
VOLUMETRIC MODEL REFINEMENT BY SHELL CARVING

Y. Kuzu a, O. Sinram b

a Yıldız Technical University, Department of Geodesy and Photogrammetry Engineering

34349 Beşiktaş Istanbul, Turkey - kuzu@yildiz.edu.tr
b Technical University of Berlin, Department of Photogrammetry and Cartography

Str. des 17 Juni 135, EB 9, D-10623 Berlin, Germany - sinram@fpk.tu-berlin.de

Commission V, WG V/2

KEY WORDS: Calibration, Close Range, Correlation, Reconstruction, Visualization.

ABSTRACT:

In this paper we present a voxel-based object reconstruction technique to compute photo realistic volume models of real world
objects from multiple color images. The 3D object acquisition is performed using a CCD video camera, where the images of the
object have been captured in a circular camera setup. Before starting the image acquisition, the sensor is calibrated in order to
determine the interior and exterior parameters of the camera. Due to the missing of control points on the object, the images undergo
a process of relative orientation in a free network using manually measured tie points. The approximate model of the object can be
easily acquired by a volume intersection method in a fast and a robust way, which results in the convex hull of the object. The shell
of the object, namely the surface voxels are easily obtained from this model. In order to get into the concavities and refine the model
we introduced the shell carving method. For the visibility computation, we introduce ray tracing and surface normal vector
computation. We use color image matching to search for image correspondences. Furthermore, we make use of the image orientation
data for a knowledge based template grabbing. Voxels which are projected into non-corresponding image points are carved away
from the shell. And the final set of voxels contains sufficient color and texture information to accurately represent the object.

1. INTRODUCTION

Photogrammetry and computer vision are closely related
disciplines which meet on common research areas such as
creating 3D object models. While high metric accuracy is more
important in photogrammetry, computer vision seeks
automation and speed. Therefore it is beneficial to apply
techniques developed in both disciplines for faster and more
accurate results. In this paper issues from both of these
disciplines are referred to compute volumetric models of
objects from its color images.
3D object reconstruction from a series of digital images is an
important problem both in computer vision and
photogrammetry. Optical 3D shape acquisition can be
performed either by scanning the object or by taking its images.
In this paper the shape of the objects is captured by a CCD
camera which is a low-cost alternative to laser scanners.
The shape recovery method described in this paper can be used
in many application areas such as in virtual worlds,
entertainment, cultural heritage preservation, home shopping
and design.
In this paper we use voxels as 3D primitives. Volumetric data
was first introduced in the 70’s in medical imaging and is now
commonly used in scientific visualization, computer vision and
graphics. Although voxels consume large amounts of memory
they provide more flexible reconstructions of complex objects.
Therefore voxel-based reconstruction methods have become an
alternative to surface based representations.
In this paper the model is acquired in two steps. First, the
approximate model is acquired by a volume intersection (shape
from silhouettes) algorithm. The intersection of the silhouette
cones from multiple images gives a good estimation of the true
model which is called the object’s visual hull (Matusik et al,
2000). This algorithm is popular in computer vision due to its

fast computation and robustness. However the concavities on an
object cannot be recovered with this technique. We refine the
model acquired by volume intersection method by our shell
carving algorithm. The closest related method to our proposed
algorithm is the Voxel coloring algorithm (Seitz and Dyer,
1997). Also see (Kuzu and Sinram, 2002). These algorithms use
color consistency to distinguish surface points from the other
points in the scene. They use the fact that surface points in a
scene project into consistent (similar) colors in the input
images. Our algorithm differs from present voxel coloring
algorithms in the way that we compute the visibility
information. The other basic difference is instead of pooling the
pixels of the images a visible voxel projects into, we perform
image matching powered by knowledge-based patch distortion
to lessen deformation effects.
In the next chapter, the image acquisition setup is described.
The image orientation process is also explained. The
reconstruction of the model using shape from silhouette
technique will be described in chapter 3. Chapter 4 introduces
the computation of visibility information. In chapter 5, image
matching is given and in chapter 6 the refinement algorithm is
explained. Chapter 7 finally summarizes this paper.

