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ABSTRACT

A recent project of the Engler-Bunte-Institute (EBI), chair of water chemistry, and the Institute of Photogrammetry and
Remote Sensing (IPF) aims at the quantitative assessment of pollutants on urban surfaces by chemical analysis and
image processing methods. The motivation of this project is the fact that nowadays a better part of the rain water from
sealed urban surfaces is treated in sewage plants, although this might not be necessary, because the load of pollutants
of the first flush is much higher than in the following run-off. Therefore, the dimensioning of sewage systems may be
adopted to this observation and costs may be reduced. In the project, the research focus of EBI is the chemical analysis
of washed off pollutants and modelling of the resulting pollution (run-off), whereas the research at IPF deals with the
characterization of urban surfaces, namely their geometry (slope, exposition, size) and their surface material. For this
purpose two different types of data are used: hyperspectral and laser scanning data with4 and1 m planimetric resolution
respectively. We combine these data sets of high geometric and spectral resolution to create a detailed map of sealed
urban surfaces. The laser scanning data will not only be used to derive geometric properties of the surfaces, but also to
improve the classification of materials as it helps for the discrimination of roof and ground surface materials with similar
spectra. The paper will present first results of data analysis, which will be focussed on roof surfaces in a first step.

1 INTRODUCTION

In the year 2000, the European Union implemented the
water framework directive. This regulation oblige every
member state to review the impact of human activity on
the status of surface waters and on groundwater. In a recent
research project we focus on a small, but nevertheless im-
portant topic in this context: the assessment of pollutants
on urban surfaces and their impact on the pollution load.
Thus, one aim of the project is not only to derive informa-
tion on the amount of sealed surfaces in an urban area (cf.
(Butz and Fuchs, 2003)), but also to derive a detailed sur-
face material map. Therefore, the work package consists
of five subtopics – chemical measurements for the charac-
terization of the chemical processes on reference roof sur-
faces, determination of surface geometry, classification of
surface materials, modelling of the resultant pollution, and
model verification. In this paper, we describe our work on
two of these subtopics, namely the information derivation
of the surface characteristcs, i.e. geometric and material
properties.

Urban areas are characterized by their complex geomet-
ric structure and their heterogenity concerning the occur-
ing surface materials. The appearance of surface patches’
materials in the data is influenced by the acquisition and
object geometry. Furthermore, the age of the material and
environmental conditions, e.g. by weathering and humid-
ity, also have impact on their appearance. All these facts
lead to the necessity of high resolution input data to solve
the tasks – high resolution with respect to the geomet-
ric resolution, but also to the spectral resolution in order
to discriminate the various surface materials. Therefore,
we combine data derived from laser scanning, which pro-
vides the necessary geometric information, and hyperspec-

tral data for the classification of surface materials.

In the following, we give a short overview on related work
dealing with the combination of laser scanning and hyper-
spectral data. Section 3 introduces the input data. Our ap-
proach for the characterization of surfaces in urban areas is
presented in Section 4 focussing on roof surfaces in a first
step, followed by a summary of recent results in Section 5
and the conclusions.

2 RELATED WORK

Up to now, the two data types were often used exclusively,
either to derive the geometry based on laser scanning data
(cf. (Vögtle and Steinle, 2003)) or to derive material maps
based on hyperspectral data (cf. (Heiden et al., 2001)). The
improvement of reconstruction from laser data by addi-
tional image information is discussed, but mainly to reject
vegetation areas. (Gamba and Houshmand, 2000) use hy-
perspectral data (AVIRIS) in order to improve reconstruc-
tion results based on IFSAR, namely to mask vegetation
areas, but the used data has only limited resolution. (Mad-
hok and Landgrebe, 1999) integrate DSM information in
order to improve the results of hyperspectral classification
based on HYDICE data. In their research the DSM, de-
rived from aerial imagery, is applied for the discrimination
of roofs and ground surfaces. The materials may have a
similar spectrum, but they can be discriminated based on
the height information. (Simental et al., 2003) combine
hyperspectral (HyMap) and laser data to derive a mobility
and trafficability map in an open area, thus the require-
ments seem to be less strong than in our application.

The approach of (Bochow et al., 2003) is the closest related
work to our approach. They use a normalized Digital Sur-



face Model (nDSM) – the difference between a DSM and
a DTM approximating the ground surface – with a plani-
metric resolution of0.5 m and hyperspectral data taken by
the airborne DAIS 7915 sensor and interpolated to0.5 m.
The surface model was derived from HRSC-A data and the
non-building areas were masked by building outlines from
digital cadastral data. They investigated two approaches
for the fusion of the data - first, a fusion on signal level and
applying Spectral Angle Mapper (SAM) for classification
based on 16 channels of a minimum-noise-transformed data
set, and second, on a decision level using a binary decision
tree.

