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ABSTRACT: 
 
In this paper we present a voxel-based object reconstruction technique to compute photo realistic volume models of real world 
objects from multiple color images. The 3D object acquisition is performed using a CCD video camera, where the images of the 
object have been captured in a circular camera setup. Before starting the image acquisition, the sensor is calibrated in order to 
determine the interior and exterior parameters of the camera. Due to the missing of control points on the object, the images undergo 
a process of relative orientation in a free network using manually measured tie points. The approximate model of the object can be 
easily acquired by a volume intersection method in a fast and a robust way, which results in the convex hull of the object. The shell 
of the object, namely the surface voxels are easily obtained from this model. In order to get into the concavities and refine the model 
we introduced the shell carving method. For the visibility computation, we introduce ray tracing and surface normal vector 
computation. We use color image matching to search for image correspondences. Furthermore, we make use of the image orientation 
data for a knowledge based template grabbing. Voxels which are projected into non-corresponding image points are carved away 
from the shell. And the final set of voxels contains sufficient color and texture information to accurately represent the object. 
 
 

1. INTRODUCTION 

Photogrammetry and computer vision are closely related 
disciplines which meet on common research areas such as 
creating 3D object models. While high metric accuracy is more 
important in photogrammetry, computer vision seeks 
automation and speed. Therefore it is beneficial to apply 
techniques developed in both disciplines for faster and more 
accurate results. In this paper issues from both of these 
disciplines are referred to compute volumetric models of 
objects from its color images. 
3D object reconstruction from a series of digital images is an 
important problem both in computer vision and 
photogrammetry. Optical 3D shape acquisition can be 
performed either by scanning the object or by taking its images. 
In this paper the shape of the objects is captured by a CCD 
camera which is a low-cost alternative to laser scanners. 
The shape recovery method described in this paper can be used 
in many application areas such as in virtual worlds, 
entertainment, cultural heritage preservation, home shopping 
and design. 
In this paper we use voxels as 3D primitives. Volumetric data 
was first introduced in the 70’s in medical imaging and is now 
commonly used in scientific visualization, computer vision and 
graphics. Although voxels consume large amounts of memory 
they provide more flexible reconstructions of complex objects. 
Therefore voxel-based reconstruction methods have become an 
alternative to surface based representations. 
In this paper the model is acquired in two steps. First, the 
approximate model is acquired by a volume intersection (shape 
from silhouettes) algorithm. The intersection of the silhouette 
cones from multiple images gives a good estimation of the true 
model which is called the object’s visual hull (Matusik et al, 
2000). This algorithm is popular in computer vision due to its 

fast computation and robustness. However the concavities on an 
object cannot be recovered with this technique. We refine the 
model acquired by volume intersection method by our shell 
carving algorithm. The closest related method to our proposed 
algorithm is the Voxel coloring algorithm (Seitz and Dyer, 
1997). Also see (Kuzu and Sinram, 2002). These algorithms use 
color consistency to distinguish surface points from the other 
points in the scene. They use the fact that surface points in a 
scene project into consistent (similar) colors in the input 
images. Our algorithm differs from present voxel coloring 
algorithms in the way that we compute the visibility 
information. The other basic difference is instead of pooling the 
pixels of the images a visible voxel projects into, we perform 
image matching powered by knowledge-based patch distortion 
to lessen deformation effects. 
In the next chapter, the image acquisition setup is described. 
The image orientation process is also explained. The 
reconstruction of the model using shape from silhouette 
technique will be described in chapter 3. Chapter 4 introduces 
the computation of visibility information. In chapter 5, image 
matching is given and in chapter 6 the refinement algorithm is 
explained. Chapter 7 finally summarizes this paper. 
 

2. 3D SHAPE ACQUISITION 

We have low-cost system requirements, since we are using a 
stationary standard CCD video-camera in order to acquire still 
images. We use a calibration object to compute the interior 
orientation parameters of the camera. The image acquisition is 
performed in front of a blue, homogenous background. Multiple 
views are captured rotating the object resulting in a circular 
camera setup. 
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2.1 Camera Calibration and Image Orientation 

Prior the image acquisition, the camera should be calibrated. 
We calibrated the sensor using several images with a calibration 
object having three perpendicular square planes and 25 control 
points on each side. Since we use an off-shelf CCD camera, we 
switch off the auto-focus, so that the focal length remains fixed 
throughout the whole process. 
In a second step, the object is placed inside the calibration 
frame in order to define some natural control points accurately. 
We performed a bundle block adjustment with all the images, 
which delivered the interior camera parameters as well as the 
coordinates of the control points, which were initially 
introduced as new points. 
In order to compute the object’s model, the images should be 
oriented, the rotations and the position of the cameras should be 
known. In many cases we cannot mark control points on the 
objects, therefore natural textures can be used. 
The images were adjusted in a bundle block adjustment process. 
We used enough tie points in all images in the circular camera 
setup to perform a bundle block adjustment, covering all 
images. We achieved very accurate results for the image 
orientations, using the previously calibrated camera. The image 
projection centers had accuracies of 1-2 mm, the rotation were 
determined with 0.05-0.1 gon. 
 

