
PHOTO-REALISTIC SCENE GENERATION FOR PC-BASED REAL-TIME
OUTDOOR VIRTUAL REALITY APPLICATIONS

E. Yılmaza, , H.H. Maraş a, Y.Ç. Yardımcı b *

a GCM, General Command of Mapping, 06100 Cebeci, Ankara, Turkey - (eyilmaz, hmaras)@hgk.mil.tr

b Informatics Institute, Middle East Technical University, 06531 İnönü Bulvarı, Ankara, Turkey -
yardimy@ii.metu.edu.tr

KEY WORDS: Outdoor Virtual Environment, Synthetic Scene, Crowd Animation

ABSTRACT:

In this study we developed a 3D Virtual Reality application to render real-time photo-realistic outdoor scenes by using present-day
mid-class PCs. High quality textures are used for photo-realism. Crowds in the virtual environment are successfully animated.
Ability of handling thousands of simultaneously moving objects is an interesting feature since that amount of dynamic objects is not
common in similar applications. Realistic rendering of the Sun and the Moon, visualization of time of day and atmospheric effects
are other features of the study. Text to speech is used to inform user while experiencing the visual sensation of moving in the virtual
scene. Integration with GIS helped rapid and realistic creation of virtual environments. The overall rendering performance is deemed
satisfactory when we consider the achieved interactive frame rates.

* Corresponding author.

1. INTRODUCTION

Virtual Environments (VE) where we can pay a visit are no
longer far away from us. Developments in rendering
capabilities of graphics hardware and decrease in the prices can
easily turn an average PC that we use in our daily life into a
cyberspace. PC-based VR applications are used in many fields
such as computer games, simulators, entertainment, education,
medical applications or real-estate presentations. Higher realism
level of the rendered scenes effects the users positively. Rough
terrain models, thousands of trees, moving human beings,
animals, vehicles, and buildings are some of the common
elements of typical outdoor scenes. The scene needs to be
refreshed as the user moves or any element of the virtual world
changes position. These renderings must be performed timely
so that the user is not annoyed. In a previous paper we
addressed scene generation for low altitude flights (Yılmaz et
al., 2004). Here we developed a cost-effective real-time VR
application that is capable of rendering realistic crowded
outdoor scenes from the eyes of first-person. Competition in the
video game industry lead to development of algorithms that can
be used to render faster and better VEs. Most of the algorithms
or rendering techniques that we used in this study originated
from entertainment industry.

1.1 Outdoor Virtual Reality

We focused on outdoor VR to be potentially used as a military
application such as visualization of battlefield in which we plan
to conduct further study. Outdoor VR has many challenging
issues that take place between real-time and realism boundaries.
A typical outdoor scene contains terrain, vegetation, culture,
sky, clouds, people, animals etc. The total polygonal cost of
these items is often beyond the rendering capabilities of many
graphics cards.

1.2 Type of Virtual Reality Systems

We can categorize VR systems into two main groups: non-
immersive and immersive. Non-immersive systems let the user
observe virtual world through conventional display devices.
Such systems are also called as desktop virtual reality.
Immersive systems totally replace real world scenes with virtual
ones. Head Mounted Display (HMD) is a typical immersive
system tool. In this study we tested desktop virtual reality
system but our study is ready to be use with immersive system
tools.

1.3 Real-Time Image Generation

One of the primary requirements of VR application is the ability
to update images at high speed. Ideally, this should be no
slower than conventional video frame refresh rates, which are
25 Hz for PAL and 30 Hz for NTSC. Human eye is able to
integrate a rapid succession of discrete images into a visual
continuum that takes effect at the Critical Fusion Frequency
(CFF), which can be as low as 20 Hz. Image size and brightness
are two important factors that determine CFF (Vince, 1995).
Commercial Image Generators used for flight simulators
provide 60 Hz for daylight and 30 Hz for night scenes. In our
application considering the capabilities of our target
configuration and the complexity of the scenes we accepted 25
Hz and upper frame rates as real-time. Frame rates over 10 are
considered as interactive. Frame rate is also strongly related
with the type of VR system. While lower frame rates annoy the
user in a non-immersive system it may cause motion sickness in
an immersive system.

