. We present 
fitting results on an industrial scenario in Section 4, along with 
a discussion about the improvement in estimation accuracy 
using two experiments of fitting on single objects. Finally, we 
conclude in Section 5 and propose some directions for future 
work.  
 

2. MODELLING PIPELINE 

Our modelling pipeline is shown in Fig. 1. As it was noted in 
the introduction we are using both images and point clouds as 
data sources. We start from an initial approximate scan-to-scan 
registration using Iterative Closest Point method (Besl and 
McKay, 1992). The registration obtained from this pre-
processing stage is used until objects have been recognized and 
fitted. Then this initial registration is refined in the final 
Integrated Adjustment using object-based registration (Dijkman 
and Heuvel, 2003). For image registration or exterior 
orientation, image edge to back-projected CSG model contour 
fitting is used, during which only image exterior orientation 
parameters are adjusted and object parameters of the modelled 
objects are kept fixed.  
 
For next stages of segmentation and object recognition only 
point cloud data is used, as in contrast to images it provides 
explicit 3D information, and thus has better chances of 
achieving automation. This is especially true for the 
reconstruction of industrial sites as due to their man-made 
origin presence of well-defined CAD primitives can be 
expected. For example as reported by Nourse et al. (1980) 85% 
of objects found in industrial scenes can be approximated by 
planes, spheres, cones and cylinders. This percentage rises to 
95% if toroidal surfaces are included in the set of available 
primitives (Requicha and Voelcker, 1982; Petitjean, 2002).  
 
Using point clouds we take a two-step approach, consisting of 
segmentation followed by Hough transform based object 
detection. In the first step we use a simple region growing based 
segmentation using what we call Smoothness Constraint. It is 
based on the assumption that most of the surfaces in industrial 
environments can be expected to be smooth with their surface 
normals changing rapidly only on the object edges. First of all 
we estimate the surface normal for each point in the point cloud 
using plane fitting to the points within a small neighbourhood. 
This is followed by the stage of region growing in which we 
keep on adding points to one region until the angle between 
normals exceeds a specified threshold. Actually, segmentation 
and object recognition are two related problems, because if we 
know the type and location of objects, segmentation is reduced 
to selecting points having a low distance from the object 
surface; and similarly if we have a perfect segmentation, the 
object recognition is just a matter of surface fitting and finding 
the surface which gives minimum error of fit. Most of the 
segmentation approaches to date haven’t been able to achieve a 
high success rate (Hoover et al. 1996; Min et al., 2000). The 
segmentation approach we use leads usually to under-
segmented results, with multiple objects being assigned to one 
segment. The following object recognition stage detects the 
planes and cylinders present in the segments using a Hough 
Transform. As presence of multiple objects and outliers is not a 
problem for the Hough transform we are able to recover from 
the errors of the preceding stage of segmentation. The object 
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Figure 1.  Flowchart of the modelling pipeline 



detection is currently limited to cylinders and planes, but in 
many industrial environments they can account for more than 
70% of the objects. 
  
Next is the Constraint Detection stage where objects which have 
been multiply detected are combined together, the cylinders 
which might be connected are found, and the presence of curves 
between pipes in proximity is hypothesized, and then checked 
against the point cloud. The process of combining various 
segments and assigning them to CSG objects from the Object 
Catalogue is currently manual. But in future, we plan to make it 
automatic. 
 
The next stage of surface fitting assumes that the combination 
of preceding segmentation and object recognition stages have 
resulted in correctly labelled points, and we know which points 
belong to which CSG model. Similarly in images the point 
measurements (either manual or automatic) are correctly 
assigned to their corresponding CSG objects. The details of 
fitting the selected CSG objects to the point cloud and the 
image measurements as well as their combination are discussed 
in the following sections. 
 

3. MODEL FITTING  

3.1 Fitting of CSG model to point clouds 

The problem we are addressing can be formulated as follows. 
We have a set of points, which are sampled from some object 
that can be approximated by the given CSG model. We want to 
estimate those values of the parameters for the CSG object, 
which minimize the sum of the squares of the orthogonal 
distance of the points from the surface of the model i.e.,  

2
1 2

1

min [ , ( , , , )]
N

i M
i

p τ τ τ
=

Ω Γ∑ …  (1) 

Ω defines the shortest distance of a given point ip to the 

surface of the CSG model Γ which has M shape and pose 
parameters given by 1 2, , , Mτ τ τ… . The point cloud consists of 

N points, 1 2, , , Np p p… (Fig. 2(a)). 
 
To solve this non-linear least-squares problem we need a 
method to find the value of the distance function Ω  in (1) and 
its partial derivatives with respect to the CSG parameters i.e.  