3. APPROXIMATE MODEL 

One of the well-known approaches to acquire 3D models of 
objects is voxel-based visual hull reconstruction, which 
recovers the shape of the objects from their contours. 
A silhouette image is a binary image and easily obtained by 
image segmentation algorithms. Image pixels indicate if they 
represent an object point or background point. Since the blue 
background that we use is sufficiently homogeneous, we can 
easily define a hue domain, which is considered background. A 
pixel’s position in the IHS-colorspace is examined in order to 
decide if it represents background or object. We performed the 
image segmentation using the academic software HsbVis. 
 

 
Figure 1: Intersection of silhouette cones 

 
To start with, we define a 3D discrete space which contains 
only opaque voxels with the value “255” representing object 
points. In order to compute the silhouette cone, we projected all 
the cube’s voxels into every image. If the image coordinate 
defines a background pixel; the voxel is labeled transparent by 
giving it the value “0” which means the voxel of interest now 
represents empty regions in the voxel cube. The volume 
intersection algorithm intersects all silhouette cones from 
multiple images to achieve the estimate geometry of the object, 
which is called the object’s visual hull. See (Kuzu and 
Rodehorst, 2000) for more details. 
In Figure 1 you see the intersection of the silhouette cones 
acquired, using 1, 3, 5 and 9 images. As you will notice with 
increasing number of images this method obtains better 
approximations to the objects true shape. 
As shown in Figure 2, concavities cannot be recovered with this 
method since the viewing region doesn’t completely surround 

the object. The accuracy of the visual hull depends on the 
number of the images and the complexity of the object. 
 

 
Figure 2: Concave areas in visual hull reconstruction 

 
However, since the result encloses the largest possible volume 
where the true shape lies and the implementation is 
straightforward and easy, it is an attractive method for 
applications where the approximate shape is required. We use 
the visual hull as the first step of our reconstruction algorithm 
and we consider the shell carving algorithm as a refinement 
method to carve away the necessary voxels in the concave areas 
of the visual hull for a more precise reconstruction. 
 

4. COMPUTATION OF VISIBILITY INFORMATION 

It is crucial to find out which voxel is visible in which image. 
We will use a line tracing algorithm to check each voxel along 
the line, whether it is background or object voxel. As soon as an 
opaque voxel is encountered, the initial voxel can be considered 
occluded. When the line exits the defined voxel cube, it can be 
stopped, assuming that the voxel is visible. Whether lying on 
the backside or occluded by another voxel, the algorithm will 
correctly tell if the voxel is visible or not. 
 

 
Figure 3: Considering occluded areas 

 
In Figure 3, we show why the knowledge of visibility can be 
crucial. If we take a closer look at the vase, we will see that the 
handle is occluding some voxels for some specific images. 
Hence these images, which theoretically have the best view to 
the occluded voxels, concerning the viewing angle, cannot see 
the voxels and therefore should not be considered. From the set 
of remaining images, the best candidate needs to be chosen. 



 

4.1 Creating the Surface Voxel List 

The surface voxel list (SVL) is designed to contain all voxels, 
which lie on the object’s surface. Compared to the total amount 
of object voxels, the SVL contains only a small percentage, 
therefore creating the SVL might speed up some operations 
tremendously. Depending on the neighborhood order fewer or 
more voxels are considered to be surface voxels and the whole 
set becomes more or less dense. If noise is likely to be the case 
but not desired a surface voxel can be defined as follows: 

1. The voxel itself is and object voxel 
2. At least one neighbor is not an object voxel 
3. At least one other neighbor is again an object voxel 

Nevertheless, the set of all surface voxels forms the surface 
voxel list (SVL). The simplest solution constructs a dynamic 
double-linked list where each item contains the voxels 
coordinates and each item has a reference to its predecessor and 
its successor. 
 
4.2 Surface Normal Vector 

The surface normal vector gives information of the direction 
where a voxel is facing (Figure 4). So it can serve as a quality 
measure for visibility related to a certain viewpoint. When we 
perform image matching, we would like to decide, whether a 
certain voxel is a sensible candidate. If it looks away from the 
camera, we can expect a highly distorted pattern, but when it 
looks in the direction of the camera it might give a good result. 
 