2. 3D SHAPE ACQUISITION

We have low-cost system requirements, since we are using a
stationary standard CCD video-camera in order to acquire still
images. We use a calibration object to compute the interior
orientation parameters of the camera. The image acquisition is
performed in front of a blue, homogenous background. Multiple
views are captured rotating the object resulting in a circular
camera setup.

mailto:kuzu@yildiz.edu.tr
mailto:sinram@fpk.tu-berlin.de

2.1 Camera Calibration and Image Orientation

Prior the image acquisition, the camera should be calibrated.
We calibrated the sensor using several images with a calibration
object having three perpendicular square planes and 25 control
points on each side. Since we use an off-shelf CCD camera, we
switch off the auto-focus, so that the focal length remains fixed
throughout the whole process.
In a second step, the object is placed inside the calibration
frame in order to define some natural control points accurately.
We performed a bundle block adjustment with all the images,
which delivered the interior camera parameters as well as the
coordinates of the control points, which were initially
introduced as new points.
In order to compute the object’s model, the images should be
oriented, the rotations and the position of the cameras should be
known. In many cases we cannot mark control points on the
objects, therefore natural textures can be used.
The images were adjusted in a bundle block adjustment process.
We used enough tie points in all images in the circular camera
setup to perform a bundle block adjustment, covering all
images. We achieved very accurate results for the image
orientations, using the previously calibrated camera. The image
projection centers had accuracies of 1-2 mm, the rotation were
determined with 0.05-0.1 gon.

3. APPROXIMATE MODEL

One of the well-known approaches to acquire 3D models of
objects is voxel-based visual hull reconstruction, which
recovers the shape of the objects from their contours.
A silhouette image is a binary image and easily obtained by
image segmentation algorithms. Image pixels indicate if they
represent an object point or background point. Since the blue
background that we use is sufficiently homogeneous, we can
easily define a hue domain, which is considered background. A
pixel’s position in the IHS-colorspace is examined in order to
decide if it represents background or object. We performed the
image segmentation using the academic software HsbVis.

Figure 1: Intersection of silhouette cones

To start with, we define a 3D discrete space which contains
only opaque voxels with the value “255” representing object
points. In order to compute the silhouette cone, we projected all
the cube’s voxels into every image. If the image coordinate
defines a background pixel; the voxel is labeled transparent by
giving it the value “0” which means the voxel of interest now
represents empty regions in the voxel cube. The volume
intersection algorithm intersects all silhouette cones from
multiple images to achieve the estimate geometry of the object,
which is called the object’s visual hull. See (Kuzu and
Rodehorst, 2000) for more details.
In Figure 1 you see the intersection of the silhouette cones
acquired, using 1, 3, 5 and 9 images. As you will notice with
increasing number of images this method obtains better
approximations to the objects true shape.
As shown in Figure 2, concavities cannot be recovered with this
method since the viewing region doesn’t completely surround

the object. The accuracy of the visual hull depends on the
number of the images and the complexity of the object.

Figure 2: Concave areas in visual hull reconstruction

However, since the result encloses the largest possible volume
where the true shape lies and the implementation is
straightforward and easy, it is an attractive method for
applications where the approximate shape is required. We use
the visual hull as the first step of our reconstruction algorithm
and we consider the shell carving algorithm as a refinement
method to carve away the necessary voxels in the concave areas
of the visual hull for a more precise reconstruction.

4. COMPUTATION OF VISIBILITY INFORMATION

It is crucial to find out which voxel is visible in which image.
We will use a line tracing algorithm to check each voxel along
the line, whether it is background or object voxel. As soon as an
opaque voxel is encountered, the initial voxel can be considered
occluded. When the line exits the defined voxel cube, it can be
stopped, assuming that the voxel is visible. Whether lying on
the backside or occluded by another voxel, the algorithm will
correctly tell if the voxel is visible or not.

Figure 3: Considering occluded areas

In Figure 3, we show why the knowledge of visibility can be
crucial. If we take a closer look at the vase, we will see that the
handle is occluding some voxels for some specific images.
Hence these images, which theoretically have the best view to
the occluded voxels, concerning the viewing angle, cannot see
the voxels and therefore should not be considered. From the set
of remaining images, the best candidate needs to be chosen.