1 2

, , ,
Mτ τ τ

∂Ω ∂Ω ∂Ω
∂ ∂ ∂

L  (2) 

The calculation of Ω is a difficult problem, as due to the 
bounded surfaces used by the CSG specification it is not 
possible to have closed form analytical expressions. For a 
comparison of different numerical methods for its computation 
we refer the reader to Rabbani and van den Heuvel (2004). Here 
we use ACIS (2004), which is a commercial geometric 
modelling engine to compute Ω . Similarly, the partial 
derivatives are estimated numerically using finite differences. 
As noted by Dennis and Schnabel (1996), for sufficiently small 
step-size, the results obtained from the finite difference 
approximation of the partial derivatives for the least-squares 
solution are indistinguishable from the analytical ones. 
 
For minimizing the function (1) with respect to parameters of 
the CSG model we use Levenberg-Marquardt method (Björk, 
1996; Press et al., 1996). Starting from an initial estimate of 
CSG parameters 0Γ , at each iteration we get an adjustment 
given by: 

iΩ is the distance of the thi point from the CSG surface, and 

kτ is the thk parameter of the CSG tree. In (3) above λ is the 

Levenberg-Marquardt parameter. When 0λ =  Newton step is 
taken while for λ → ∞ results in steepest descent step.  
 
We are using quaternions (Shoemake 1985) for the specification 
of rotation as they provide a singularity free representation. This 
means we have four rotation parameters with one constraint i.e.: 

2 2 2 2
1 2 3 4 1q q q q+ + + =  (7) 

 The constraint in (7) cannot be enforced during the adjustment, 
as Levenberg Marquardt is an unconstrained optimization 
method. This means that we have an over-parameterisation and 
the resulting matrix of normal equations can be singular. To 
avoid the resulting numerical problems we use Singular Value 
Decomposition (Golub, 1996) for inverting the matrix in (3). 
This way if there is a rank deficiency we take the column 
corresponding to minimum singular value out of the matrix 
system and thus get a minimum norm solution. 
 
3.2 Fitting of CSG Model to images 

The use of CAD models for fitting to images was pioneered by 
Lowe (1991). He estimated the pose and the shape parameters 
by minimizing the distance of the visible edges from the hidden-
line projection of the estimated model. Vosselman et al. (2003) 
extended and modified this approach for fitting CSG objects to 
image gradients and point measurements for industrial 
reconstruction. They also used internal and external geometric 
constraints to reduce the number of degrees of freedom and thus 
the required image measurements. We follow their fitting 
approach for images, with one exception that we don’t know a 
priori the correspondence between image measurements and 
back projected edges of the CSG model. Due to this missing 
information we follow an iterative procedure, where before each 
iteration for fitting, the measurements are assigned to the closest 
edge.  
 

1( ) ( )T Tλ −∆Γ = +J J I J D  (3) 

1 0Γ = Γ − ∆Γ  (4) 
where J is the Jacobian matrix and D is the distance vector 
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(a) (b) 

Fig. 2: Calculation of distances for fitting (a) Ω  for a Point 
Cloud, the model is shown in yellow, the red arrows from green 

points to model surface indicate the distance (b) Ψ for an 
Image, the measurements are in green, the back-projected model 

is in yellow, and red arrows indicate their distance in image 
space. 

 
 



Each point measurement in the image gives us a ray in 3D. 
Given a set of images with measured points we want to estimate 
those values for CSG parameters that result in the minimum 
distance between all these rays and the estimated CSG model. 
Alternately, the ray to body distance can be calculated in image 
space. There we have to compute the distance in pixels between 
an image measurement and the closest back-projected contour 
of the CSG model. The back projection must have a mechanism 
for hidden-line removal, so that the effects of self and external 
occlusions are taken into account. We follow the second 
approach, and use ACIS (2004), which a commercial geometric 
modelling engine to compute the hidden line projection of the 
model in the image. For an example see Fig. 2(b). 
 
Thus the fitting problem reduces to the estimation of those 
values of the CSG parameters, which minimize the sum of the 
squares of the orthogonal distance of the image measurements 
from the back-projected edges of the   model in the image i.e.,  

2
1 2

1

min [ , ( , , , )]
N

i M
i

m τ τ τ
=

Ψ Η∑ …  (8) 

Where Ψ defines the shortest distance of a given measurement 
im in an image to the closest edge of the back projected CSG 

model Η , which has M shape and pose parameters given by 
1 2, , , Mτ τ τ… . There are N image measurements given by 

1 2, , , Nm m m… .  

 
The problem of minimizing 2Ψ is also a non-linear least 
squares problem and is similar to that of minimizing 
Ω discussed in the above section. We need partial derivatives 

with respect to CSG parameters i.e., 
1 2

, , ,
Mτ τ τ

∂Ψ ∂Ψ ∂Ψ
∂ ∂ ∂

L . 