 
Figure 4: Surface normal vectors on a large voxel surface 

 
Our approach for derivation of surface normal vector calculates 
a least-squares adjustment on a specific subset of surface voxels 
for the plane equation  or: ( ) 0. =− pxn rrr
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We define a certain radius and we take all the surface voxels in 
this radius and write them into the matrix A, with: 
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Since we are only interested in the direction of the tangential 
surface, the unknown vector contains only the three elements a, 
b and c, which directly correspond to the elements of the 
surface normal vector. 
We have to solve the equation A⋅X=0. We will use the singular 
value decomposition (SVD) to compute the best solution, with 
X≠0 (Hartley, Zisserman, 2000). The SVD will be used to split 
the design matrix A into three new matrices U, D and VT, such 
that A=U⋅D⋅VT, where U and V are orthogonal matrices and D 
is a diagonal matrix with non-negative entries. The solution of 
the above equation can be written down as the following steps: 

• Perform the SVD for the A matrix. 
• Let i be the index of the smallest value in the D 

matrix. 
• The solution vector X corresponds to the i.th column 

in the V matrix which are the elements of the desired 
normal vector. 

When we calculate the angle between the surface normal and 
the ray of sight, it can tell us whether the voxel is ‘looking in 
our direction’ or not. Hence, if the angle is small, it is facing the 
image, and if it exceeds 90° it can be considered hidden. 
Now, let P

r
 be the vector of projection, along which the voxel 

of interest is projected onto the image plane. 

n

α
P

 
Figure 5: Angle α between the surface normal  and the 

projection vector 
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We can now compute the angle between the surface normal 
vector n

r
 and the projection vector P

r
 (see Figure 5) according 

to the scalar product (or dot product): 
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a) original 

 

b) gray 
(light pixels = small angle) 

Figure 6: Visualization of the angle between surface normal and 
projection vector 

 
Figure 6 is a visual validation of the surface normal vector 
computation. The left picture is an original digital image, 
captured by the camera. The right picture shows the angle 



 

according to the approximated volume intersection model 
where the lighter the pixel, the smaller the angle. 
 
4.3 Line Tracing 

When computing a voxel’s visibility we perform line tracing. 
The voxel line is defined by the image projection center (X0, Y0, 
Z0) and either a voxel (VX, VY, VZ) or a pixel (i, k, -c). In our 
case there is no information outside the defined voxel cube. 
Since line tracing a time consuming process, we should define a 
sensible geometric limitation with two preconditions: 

• Each voxel must be covered by the line. 
• Not too much empty space should be swept by the line. 

With the help of the equation below several approaches can be 
derived. 
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For a simple approach, we will choose two values for λ, to 
define a start- and an end-point for the line. It is based on the 
assumption, that a λ-factor according to the farthest and the 
nearest corner of the voxel cube will completely enclose the 
whole cube. For this definition, all we have to do is to calculate 
the distance to each of the eight corners, and determine the 
minimum and maximum of these values. Those two λ-factors 
will be globally valid for all pixels of one image. 
 

 
Figure 7: 18-connected (dark pixels) and 6-connected line 

(light+dark pixels) in 2D 
 
Connectivity is an important issue in line tracing. By choosing 
the connectivity of the line, we traverse fewer or more voxels. 
There are different degrees of neighborhoods, which will affect 
the thickness of the line. In three dimensions we can define 6-, 
18-, or 24-connected lines. Figure 7 shows the difference 
between a 6-connected and an 18-connected line (for simplicity 
in 2D). An algorithm for a 6-connected line can be found in 
(Amanatides and Woo, 1987). 
 

5. IMAGE MATCHING 

We use color image matching to search for image 
correspondences since an RGB-triplet contains more 
information than a single gray value. When we perform image 
matching, the consideration of red, green and blue channels 
separately might reveal texture information more clearly. 
In general we might classify the possible color image matching 
approaches into two groups. First, we can throw all color 
channels into one equation and get one correlation factor as a 
result. Second, we calculate a correlation factor for each 
channel separately. Here we will only present the single vector 
correlation and the difference correlation as our color image 
matching algorithms. 

 
5.1 Single Vector Correlation 

Several tests have shown us that the simplest and at the same 
time the most reliable solution is the correlation of all the input 
data in one vector. Assuming the normal case of having three 
channels of color (RGB, CMY, IHS), we will now have three 
times as many observations as in gray images: 
 3 .  . heightwidthn =  
The idea is to put all these observation in one vector, resulting 
in one single correlation coefficient: 
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where: g is the density (gray value) and g is the arithmetic 
mean of densities and ch denotes the color channels. 
 