4.1 Creating the Surface Voxel List

The surface voxel list (SVL) is designed to contain all voxels,
which lie on the object’s surface. Compared to the total amount
of object voxels, the SVL contains only a small percentage,
therefore creating the SVL might speed up some operations
tremendously. Depending on the neighborhood order fewer or
more voxels are considered to be surface voxels and the whole
set becomes more or less dense. If noise is likely to be the case
but not desired a surface voxel can be defined as follows:

1. The voxel itself is and object voxel
2. At least one neighbor is not an object voxel
3. At least one other neighbor is again an object voxel

Nevertheless, the set of all surface voxels forms the surface
voxel list (SVL). The simplest solution constructs a dynamic
double-linked list where each item contains the voxels
coordinates and each item has a reference to its predecessor and
its successor.

4.2 Surface Normal Vector

The surface normal vector gives information of the direction
where a voxel is facing (Figure 4). So it can serve as a quality
measure for visibility related to a certain viewpoint. When we
perform image matching, we would like to decide, whether a
certain voxel is a sensible candidate. If it looks away from the
camera, we can expect a highly distorted pattern, but when it
looks in the direction of the camera it might give a good result.

Figure 4: Surface normal vectors on a large voxel surface

Our approach for derivation of surface normal vector calculates
a least-squares adjustment on a specific subset of surface voxels
for the plane equation or: () 0. =− pxn rrr

 (1) 0=+⋅+⋅+⋅ dzcybxa

We define a certain radius and we take all the surface voxels in
this radius and write them into the matrix A, with:

 (2)
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

MMM
222
111

zyx
zyx

A

and the unknown vector:

 (3)
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

z

y

x

n
n
n

c
b
a

X

Since we are only interested in the direction of the tangential
surface, the unknown vector contains only the three elements a,
b and c, which directly correspond to the elements of the
surface normal vector.
We have to solve the equation A⋅X=0. We will use the singular
value decomposition (SVD) to compute the best solution, with
X≠0 (Hartley, Zisserman, 2000). The SVD will be used to split
the design matrix A into three new matrices U, D and VT, such
that A=U⋅D⋅VT, where U and V are orthogonal matrices and D
is a diagonal matrix with non-negative entries. The solution of
the above equation can be written down as the following steps:

• Perform the SVD for the A matrix.
• Let i be the index of the smallest value in the D

matrix.
• The solution vector X corresponds to the i.th column

in the V matrix which are the elements of the desired
normal vector.

When we calculate the angle between the surface normal and
the ray of sight, it can tell us whether the voxel is ‘looking in
our direction’ or not. Hence, if the angle is small, it is facing the
image, and if it exceeds 90° it can be considered hidden.
Now, let P

r
 be the vector of projection, along which the voxel

of interest is projected onto the image plane.

n

α
P

Figure 5: Angle α between the surface normal and the

projection vector
n
r

P
r

We can now compute the angle between the surface normal
vector n

r
 and the projection vector P

r
 (see Figure 5) according

to the scalar product (or dot product):

Pn
Pn
rr

rr

.

.cos =α (4)

a) original

b) gray
(light pixels = small angle)

Figure 6: Visualization of the angle between surface normal and
projection vector

Figure 6 is a visual validation of the surface normal vector
computation. The left picture is an original digital image,
captured by the camera. The right picture shows the angle

according to the approximated volume intersection model
where the lighter the pixel, the smaller the angle.

4.3 Line Tracing

When computing a voxel’s visibility we perform line tracing.
The voxel line is defined by the image projection center (X0, Y0,
Z0) and either a voxel (VX, VY, VZ) or a pixel (i, k, -c). In our
case there is no information outside the defined voxel cube.
Since line tracing a time consuming process, we should define a
sensible geometric limitation with two preconditions:

• Each voxel must be covered by the line.
• Not too much empty space should be swept by the line.

With the help of the equation below several approaches can be
derived.

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

0

0

0

0

0
1

Z
Y
X

c
yy
xx

R
Z
Y
X

pixel

i

i

voxel

λ (5)

For a simple approach, we will choose two values for λ, to
define a start- and an end-point for the line. It is based on the
assumption, that a λ-factor according to the farthest and the
nearest corner of the voxel cube will completely enclose the
whole cube. For this definition, all we have to do is to calculate
the distance to each of the eight corners, and determine the
minimum and maximum of these values. Those two λ-factors
will be globally valid for all pixels of one image.