1.4 Object Database

Real-time VR applications mostly provide an object database
that contains 3D models, 2D textures etc. to help creation of life
like scenes. This database mostly covers different versions of
the same model at different level of details (LOD). Low

polygon models with high quality textures should be preferred.
Another idea behind the use of preprocessed models is to save
considerable amount of rebuilding time. In this study we used
such models from Geometric and Dark Basic companies. Our
library contains nearly 1000 objects consist of vehicles,
buildings, people, animals, trees, bushes, fences etc.

1.5 Rendering Performance Issues

It is a known fact that developments in the graphics hardware
dramatically reduced the time needed to render VEs. But
parallel to this development the demand for more realism
increases the complexity of the VEs. The most well known
techniques for handling this complexity are:

• LOD Management,
• Visibility Culling,
• Object Organization.

In LOD management, main idea is to render same object with
different number of polygons considering the distance with the
virtual position of the observer. Throughout this paper the
virtual location where the user observes VE is called as Virtual
eye (V-eye). Objects that are far from V-eye rendered in a low-
polygon form. The problem of removing redundant data that are
not to be displayed is named as visibility culling. Back face
culling, frustum culling and occlusion culling achieve typical
reduction. Back face culling is simply described as not drawing
the inner faces of the closed shape objects since they are
invisible to the V-eye. The viewing volume of perspective
projection is called as frustum. In frustum culling objects that
are outside of the viewing volume are not sent to the graphics
pipeline. This method is useful when polygonal cost of the
object is high. As the name implies occlusion culling is
discarding the objects that are occluded such as objects behind a
wall. Depth buffer mechanism of 3D graphics libraries prevents
drawing occluded objects. The problem in here is to do this job
prior to rendering phase and minimize the workload of graphics
hardware. Object organization defines the hierarchical
organization of objects according to binary, quad or octal trees
or according to some other criteria such as objects in the room.

2. IMPLEMENTATION

We developed an application that can render dynamic crowded
outdoor scenes in real-time. The excessive number of objects in
the virtual environment is probably the most significant
capability of our system. Common features of this software and
the methodology that we used are explained in this part.

2.1 Terrain Modeling

Terrain modeling is one of the most popular research topics of
3D computer graphics. This issue can be divided into two sub
problems: generating geometric terrain model and painting or
texturing terrain surface.

2.1.1 Geometric Terrain Models: Various types of Digital
Elevation Models (DEM) are used to construct geo-specific
terrain models whereas pre-rendered grey-scale bitmap images
or 2D array of height values that are known as heightmap are
used to construct generic models. Our implementation supports
popular DEM formats. The outdoor scenes sometimes contain
more than a million polygons. An average hardware accelerated
graphics card cannot display that many polygons in real-time. A
7.5 minute DEM that covers 1:25K scale map contains 203401

height points which corresponds to 405000 triangles. When we
consider the frame rates that should be met it is clear that it is
necessary to reduce the number of polygons that are going to be
rendered. Many research papers have dealt with different LOD
algorithms and aggressive frustum culling. Famous methods for
terrain rendering are the LOD algorithm (Lindstrom et al.,
1996) and Real-time Optimally Adapting Meshes (ROAM)
method (Duchaineau et al., 1997). These methods and
derivatives eliminate some of the triangles by combining them
with other triangles. In this study we implemented these basic
algorithms to improve performance.

We also designed a terrain editor in which user can generate
generic terrain models by using the tools provided. User can
define the width and length of the terrain model and the interval
of height points. At this point we let user to create a random
base map if he wants. The random functions used by compilers
are not appropriate to produce generic terrain models due to
discontinuities of the functions they produce. It is possible that
very high and very low two points might be side by side. A
random function should change smoothly in order to be used in
terrain model generation. Ken Perlin proposed a method known
as Perlin noise, which became very popular in many fields
including motion picture industry (Perlin, 1984). This method
has been widely used in computer graphics. To create Perlin
noise one first generates a random sequence with maximum
allowable dynamic amplitude range. This sequence is smoothed
using interpolation techniques. As a next step another random
sequence with twice the frequency and half the dynamic range
is created and interpolated. This procedure is repeated until the
desired spatial resolution is obtained. Finally all intermediate
random sequences are combined by addition. As it can be easily
seen in Figure 1, sum of noises looks like a silhouette of a
mountainous area. We used 2D Perlin noise functions to
generate generic terrain model.