5.2 Difference Correlation 

For this method, we can apply the same approaches, as for the 
normalized cross correlation. Hence, we can calculate one value 
by summing up all the differences over the three channels, or 
we can derive three separate values and calculate a weighted 
and a non-weighted mean value. We only consider the single 
vector variant for this approach: 
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5.3 Introducing Knowledge about the Approximate Shape 

In area-based image matching, large base line would cause high 
patch deformations due to perspective distortions; as a result 
image matching would fail. However, in our proposed 
knowledge based patch distortion, this effect is reduced since 
these deformations are considered and accordingly transformed 
patches are grabbed for image matching. 
 

 
Figure 8: Creating a tangential surface patch 



 

Additionally to the image orientation, we can offer the 
knowledge of the approximate shape of the object. This is 
especially the case, after performing volume intersection. The 
idea is to approximate the image patch on the surface of the 
object itself. This patch will then be projected into all 
candidates for the image matching. Hence, we need to construct 
the tangential surface at the voxel of interest. The computation 
of surface normal vector has already been described as: 

 ( ) 0. =− pxn rrr

What we would like to do now is to create a rectangular patch 
on that surface. It follows that we need a local 2D coordinate 
system, as seen in Figure 8. 
We will now create the vector x, with the following two 
conditions: it is perpendicular to n and parallel to the XY plane. 
It follows that: 
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and: 
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Choosing xx = ny and yx = -nx delivers the desired vector. The 
construction of the vector y can be derived by taking the cross 
product of n and x. Figure 9 shows the improvement to the 
patches when considering the object shape. We can clearly see 
a difference between the original slave patches while the 
knowledge based patches show less variety. 
 

  
Original images with marked surface patch 

  
Grabbed slave patches without knowledge 

  
Grabbed slave patches with considered distortion 

Figure 9: The improvement of taking the object shape into 
account 

6. SHELL CARVING 

As the name suggests, in this approach we want to carve away 
the false voxels on the outer shell of the visual hull. First we 
create the SVL. All these surface voxels should be processed 
one by one. For each voxel, we will check if it is part of the true 
surface. The algorithm will stop, if in a shell no voxels are 
considered false or if a maximum carving depth has been 
reached. 
Very briefly, the algorithm can be separated into the following 
steps: 

• Create surface voxel list. 
• For each voxel: 

• Select three, at least two images with the best view. 
• Perform image matching in the selected images. 
• Carve the voxel, if considered different; Set a fixed-

flag, if considered equal. 
Now, we want to check each voxel, if it is part of the true 
surface, hence if it is projected into corresponding image 
templates. Therefore, we need to find at least two images, in 
which this voxel is visible. From the set of images, we can first 
exclude those, where the voxel is occluded (see Figure 3). From 
the remaining set of images, we will have to choose two or 
three images, where we can assume the best visibility. This 
assumption is based on the surface normal vector. 
If we have two images, we can perform an image matching to 
see whether the voxel projects into corresponding image points 
or not. When three images are available, we can crosscheck the 
similarity with another pair of templates to improve reliability. 
At this point, the knowledge based patch distortion can be 
applied for a more reliable template matching. 
Once a voxel has been found true, a flag is set, stating that this 
voxel is true and should not be considered again. Voxels, which 
are projected to different image patches, will be carved. So shell 
by shell, we will normally have an increasing number of fixed 
voxels, and a decreasing number of carved voxels, until this 
number drops below a certain threshold or until a maximum 
carving depth has been reached. 
The alternate approach is voting-based carving which evaluates 
every sensible combination of image matching before deciding 
to carve the voxel or not. For this purpose, a second cube is 
introduced, which will store the votes of the single decisions. 
Here, we introduce two counters. The first one keeps track of 
all comparisons we made. The second counts the number of 
successful comparisons. The comparison can be made with any 
of the previously introduced matching approaches, with or 
without knowledge based patch distortion. However, the two 
counter numbers tell us now the percentage of successful 
comparisons. Applying a threshold to this percentage will either 
carve or leave the voxel. 
Nevertheless, we are storing the actual voting value inside a 
new cube. For visualization purposes, this value is scaled to fit 
the value range of 0…255, hence percentage*2.55 is actually 
stored into the cube. When we now visualize the cube, we can 
clearly see how the single surface voxels were considered. The 
lighter the value, the more certainly it is a surface voxel, and 
the darker, the safer it is to carve. Figure 10 illustrates the 
results of the voting. 
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Figure 10: Different viewpoints of the Nefertiti cube. The result of shape from silhouette (left), refinement by voting based 

carving (right) 
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