Figure 7: 18-connected (dark pixels) and 6-connected line

(light+dark pixels) in 2D

Connectivity is an important issue in line tracing. By choosing
the connectivity of the line, we traverse fewer or more voxels.
There are different degrees of neighborhoods, which will affect
the thickness of the line. In three dimensions we can define 6-,
18-, or 24-connected lines. Figure 7 shows the difference
between a 6-connected and an 18-connected line (for simplicity
in 2D). An algorithm for a 6-connected line can be found in
(Amanatides and Woo, 1987).

5. IMAGE MATCHING

We use color image matching to search for image
correspondences since an RGB-triplet contains more
information than a single gray value. When we perform image
matching, the consideration of red, green and blue channels
separately might reveal texture information more clearly.
In general we might classify the possible color image matching
approaches into two groups. First, we can throw all color
channels into one equation and get one correlation factor as a
result. Second, we calculate a correlation factor for each
channel separately. Here we will only present the single vector
correlation and the difference correlation as our color image
matching algorithms.

5.1 Single Vector Correlation

Several tests have shown us that the simplest and at the same
time the most reliable solution is the correlation of all the input
data in one vector. Assuming the normal case of having three
channels of color (RGB, CMY, IHS), we will now have three
times as many observations as in gray images:
 3 . . heightwidthn =
The idea is to put all these observation in one vector, resulting
in one single correlation coefficient:

∑∑∑∑∑∑

∑∑∑

−−

−−
=

ch x ych x y

ch x y

gggg

gggg
r

2
22

2
11

2211

)(.)(

)).((
 (6)

where: g is the density (gray value) and g is the arithmetic
mean of densities and ch denotes the color channels.

5.2 Difference Correlation

For this method, we can apply the same approaches, as for the
normalized cross correlation. Hence, we can calculate one value
by summing up all the differences over the three channels, or
we can derive three separate values and calculate a weighted
and a non-weighted mean value. We only consider the single
vector variant for this approach:

()

()minmax

21

 . . .3
1

ggheightwidth

ggAbs
r ch x y

D −

−
−=

∑∑∑
 (7)

5.3 Introducing Knowledge about the Approximate Shape

In area-based image matching, large base line would cause high
patch deformations due to perspective distortions; as a result
image matching would fail. However, in our proposed
knowledge based patch distortion, this effect is reduced since
these deformations are considered and accordingly transformed
patches are grabbed for image matching.

Figure 8: Creating a tangential surface patch

Additionally to the image orientation, we can offer the
knowledge of the approximate shape of the object. This is
especially the case, after performing volume intersection. The
idea is to approximate the image patch on the surface of the
object itself. This patch will then be projected into all
candidates for the image matching. Hence, we need to construct
the tangential surface at the voxel of interest. The computation
of surface normal vector has already been described as:

 () 0. =− pxn rrr

What we would like to do now is to create a rectangular patch
on that surface. It follows that we need a local 2D coordinate
system, as seen in Figure 8.
We will now create the vector x, with the following two
conditions: it is perpendicular to n and parallel to the XY plane.
It follows that:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=⇒

0
y
x

xXYx
rr

 (8)

and:

0.....0. =+=++⇒= xynyxxnxxznzxynyxxnxxn
rr

 (9)

Choosing xx = ny and yx = -nx delivers the desired vector. The
construction of the vector y can be derived by taking the cross
product of n and x. Figure 9 shows the improvement to the
patches when considering the object shape. We can clearly see
a difference between the original slave patches while the
knowledge based patches show less variety.

Original images with marked surface patch

Grabbed slave patches without knowledge

Grabbed slave patches with considered distortion

Figure 9: The improvement of taking the object shape into
account

6. SHELL CARVING

As the name suggests, in this approach we want to carve away
the false voxels on the outer shell of the visual hull. First we
create the SVL. All these surface voxels should be processed
one by one. For each voxel, we will check if it is part of the true
surface. The algorithm will stop, if in a shell no voxels are
considered false or if a maximum carving depth has been
reached.
Very briefly, the algorithm can be separated into the following
steps:

• Create surface voxel list.
• For each voxel:

• Select three, at least two images with the best view.
• Perform image matching in the selected images.
• Carve the voxel, if considered different; Set a fixed-

flag, if considered equal.
Now, we want to check each voxel, if it is part of the true
surface, hence if it is projected into corresponding image
templates. Therefore, we need to find at least two images, in
which this voxel is visible. From the set of images, we can first
exclude those, where the voxel is occluded (see Figure 3). From
the remaining set of images, we will have to choose two or
three images, where we can assume the best visibility. This
assumption is based on the surface normal vector.
If we have two images, we can perform an image matching to
see whether the voxel projects into corresponding image points
or not. When three images are available, we can crosscheck the
similarity with another pair of templates to improve reliability.
At this point, the knowledge based patch distortion can be
applied for a more reliable template matching.
Once a voxel has been found true, a flag is set, stating that this
voxel is true and should not be considered again. Voxels, which
are projected to different image patches, will be carved. So shell
by shell, we will normally have an increasing number of fixed
voxels, and a decreasing number of carved voxels, until this
number drops below a certain threshold or until a maximum
carving depth has been reached.
The alternate approach is voting-based carving which evaluates
every sensible combination of image matching before deciding
to carve the voxel or not. For this purpose, a second cube is
introduced, which will store the votes of the single decisions.
Here, we introduce two counters. The first one keeps track of
all comparisons we made. The second counts the number of
successful comparisons. The comparison can be made with any
of the previously introduced matching approaches, with or
without knowledge based patch distortion. However, the two
counter numbers tell us now the percentage of successful
comparisons. Applying a threshold to this percentage will either
carve or leave the voxel.
Nevertheless, we are storing the actual voting value inside a
new cube. For visualization purposes, this value is scaled to fit
the value range of 0…255, hence percentage*2.55 is actually
stored into the cube. When we now visualize the cube, we can
clearly see how the single surface voxels were considered. The
lighter the value, the more certainly it is a surface voxel, and
the darker, the safer it is to carve. Figure 10 illustrates the
results of the voting.

7. SUMMARY REFERENCES

In this paper we presented shell carving as a refinement
algorithm to the approximate model acquired by volume
intersection method. An experimental image acquisition setup
was explained on which the introduced algorithms were tested.
Visibility information is recovered using line tracing. As an
extension to line tracing, we introduced surface normal vector
derived from a regional section of surface voxels. Two color
image matching algorithms are introduced to search for image
correspondences. Since RGB-triplets contain more information
than a single gray value, these algorithms turned out to deliver
more accurate results. We made use of the image orientation
data for a knowledge based template grabbing. This takes
perspective distortion into consideration and makes cross
correlation insensitive to rotated images. The image matching
was significantly improved by the knowledge-based patch
distortion. The approximate model from volume intersection is
improved successfully by combining all these tools and we
presented some results.

Amanatides, J., Woo A., 1987. A Fast Voxel Traversal
Algorithm for Ray Tracing. Proc. Eurographics '87, pp 1-10.
Hartley R., Zisserman A., 2000. Multiple View Geometry in

Computer Vision. Cambridge University Press.
Kuzu, Y. Rodehorst, V., 2001. Volumetric Modelling using

Shape from Silhouette. Fourth Turkish-German Joint Geodetic
Days., pp. 469-476.

Kuzu, Y. Sinram, O., 2002. Photorealistic Object
Reconstruction using Voxel Coloring and Adjusted Image

Orientations. ACSM/ASPRS Annual Conference, Washington
DC, Proceedings CD-ROM, Proceed\00437.pdf.

Matusik, W. Buehler, C. Raskar, R. Gortler, S. J. and
McMillan, L., 2000. Image-Based Visual Hulls. SIGGRAPH
2000 , Computer Graphics Proceedings, Annual Conference

Series, pp. 369-374.
Seitz, M. Dyer, R., 1997. Photorealistic Scene Reconstruction

by Voxel Coloring. Proceeding of Computer Vision and Pattern
Recognition Conference, pp. 1067-1073.

Figure 10: Different viewpoints of the Nefertiti cube. The result of shape from silhouette (left), refinement by voting based

carving (right)

	INTRODUCTION
	3D SHAPE ACQUISITION
	Camera Calibration and Image Orientation

	APPROXIMATE MODEL
	COMPUTATION OF VISIBILITY INFORMATION
	Creating the Surface Voxel List
	Surface Normal Vector
	Line Tracing

	IMAGE MATCHING
	Single Vector Correlation
	Difference Correlation
	Introducing Knowledge about the Approximate Shape

	SHELL CARVING
	SUMMARY