Although analytic expressions for the estimation of the partial 
derivatives for some of the CSG objects are given by Ermes et 
al (1999) here we estimate them numerically using finite 
differences. The final estimation uses Levenberg-Marquardt in 
combination with Singular Value Decomposition. The details 
are similar to the ones discussed in Section 3.1 . 
 

4. FITTING EXPERIMENTS 

As it was said in the introduction, images and point clouds 
provide complementary sources of information, and by their 
combination we can expect better estimation accuracy. Edges of 
the object where laser scanner usually provide noisy data are 
captured best in the images. Additionally, while fitting bounded 
objects point clouds do not contain enough information about 
determining the bounds, whereas by providing the full edge 
outline images fix the bounds. For example in the case of a 
cylinder usually the closing lids on both sides are not scanned 
either because they are not visible due to the connections with 
other surrounding objects, or because it is not convenient to 
place the scanner in a position where the lids are visible. As a 
result we expect the length of the cylinder to be poorly 
determined by such a point cloud. In contrast the measurements 
in the image provide points on the edges and thus help improve 
the precision of the length estimate. 
 
To demonstrate the complementary nature of the information 
coming from images and point clouds we will do some fitting 
experiments on two test objects. Each object will be fitted three 
times, first using only point cloud, then using only image 
measurements and finally a combination of both. The point 
clouds we will use were captured using a Cyrax scanner. We 
assume standard deviation of 5mm for each point. The images 
were captured using a Nikon CoolPix camera having a 
resolution of 5 mega pixels and using a fixed focal length of 
7.34 mm. The standard deviation for image measurements is 
taken to be 1 pixel. 
 
4.1 Cylinder fitting 

The arrangement we used for the first experiment is shown in 
Fig. 3.  A cylinder is scanned from the front, and images are 
taken from three different positions. We see back-projected 
hidden lines in yellow, points measured on edges in red, while 
the sub-sampled point cloud is shown in white. A cylinder is 
represented by 8 parameters, 3 for the position, 3 for the axis, 
one for the radius and one for the length. In Table 1 we see the 
standard deviations obtained for different parameters by doing 
fitting to point clouds, images and to a combination of both. For 
images we did fitting separately using one, two and three 
images, while in case of both all of the three images were used. 
As expected in the case of using only point cloud the length of 
cylinder is not determined because in the absence of points on 
upper and lower lids there is not enough information in the 
point cloud for its determination. Because we use singular value 
decomposition the length parameter is taken out of the 
estimation during matrix inversion and thus its value remains 
fixed on the initial starting point this results in standard 
deviation of ∞ for length.  

  
(a) (b) 

  
(c) (d) 

Fig. 3: Cylinder fitting experiment (a) Point Cloud (b-d) Images 
with back-projected model in yellow, point measurements in 

red, and sub-sampled point cloud in white 
 

Image 
 Parame

ter 1 2 3 
Point 
Cloud Both 

1 X 52.269 10.326 9.923 0.838 0.762 
2 Y 163.45 14.168 13.629 1.335 0.862 
3 Z 12.740 3.489 3.467 119.90 1.654 
4 t0 0.056 1.0E-2 1.0E02 2.28E-3 2.0E-3 
5 t1 0.065 2.1E-2 2.1E2 3.96E-3 2.9E-3 
6 t2 5.283 2.538 2.534 0.359 0.237 
7 Length 10.591 3.121 3.120 ∞ 1.857 
8 Radius 169.57 16.166 15.522 0.634 0.565 

 
Table 1: Standard deviation for Cylinder fitting experiment 



 
As the z-axis is aligned with the length of the cylinder there is a 
very high correlation between both of them. As a result the 
estimation of z-position is also very weak compared to the 
estimation of x and y position. But if we combine the point 
cloud with measurements from the images (Table 1, column 
“Both”) the situation improves dramatically as the edges in the 
images provide enough information about the length and the 
resulting standard deviations are much lower, indicating much 
better estimation precision. 
 
Cylinder axis can be specified using two parameters, but as we 
are using 3 without enforcing the constraint there is an over-
parameterisation. Although the standard deviation of axis 
parameters look quite good, but due to over parameterisation 
their correlation is very high. For example the correlation 
between t1 and t2 is 0.52, which indicates that the low values of 
standard deviations are due to some numerical effects. 
 
As expected as we use more images the standard deviation of 
parameter estimation goes down. It also shows that even a 
single image in combination with a good scan can lead to 
significant improvement in the estimation of those parameters 
which are not well-determined from the point cloud. 
 