Our approach differs from the above with respect to the
input data, in particular the laser scanning data. We use
eCognition, which allows a hierchical classification and in-
troduction of knowledge by using the different information
sources for different decisions within a fuzzy classification
scheme. Details are given in Section 4.

3 DATA

For the characterization of urban surfaces with respect to
their geometry and their materials, two different data sets
are combined: a DSM and hyperspectral data.

The DSM was acquired in March, 2002, with the TopoSys
system using the first (cf. Fig. 1 and 3) and the last pulse
modes. For ease of use within different software pack-
ages,1 m × 1 m raster data sets were generated. These
data sets differ not only concerning the objects included,
but also showing systematic effects: surface patches ap-
pear smoother and building footprints are systematically
smaller in the last pulse data. The impact of these differ-
ences on the analysis will be discussed in Section 5.

The hyperspectral data was acquired in July, 2003, with the
HyMap sensor during the HyEurope campaign organized
by the DLR (German Aerospace Center). Figure 2 dis-
plays a band combination ranging from the visible to near
infrared spectrum (cf. Fig. 3). The white line indicates
the central campus area. The data was preprocessed (at-
mospheric corrections, geocoding) by the DLR, Oberpfaf-
fenhofen, using the DSM. The original data has a ground
resolution of4 m× 4 m. In order to use the data in combi-
nation with the DSM, the data was resampled to a resolu-
tion of1 m×1 m. We applied different standard techniques
like (Dell’Aqua and Gamba, 2003) and their impact on the
results of our approach will also be discussed in Section 5.

Dimensionality of hyperspectral data is always of interest.
In order to get a first insight, we tried different techniques
for band reduction. We applied standard principle com-
ponent analysis (PCA), minimum-noise-fraction transfor-
mation (MNF), and manual selection of bands based on
the spectra of surface materials (Fig. 4). The same train-
ing sites were used to analyse the class separability using
the Batthacharyya distance. For the PCA and MNF data
one band after the other were included. Already 12 MNF-
bands and 15 PCA-bands lead to a high separabilty based
on this distance measure.

Figure 1: nDSM from laser data (first pulse mode)

Figure 2: Hyperspectral data (RGB=25/15/10)

Figure 3: nEnlargement of subset: nDSM from first
pulse laser scanning data (left), HyMap data RGB=25/15/5
(right)

Figure 4: Spectra of selected surface materials



4 APPROACH FOR DATA ANALYSIS

Our approach for the characterization of urban surfaces is
based on the analysis of laser scanning and hyperspectral
data as depicted in Fig. 5. The geometry of surface patches
is derived using a DSM from laser scanning, whereas the
surface material information is obtained from both, laser
scanning and hyperspectral data. Of course, the hyper-
spectral data is the main source for the surface material
classification, but the used surface material also restricts
the geometry or vice versa, the geometry restricts the use
of materials. Table 1 shows some examples of roof surface
characteristics, grouped with respect to similar spectra, and
also indicating qualitatively the surface geometry. There-
fore, this information can be used as additional clue within
the classification in case the spectral characteristics of dif-
ferent surface materials are almost similar (see Fig. 4).

The main part of our analysis is performed using the soft-
ware package eCognition. In this software the first step of
data analysis is a segmentation, followed by classification
of the segments. Therefore, the quality of segmentation is
crucial for the quality of classification. In the following,
we will describe both steps in detail using a subset of the
data as example (white dashed line in Fig. 3).

Figure 5: Flow chart of approach

Material Geometry Remarks
flat sloped

Brick - +
Slate - + spectrum similar to stone

plates, gravel, roofing felt
Stone plates + - spectrum similar to slate,

gravel, roofing felt
Gravel + - spectrum similar to stone

plates, slate, roofing felt
Roofing felt + + spectrum similar to stone

plates, slate, gravel
Copper + + both possible; sometimes

just facing at roofs’
outlines with other
material like gravel
for the main part;