Figure 1. Illustration of Perlin Noise

The user can modify this model with mouse or use it directly. In
the Terrain Editor module, Gaussian equation is used to edit the
terrain model. The point that the user clicks with the mouse is
considered as the centre point. The region around this point can
be raised or lowered to create hills or pits. It is possible to
change the parameters of the Gaussian function in order to
generate different shapes. Repetitive operations enable the user
to create the terrain that he wants. The user can also use a flat
terrain model as a starting template. There are two additional
functions that can be used for fine-tuning. First one is
convolution function that smoothes the model and the second
one is addition of random noise that makes the model rough.
All of the operations can be performed either on a 2D
heightmap image or in a 3D model. Terrain Editor tool is also

very useful to construct real terrain models if the height data is
not available. The user can edit the terrain by using paper maps.

Figure 2. Terrain Editing

2.1.2 Terrain Surface: Aerial or space-borne images are the
main tools that are used to texture map terrain surface in many
VEs. This approach works when user looks at terrain from
higher altitudes. Typical resolutions of these images are not
sufficient when user walks through. As explained before human
eye resolution is 1 arc minute in normal day light conditions.
We can use this as rule of thumb to find the average resolution
that the V-eye sees when walking through the scene. This value
corresponds to 1.5 mm at 5 meters and 2 cm at 70 meters. This
calculation is dependent on contrast, shape of object, visibility
conditions, lighting, concentration, speed etc. To achieve
desired image resolution, game industry uses pre-rendered high
quality artificial textures that reflect the surface property such
as grass, arid, rocky, cement etc. We also used such textures
prepared by artists.

2.2 Crowd Animation

Crowds are part of real life. It is possible to render very realistic
virtual 3D model of a wonder such as Hagia Sophia by using
augmented reality techniques but it may not be enough to feel
the viewers in the VE as they are in the real world unless the
environment includes walking people, pigeons, vehicles etc.
Historical battlefield scenes are typical examples where it is
necessary to render thousands of animated characters. Our
software managed to handle this issue. Thousands of marching
soldiers over rough terrain are rendered successfully in real
time. We conducted rendering performance test in virtual
battlefield.

2.2.1 Real-Time Animation: Animation of rigid body
objects such as vehicles are relatively easier when compared to
animation of bipeds or quadrupeds. For example human
movement is a very complex task. Many researchers deal with
the inclusion of animated human actors in virtual environments.
The synthesis of human motion is one of the most challenging
areas in computer graphics since human being possesses more
than 200 degrees of freedom (Chung, 2000). Computer game
industry, which is the leading power in the development of real-
time rendering techniques, simplifies this complicated issue.
Below are some popular techniques that are used for real-time
character animation (Anderson, 2001).

• 3D hierarchic articulated object animation.
• Key-frame animation.
• Skeletal animation.
• Real-time inverse kinematics.

3D hierarchic articulated object animation uses local and
general transformation matrices to perform animation of each
body part separately and character as a whole. This method
consumes less memory and computation cost is low but the
quality of visual output is very poor due to gaps between
separate body parts. In key-frame animation a character model
is taken and using 3D modeling tools animates a loop of action
such as walk. This animation contains different but limited
number of 3D character poses while moving. These poses are
known as key frames. In order to smooth this animation new
frames are interpolated which are called in-betweens. Realistic
animations can be done with this technique. The advantage is
low computational cost. Main disadvantages are the size of
required memory space and limitation of using only predefined
actions. Skeletal animation technique is used to make more
realistic animation of articulated characters in virtual
environments. Many popular 3D games use skeletal animation.
Inverse kinematics can be considered as an alternative
animation method. When initial and final positions of objects at
specified times are given motion parameters are computed by
the system (Hearn & Baker 1997). This method requires more
computation than preceding methods.

Figure 3. Walk Animation

In this study considering memory, computation costs, visual
quality and other requirements of real-time rendering we
decided to use key-framed animations prepared in 3D Studio
Max format. Since we deal with real-time rendering of high
number of virtual characters, we had to minimize polygons to
be rendered. LOD management and visibility culling are the
main methods used in this study for crowd animation.

Three different sets of virtual characters with high, medium and
low polygon counts are used in this study. Distance is the
criterion to choose the appropriate LOD. The user can perceive
distinct transition between two models at different levels of
detail. This disadvantage can be eliminated by using
progressive meshes that are redefined at run-time to provide
smooth transition (Sullivan et al., 2002). Progressive meshes are
not implemented in this study and considered as a future work.