4.2 Box Fitting 

The second example is that of a box, with only two of its faces 
fully scanned. Additionally, three images are taken from 
different positions (Fig.4). The box has 10 parameters, 3 for the 
position, 4 for the rotation, and 3 for the sizes. Again, similar to 
the example of cylinder discussed above, we have an over-
parameterisation for rotation, as we use 4 instead of required 3 
parameters, and cannot enforce the constraint. Again we find a 
very high correlation between different q parameters that lowers 
the confidence in the otherwise low standard deviation values. 
For example the correlation between q0 and q1 is 0.511. 
 
In the absence of points on all faces of the box, it is not possible 
to reliably determine the size parameters of the box. That’s what 
we see in the standard deviation resulting from fitting using 
only point clouds (Table 2), where the standard deviation for y 
and z sizes is ∞ meaning that they could not be estimated. The 
value of standard deviation for x size is low only because of the 
coordinate system chosen for the box, which has its origin in the 
left corner. This fixes the position of right side and thus the x 
size is also determined. Due to high correlation between z-
position and z-size, its estimation is also bad.  
 
Once again, we see from the last column of the Table 2 that the 
inclusion of image measurements leads to a much better 
estimation of size and position parameters. 
 
Both of these examples prove our thesis, that although point 
clouds contain direct 3D information, which is very useful for 
automatic object recognition, the final adjustment must use a 
combination of both data sources to account for missing or 
noisy information in point clouds. 
 
4.3 Modelling of an industrial site 

We applied the presented methodology for making 3D model of 
an industrial site shown in Fig. 5. Seven scans were made using 
a Cyrax laser scanner. Each scan consisted of one million points 
with a standard deviation of 5mm. Additionally about 60 
images were taken from different positions. Following the 
modelling pipeline discussed in Section 2 we started with 
approximate registration using ICP. The approximately 
registered scan was segmented using Smoothness constraint 
based region growing. Cylinders and planes were automatically 
detected using the Hough transform, and then used to refine the 
scan-to-scan registration. For images the orientation was 
approximated using vanishing points. This was followed by 
scan-to-image registration using a few image measurements and 
keeping all object parameters fixed, while estimating only 
exterior orientation parameters of the images. 
 
The process of combining automatically detected cylinders and 
planes to full CSG objects as well as the process of adding 
measurements to images was done manually. Once we have 
image measurements as well as segmented points clouds, we 
proceed with the Integrated adjustment using both data sources 
simultaneously. This integrated adjustment minimizes the sum 
of square of the distances of point cloud from the model surface 
and sum of square of the image measurement distance from the 
back projected edges of the model, while estimating the pose 
and shape parameters of the CSG object as well as the 
registration parameters of the individual scans and exterior 
orientation of the images. This process is an extension of the 
idea of bundle adjustment in traditional Photogrammetry but is 

  
(a) (b) 

  
(c) (d) 

Fig. 4: Box fitting experiment (a) Point Cloud (b-d) Images with 
back-projected model in yellow, point measurements in red, and 

sub-sampled point cloud in white 
 

Images 
 Para

meter 1 2 3 
Point 
Cloud Both 

1 X 2.106 1.179 0.685 3.079 0.649 
2 Y 2.243 1.129 0.261 0.550 0.161 
3 Z 1.669 0.760 0.338 389.84 0.314 
4 q0 7.8e-1 2.6e-1 5.3e-2 3.97e-2 3.0e-2 
5 q1 1.4e-3 5.0e-4 1.3e-4 2.40e-4 1.0e-4 
6 q2 7.8e-4 3.0e-4 6.0e-5 5.20E-4 5.0e-5 
7 q3 4.3e-3 1.6e-3 3.4e-4 3.40E-4 2.0e-4 
8 X size 2.855 1.023 0.689 2.890 0.661 
9 Y size 9.836 2.696 0.627 ∞ 0.532 

10 Z size 2.309 1.161 0.349 ∞ 0.318 
Table 2: Standard deviation for Box fitting experiment 

 



much more general, as it uses both point cloud and image 
measurements in big adjustment.  
 
This integrated adjustment was applied to the test scenario 
shown in Fig. 5. Only cylinders, boxes and tori were used from 
the catalogue of CSG objects. The results of the fitting are 
shown as a 3D Model in Fig. 5(d).  
 

5. CONCLUSIONS 

We have presented a modelling technique for fitting CAD 
models described as CSG primitives to measurements in images 
and point clouds. While the point clouds are excellent for 
automatic object recognition, the comparison of improvement in 
the standard deviation of the estimated parameters clearly shows 
that images have a complementary role as they provide more 
information on the edges and help fix the bounds of models 
where point clouds fail to do so. In future we plan to extend the 
fitting procedure from point measurements to edge and curve 
measurements in images. Similarly different strategies for 
automatic object recognition in industrial environments using a 
combination of imagery and point clouds will also be 
investigated. 
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