Zinc + + see remarks for copper
Gras + + limited slope

Table 1: Examples of roof surface characteristics

4.1 Segmentation

The segmentation procedure within the eCognition soft-
ware is based on a region growing algorithm. The crite-
rion for the growing combines three different quantities:
the homogeneity of the segment, the shape of the segment
measured by its compactness, and the smoothness of its
boundary. The homogeneity of the segment takes the de-
viations from the mean of each channel used for segmen-
tation into account. Thus, the underlying model assumes
constant values for each segment’s channel, which is only
adequate when dealing with flat roofs, but not when deal-
ing with roofs consisting of planar faces, which is our as-
sumed model, and using the laser scanning data as main
information for the segmentation. Aware of this problem,
we nevertheless tried the segmentation procedure of eCog-
nition. Examples of these segmentations are given in Fig.
6 and 7. For these segmentations first and last pulse data
and a NDVI (channels 25 and 15 of the HyMap data) are
used. Emphasis was on the geometry data (each channel
with weight 4), and less on the NDVI data (weight 1). The
segmentations are based on two different scale parameters.
A visual inspection of the results indicates what was al-
ready expected: The gable roof of a building in the lower
left corner (cf. Fig. 8) was segmented into several slight
elongated segments in the main roof directions, just ap-
proximating the sloped surface by segments with constant
heights - independent from the choice of scale parameter.
In case of flat roofs, e.g. building the upper middle, the
segmentation resulted in reasonable segments, when con-
sidering, that there are smaller extensions on this roof (cf.
Fig. 8).

Instead of the segmentation by eCognition, our segmenta-
tion procedure for laser scanning data searches for planar
faces. It follows the region growing principle taking the
deviation from a plane in 3D into account. Details of the
algorithm are given in (V̈ogtle and Steinle, 2000). Fig. 9
shows the result of the algorithm for the subset based on
the last pulse laser scanning data, thus only the geome-
try is taken into account during segmentation. Parameters
were set to include smaller roof extension in the surround-
ing larger surface patch. The use of geometric data only
may lead to problems, when one planar roof surface patch
consists of areas with different surface materials. In order
to overcome this drawback, the segmentation may be intro-
duced into eCognition and a second step of segmentation
using the spectral data to split up the initial segments may
be performed if needed. In this case, segmentation and
classification are closely related, because those channels
carrying the information for classification should also be
used for the segmentation. For the classification described
in the next section, we used the results of the eCognition
segmentation with scale parameter 50 shown in Fig. 6 and
the initial segments without refinement of our segmenta-
tion (Fig. 9).

4.2 Classification

Fig. 4 displays example spectra of materials to be classi-
fied. A closer look reveals the following:



Figure 6: Segmentation (eCognition, scale parameter 50)

Figure 7: Segmentation (eCognition, scale parameter 75)

Figure 8: Aerial image of buildings

Figure 9: Segmentation (roof planes)

Figure 10: Class hierarchy

• Some materials show a significant different spectrum
than the others, e.g. zinc and copper.

• Some spectra of different materials are quite similar,
e.g. stone plates and gravel.

• Spectra of same material differ significantly due to the
surface orientation in relation to the sun angle/ illumi-
nation, e.g. brick or slate.

Therefore, the main tasks are (1) to find specific charac-
teristics of the spectra and select channels from the hyper-
spectral data for the classification, and (2) to find quan-
tities derived from the available channels, which reduce
the influence of illumination. Furthermore, those materials
showing a significant spectrum should be classified first,
thus leading to a hierarchy in classification. The hierarchy
we used is depicted in Fig. 10. First, we classifyobjects
and non objectsusing the height information from laser
scanning (first and last pulse). In a second step we derive a
set of candidate roofs to be classified, by removing vegeta-
tion areas from theobjectsapplying an NDVI (channel 25
and 15 of the HyMap-data) and smaller segments based on
their size and their neighbourhood relations to segments of
the classesnon objectandvegetation. Thus, this classifi-
cation procedure may in principal also be applied, if only
a nDSM from first pulse data or derived from other sensor
data is available. The roof segments are now classified ac-
cording to their material. For this purpose, we first have to
define membership functions for each class and feature to
be used, starting with those material classes with the most
significant spectral differences to other materials. Zinc has
high reflection values in the first channels and show some
characteristic slopes, but these features seem to be differ-
ent for new and and older zinc roofs. Therefore, the fuzzy
or(max)is used to compute the membership function value
from the values of each feature. The spectrum of copper
has a significant decrease from channel 8 to 20. Brick
shows an increase in the spectrum from the first channels
to the last, which seems in our case to be independent from
the age of the material. Slate, stone plates and gravel are
quite similar with respect to their spectra, but show differ-
ences in channel combinations, although not as significant
as decreases or increases of the spectra of the other mate-
rials above. Therefore, we tried different approaches for
the computation of the class membership values based on
and(min), or(max), andmean(arith.) and introduced also
a classstone like, if no class ofgravel, stone, or slate is
assigned.