We applied standard back-face culling. We also implemented
frustum culling. To minimize number of comparisons we
organized virtual characters into groups. Inspired by roman
army structure we called these groups as legions. Each legion
has its own bounding sphere that is used for frustum culling.
We also used special indices to keep track of terrain
block/blocks which legion and every single virtual character is
on. Since we control visibility of terrain blocks according to
quad-tree structure prior to every visibility and LOD
management, this mechanism decreases frustum-culling check
significantly. If a legion passes frustum-culling test we then
check every virtual character’s bounding sphere. The distance

between the observer and the midpoint of the legion, which can
be obtained easily during frustum-culling test, is used by LOD
management mechanism to prevent duplication. Occlusion
culling could also be useful. Some topographic features like
high hills or deep valleys may block objects behind or inside
them. We have not implemented this control yet. It is also
another future work for this study.

2.2.2 Moving Over Terrain: Rendering of bipeds or
quadrupeds that are moving on non-flat surfaces is a
challenging issue. On rough terrain segments where slope is
high, feet of virtual characters may seem to sink or rise unless
exact actions of the alive are modeled. This problem is
inevitable when key-framed animations prepared for flat
surfaces are used as in our case. Shifting few centimeters above
from ground level considering the degree of slope may decrease
the effect of this problem since V-eye cannot easily perceive
little rise from ground. Sink/rise problem is tolerable when the
degree of slope is small even if no precautions are taken.

 Figure 4. Sink/rise problem

In order to model actions such as walking, it is necessary to
calculate the actual three-dimensional position of each foot. The
exact height of a point on terrain model can be calculated by
using plane geometry. Choosing triangles as a primitive to
construct terrain model simplifies the calculation of height of
the point on terrain. Below is the method that can be used to get
height of a point on terrain model when horizontal coordinate
pair is provided.

• Find the triangle on which the point lies.
• Get vertex coordinates of the triangle.
• Calculate the normal vector of the triangle by using

the Equation 1.
• Calculate the plane-shift constant value of the triangle

by using the Equation 2.
• Calculate the height value by using the Equation 3.

)()(1312 VVXVVN −−= (1)

zzyyxx VNVNVND 111 ++= (2)

yzzxxy NDPNPNP /)(−+= (3)

where N=normal vector of the plane
 V1, V2, V3=vertices of the triangle in vector form
 D=plane-shift constant
 Px, Py, Pz=3D coordinates of the point

In order to decrease the computational cost we calculated the
normal vectors and plane-shift constants of every triangle of the
terrain model and kept these pre-calculated values in memory.

During an animation it is also necessary to calculate the new
position of the virtual character in every frame. We used
Equation 4 to calculate step distance for every animation frame.
For faster operation pre-calculated slope values of the triangles
should be better kept in computer memory. Equation 5 is used
for getting new horizontal position of the virtual character.
Finally by using Equation 3 vertical coordinate can be
extracted. This operation is conducted only for objects inside
viewing frustum.

αcos..
3600

1000

FR

AS
SD = (4)

β

β

sin

cos

SDo
zPn

zP

SDo
xPn

xP

+=

+=
 (5)

where α=slope angle
 SD= step distance
 AS=average speed in km/hour
 FR=frame rate in 1 second
 ß=heading angle
 Pn, Po=new and old position.

2.2.3 Behavior Simulation: Simulation of crowd
behaviors is a popular research area since more and more
crowded scenes are being included in real-time animation
applications. Autonomous agents in VE increase the level of
realism. When we examine the conceptual and technical
requirements of multi-agent systems we can see that we are
facing a task that is not straightforward. First of all variety of
individual agents’ visualizations and behaviors such as variety
of individual trajectories for the group traveling along the same
path, variety of the animations for agents having same behavior
or different reactions of individuals facing the same situations is
needed. This prevents monotony of the scenes that include same
individuals with the same behaviors. Multi agent models require
more computational sources, which linearly (agent-environment
interaction) or quadratically (agent-agent interaction) increase
with the number of simulated agents (Ulincy & Thallman,
2001). In our study we did not focus on the AI of virtual crowds
since our primary aim is achieving high frame rates at crowded
scenes. Collision has avoided by assigning same average speed
and direction to each group. Virtual characters are arranged to
have the same motion type: walk, idle, wait etc. The user can
also externally guide the total crowd or sub groups by changing
motion type, direction and average speed. Our implementation
is crowd animation rather than crowd simulation.