Figure 11: Classification (eCognition, scale parameter 50)

Figure 12: Classification (roof planes)

Fig. 11 and 12 show the results for the classification based
on the eCognition segmentation and our segmentation re-
spectively. The subset is also shown in Fig. 8 for com-
parision. The roof of the surrounding hallway of building
30.21 (upper right corner) is made of zinc, but classified as
slate. This seems to be due to the resolution of the hyper-
spectral data, because the width of the hallway is approxi-
mately2 m, thus only half the original pixel size. For the
examples above, the hyperspectral data was resampled us-
ing nearest-neighbour interpolation. We will address this
point also in the next section.

5 RESULTS

In this section we will present and discuss results of our
approach. For this purpose we will focus on the central
campus area (white line in Fig. 2), because for this area
some reference data already exists, namely a database of
buildings with information about their roof materials.

Fig. 13 displays the result of surface material classification
based on the segmentation by eCognition. For the classi-
fication we used hyperspectral data resampled to1 m us-
ing nearest-neighbour interpolation. We furthermore used
first and last pulse laser scanning data. First pulse data in-
cludes more details, last pulse data already generalizes the
result, because smaller details are not included. The shown
roof segments represent those, which are also included in
the last pulse data. The membership values of the classes
gravel, stone, andslateare computed using the fuzzyor
(max). A visual check of the results indicates that the clas-
sification delivered reasonable results. Problems arise at

Figure 13: Classification (OR, eCognition)

Figure 14: Stability (OR, eCognition)

Figure 15: Classification (AND, eCognition)

Figure 16: Classification (OR, IPF)



borders of buildings and for smaller segments. Tests using
bilinear or cubic interpolation were performed, but show
only minor changes of the results. The main problem is the
separability of the classesgravel, stone, andslate, which
also becomes obvious checking the stability of the classifi-
cation results (cf. Fig. 14). Most of the roof segments with
unstable result – i.e. second best classification result has
only small difference in its membership value compared to
the best – belong to the above mentioned classes. These
segments are shown in red. In case the fuzzyor(max) is
used, already one feature with high membership value is
sufficient for classification. If we use the fuzzyand(min),
all feature membership values have to be high for a class to
be selected. Fig. 15 shows the results for fuzzyand(min).
A number of segments are only classified asstone likewith
higher classification stability.

Fig. 16 shows the result of classification based on our seg-
mentation using last pulse laser scanning data as input. A
visual comparision with the result in Fig. 13 – both based
on fuzzyor(max)– does not show large differences in clas-
sification. Differences occur in case the material in a pla-
nar patch changes or two roof surfaces are segmented as
one segment, because the change in geometry is only small
(only small height differences, smooth transition from one
roof plane to another), thus indicating that a refinement by
using the spectral information as described in Section 4.1
is mandatory.

Up to now, no geometric information has been used for
the classification of the roof surface materials. We ex-
pect that introduction of gradient information as additional
clue may help to discern at leastslate from gravel and
stone. First tests based on gradients directly derived from
the laser scanning data indicate that gradient information
should not be extracted directly from the laser scanning
data, but from roof planes or segments to give reasonable
results.

6 CONCLUSIONS

In this contribution we presented our approach for the char-
acterization of urban surfaces, focussing in a first step on
roof surfaces. Input data are laser scanning and hyperspec-
tral data, which are analysed using the software package
eCognition and our own software for the segmentation of
laser scanning data. First results are presented, which show
in principle the feasibility of our approach. The main prob-
lems with respect to classification of surface materials are
the variability of the materials on one hand and the simi-
larity of some materials’ spectra on the other hand. A clas-
sification based only on the hyperspectral data is difficult,
although the data provides high spectral resolution. We
therefore intend to include geometric properties, namely
the slope of roofs, into our approach. Furthermore, a quan-
titative evaluation of the results is necessary. Up to now
our reference data is only coarsely related to the buildings
and has to be improved to serve as reference data for sin-
gle roof segments. The ongoing research by the Engler-
Bunte-Institute, Chair of water chemistry, on the chemical
processes on roof surfaces, will also influence our work,

because this research will indicate, which surface materi-
als have to be discerned and which may be grouped with
respect to the resultant pollution, thus the requirements on
the classification may still change.
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Vögtle, T. and Steinle, E., 2003. On the quality of ob-
ject classification and automated building modelling based
on laserscanning data. In: ISPRS WG III/3 Workshop
- 3D Reconstruction from Airborne Laserscanner and In-
SAR Data. CD-ROM.