2.2.4 Sample Scene: We generated a VE to measure the
rendering performance of the study. In this VE 10.000 animated
soldiers walk in groups of 100 legions over non-flat terrain
model which consists of 524288 triangles. Each soldier model
is made up of 700-1000 triangles. Test PC configurations and
rendering results are given in Table 1 and Table 2 respectively.
Number of soldiers in the viewing frustum is rounded.

Figure 5. 10.000 animated characters in test VE

Name Processor Memory Graphics Hardware
Test
PC#1

Intel Pentium 4,
1.8 Mhz

256 mb NVidia GeForce2
go 400, 32 mb

Test
PC#2

Intel Pentium 4,
2.4 Mhz

512 mb NVidia GeForce4
go, 460 64 mb

Test
PC#3

Intel Pentium 4,
3.2 Mhz

2 gb NVidia GeForceFX
5900, 128 mb

Table 1. Configuration of Test PCs

Test PC # of Soldiers in Viewing Frustum Frame

Rate
Test PC#1 3000 4 fps

Test PC#1 380 20 fps

Test PC#1 110 30 fps

Test PC#1 1100 10 fps

Test PC#2 300 30 fps

Test PC#2 800 15 fps

Test PC#2 1970 6 fps

Test PC#3 1700 20 fps

Table 2. Rendering performance results

2.3 Sound

Let us imagine a scenario that happens in immersive VR
system: The user walks in the geo-specific VE. When he wants
to learn the name of the hill he faces, one way is to display text
that shows the name. Although the user is informed, the
displayed text destroys realism, as in the real world we do not
see geographic names on the hills. Also this solution is not
different than using traditional 2D GIS or paper map. Another
solution, which we prefer, is text to speech mechanism. By
using GIS import tool we get the coordinates of geographic
locations in Gazetteer and defined a buffer around them. For
example when the user touches a hill with data glove he hears
the name of the hill. We simulated this scenario on desktop VR
with mouse and evaluated it useful. Regarding the use of sound
in VE we used library of wav files that contains sound effects
such as wind, marching group, rain, various engine sounds etc.
Although these simple sounds contributed the realism of the
environment more realistic use of sound is essential. Real world
effects such as Doppler effect may better impress the user.

2.4 Conceptual Elements

2.4.1 Sky and Clouds: Atmospheric rendering is an
important step to generate impressive virtual environments.
There are a lot of methods for sky and atmosphere rendering,
ranging from the use of single color to very realistic models.
The sky color is time and location dependent. It is a known fact
that the sky color around the horizon is not same with the sky
color around zenith at the same time. It is also known that the
sky color around horizon becomes red at sunrise and sunset.
The altitude of the sun, the viewing direction, the height of the
observer, conditions of the atmosphere, and the reflected light
from the ground are the parameters that affect the color of the
sky (Nishita et al., 1996). It is a very complex task to try to
render sky according to criteria listed above. In order to
simplify this complicated task we built pre-rendered skybox
library. Skybox is a cube in which inner faces are texture
mapped with five or six pre-rendered images. When this cube is
folded, inner faces create a seamless scene. Aesthetic skyboxes
need artist work. The easy way to create them is to use special
landscape rendering packages. It is also possible to obtain
skybox image sets on Internet. Our skybox library contains
many consequent scenes that complete a day loop.

Figure 6. Skybox

2.4.2 The Sun and the Moon: VR applications that render
real world conditions use the Sun and the Moon as light sources
and complementary objects of the VE. In both usages, it is
important to place them into their correct positions in the three-
dimensional scene. To calculate the positions of the Sun and the
Moon at a given time and location, some methods use
astronomic almanacs and complex equations, which give
precise results and some others use simple formulas to get
rough results. Jean Meeus, a Belgian astronomer published a
book Astronomical Algorithms for computer calculations, which
became popular among amateur astronomers and computer
programmers (Meeus, 1991). Geocentric positions are accurate
to within a few arc-seconds, which is many times higher than
typical desktop display resolution precision. In order to
correctly visualize the Sun and the Moon it is necessary to
calculate angular sizes and locate them on the outer border of
the limited VE.

)/arctan(2 dr=Θ (5)

where Ө= angular size of celestial body

r= radius
 d= distance to the Earth.

Rendering of the Moon is quite different since it necessary to
determine the visible portion and the bright limb angle, which
corresponds to inclination with respect to rotation axis.

2.5 Editing Features

By using our software realistic geo-specific or generic VE can
be generated easily. The user can populate the scene with
thousands of trees, moving people, animals, buildings, bridges,
vehicles etc. With few mouse clicks walls, fences or roads can
be created. The user can browse any object from object library
and place them in 3D environment. It is also possible to select
any object/s in 3D environment and modify it.

Figure 7. Virtual Environment Editor

3. CONCLUSION AND FUTURE WORK

Our study can be evaluated from two different viewpoints: VE
editor and the rendering performance.

Rendering performance can be evaluated as satisfactory when
we consider the frame rates achieved at scenes where thousands
of static and dynamic entities included. When we consider the
VR scene editor functionality easy interaction with 3D
environment and objects may be the reason behind the rapid
scene development capability. Ability to construct groups from
single objects such as forest from a tree or crowd from a human
helps to populate scenes in a short time. This feature
additionally decreases frustum-culling computations. Rich
content of the object library, skybox library or terrain surface
texture library also meets most of the requirements for realistic
scene generation. Data import ability from existing GIS systems
is also another feature that contributes the editor functionality.

Crowd simulation rather than animation is important future
work. Autonomous agents that act like a real human should
replace the virtual characters in our implementation. Common
algorithms such as boids (Reynolds, 1987) that represent animal
flock behaviors could also be used to model flocks in this study.
Occlusion culling which is believed to contribute achieving
better frame rates is another future work. Audio is
complementary element of any VE. Although we implemented
sound, it should be renewed to meet needs of VEs. 3D sound
feature that works according to position of V-eye is considered
to improve realism and the feeling of immersion.

ACKNOWLEDGEMENT

We would like to express our sincere thanks to Mevlüt Dinç
who conducted rendering test on various PCs.

REFERENCES

Anderson, E.F., 2001. Report on computer animation, “Real-
Time Character Animation for Computer Games”, National
Centre for Computer Animation, Bournemouth University.
http://ncca.bournemouth.ac.uk/newhome/alumni/docs/Character
Animation.pdf (accessed 11 March 2004)

Chung, S., 2000. Interactively Responsive Animation of Human
Walking in Virtual Environments. Ph.D. Thesis, George
Washington University, USA.

Duchaineau, M., Wolinsky, M., Sigeti, D.E, Miller, M.C.,
Aldrich, C. and Mineev-Weinstein, M.B., 1997. ROAMing
Terrain: Real-time Optimally Adapting Meshes, Proc. IEEE
Visualization ’97, pp. 81-88.

Hearn, D. and Baker, M.P., 1997. Computer Graphics. Prentice
Hall, New Jersey, USA, 2nd. Ed., pp. 595-596.

Lindstrom, P., Koller, D., Ribarsky, W., Hodges, F.L. and
Faust, N., 1996. Real-Time Continuous Level of Detail
Rendering of Height Fields, Proc. ACM Siggraph96, pp. 109-
118.

Meeus, J., 1991. Astronomical Algorithms. Willmann-Bell,
Richmond Va., USA.

Nishita, T., Dobashi, Y., Kaneda, K., Yamashita, H., 1996.
Display Method of the Sky Color Taking into Account Multiple
Scattering. Proc. Pacific Graphics, pp. 117-132.

O’Sullivan, C., Cassell, J., Vilhjalmsson, H., Dobbyn, S.,
Peters, C., Leeson, W., Giang, T. and Dingliana, J., 2002.
Crowd and Group Simulation with Levels of Detail for
Geometry, Motion and Behaviour. Proc. Third Irish Workshop
on Computer Graphics, pp 15-20.

Perlin, K., 1984. ACM Siggraph 84 conference, course in
Advanced Image Synthesis.

Reynolds, C. W., 1987. Flocks, Herds, and Schools: A
Distributed Behavioral Model. Proc. SIGGRAPH ’87, volume
21, pp. 25-34.

Ulincy, B. and Thalmann D., 2001. Crowd simulation for
interactive virtual environments and VR training systems, Proc.
Eurographic workshop on Computer animation and simulation
‘01, pp. 163 – 170.

Vince, J., 1995. Virtual Reality Systems. Addison-Wesley,
Singapore, pp. 9-263.

Yılmaz, E., Maraş, H.H. and Yardımcı, Y.Ç., 2004. PC-Based
Generation of Real-Time Realistic Synthetic Scenes for Low
Altitude Flights, Appear in the Proceedings of SPIE Vol. #
5424, Orlando, USA.

