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ABSTRACT 
 
For global data representation, like the approximation of a surface, algebraic or trigonometric polynomials may be used. However, 
polynomial approaches are limited concerning their accuracy. In the last decade neural networks were applied very successfully in 
many fields of data mining and representation. 
In this research sequence of neural networks has been employed to high accuracy regression in 3D as data representation in form 
z = f(x,y). The first term of this series of networks estimates the values of the dependent variable as it is usual, while the second term 
estimates the error of the first network, the third term estimates the error of the second network and so on. Assuming that the relative 
error of every network in this sequence is less than 100%, the sum of the estimated error can be reduced very significantly and 
effectively. To illustrate this method the geoid of Hungary was estimated. To approach this surface, a RBF neural network has been 
employed with 35 neurons having Gaussian activation functions. We used this type of network, because the radial basis type 
activation function proved to be the most efficient in case of function approximation problems. According to our experience, the 
iteration process is converging rapidly, and after 3-4 iteration steps there were no further significant change in the values. 
Comparing the results of the first network with the fourth network the value of standard deviations was reduced with about 30 
percents. And comparing these results with the polynomial approach the improvement is more significant, it is about 60 percents. 
These computations were carried out with the symbolic-numeric integrated system Mathematica. 
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1. INTRODUCTION 
 
Nowadays the GPS measurements are one of the most 
frequently used technique in geodesy. With this technique 
ellipsoidal height can be reckoned. However in the engineering 
practice orthometric heights (height above sea level) are used. 
The orthometric heights are determined by levelling. 
Transforming the GPS-derived ellipsoidal heights to 
orthometric heights it is important to know the distance between 
the ellipsoidal and the geoid surface, called the geoid height or 
geoid undulation.  
 
In geodesy two types of Earth’s figure are distinguished. One of 
them is the physical or topographic earth’ surface, that is the 
real surface of the Earth with the mountains, seas and plains. 
The other is the mathematical or the theoretical figure of the 
Earth. This is the shape of the free water surface be balanced by 
the gravity field only, this surface is one of the equipotential 
surfaces of the gravity. The equipotential surface at the mean 
sea level (MSL) is called geoid. 
 
The geoid is the reference surface of the orthometric heights, 
but the reference surface of the GPS measurements is an 
ellipsoid, the WGS-84. The geoid height can be computed with 
a simple subtraction: 
 
 

 N = h - H (1) 
 
 
where  N = geoid height 
 h = ellipsoidal height 
 H = orthometric height. 
 
The transformation of ellipsoidal heights to orthometric ones 
requires that the geoid height must refer to the same reference 
ellipsoid (to the WGS-84 ellipsoid). 
 
With the spreading of the GPS measurements the need for a 
good geoid model has been increased. The geoid can be 
calculated from different types of input data. The simplest 
method is to use GPS and levelling points, where both the 
ellipsoidal and orthometric heights are given. Another 
possibility and the most commonly used technique for precise 
determination of geoid is using the gravimetric solution, carried 
out by the Stokes-integral.  
 
In Hungary considerable investigations are in progress for the 
determination of the separation of the geoid: lithospheric geoid 
solution (Papp and Kalmár 1996), gravimetric solution HGR97 
(Kenyeres 1999), HGTUB98 and HGTUB2000 solution (Tóth 
and Rózsa 2000).  
 
The HGTUB2000 geoid heights were used for our 
investigations. This gravimetric solution was based on 
terrestrial gravity data, height data and the EGM96 geopotential 
model, and was computed with the 1D Spherical FFT method 



 

(Tóth and Rózsa 2000). The accuracy of HGTUB2000 geoid 
heights is about ±3-4 cm. The used geoid heights cover the area 
of 45°30’≤ ϕ ≤ 49° , 16°≤ λ < 23°; the resolution of the grid is 
∆ϕ=0’30” × ∆λ= 0’50”. So the actual geoid heights are known 
in 211680 points. The geoid heights in the area vary between 
37.0 and 47.1 m. Figure 1 shows the geoid surface in Hungary. 
 

 
 

Figure 1. The HGTUB2000 geoid surface in Hungary 
 
Instead of the application of this huge geoid database for 
practical purposes we tried to find a simple mathematical 
formula (an equation of surface of geoid forms in Hungary). 
Using this mathematical formula to compute geoid heights in 
arbitrary points in Hungary would be simpler than interpolating 
the geoid heights between known points, especially if it should 
be implemented in a computational procedure. 
 

2. POLYNOMIAL FITTING 
 
For global data representation, like the approximation of a 
surface, algebraic or trigonometric polynomials, least squares 
collocation or weighted linear interpolation may be applied. The 
interpolation or regression methods can be considered not only 
for computing unmeasured values but for compressing the data, 
too. In this case, with 211680 points, the data compression is a 
very important viewpoint. 
 
As a classical approximation model polynomial fitting was used 
to approximate the geoid heights as a function of geographic 
coordinates ϕ, λ. 
The formula of the used 6th order fitting polynomial is the 
following: 
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 (2) 

 
 
where ai = coefficients of the polynomial 
 N = geoid height 
 ϕ, λ = geodetic latitude, longitude. 
 
Differences between known geoid heights and approximated 
values are characteristic of accuracy of geoid heights computed 
by polynomials. Increasing the degree of polynomials, first 

accuracy was increased, then decreased above the sixth degree, 
because of the deterioration of conditions of equations.  
 
The most important statistical data describing the quality of the 
estimation are the followings: maximum, minimum error, mean 
value, standard deviation. These statistical data of the 
polynomial fitting are summarized in Table 1. 
 

Min [m] Max [m] Mean [m] St. dev. [m] 
-0.812 0.722 0.000 0.180 

 
Table 1. Quality of the polynomial fitting 

 
The maximum accuracy resulted by applying 6th order 
polynomial was not enough for our purposes therefore a new 
method was needed to look for. As an alternative to the classical 
polynomial fitting a series of neural networks has been applied 
to approximate geoid heights.  
 
3. APPROXIMATION WITH SEQUENCE OF NEURAL 

NETWORKS 
 
3.1 Approximation with RBF neural network 

To estimate the geoid, a RBF (Radial Basis Function) neural 
network has been employed with 35 neurons having Gaussian 
activation functions. We used this type of network, because the 
radial basis type activation function proved to be the most 
efficient in case of function approximation problems. Figure 2 
illustrates the applied RBF network with input ϕ, λ (geodetic 
latitude, longitude) and output N (geoid height). The RBF 
network consists of one hidden layer of activation functions, or 
neurons. 
 

 
 

Figure 2. Applied RBF network with one output 
 
The basis or activation function is a Gaussian bell-shaped curve 
with two parameters:  
 
 

22 )()( cxexf −−= λ  (3) 
 
where  λ = parameter of the function’s width 
 c = centre of the function 
 x = input data 
 
 



 

In case of the geoid approximation the function has two input 
data, two variables. The RBF network output is formed by a 
weighted sum of the outputs of neurons: 
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where  x, y = input data 
 λ, c1, c2 = parameters of the activation function 
 n = number of applied neurons 
 w = weights of the neuron’s outputs 
 
The parameters (λ, c1, c2, w) are determined during a supervised 
learning algorithm, using a teaching set to minimize the 
deviation between the known geoid heights and the outputs of 
the network.  
 
The geoid heights are known in 211680 points, from these 
database 8484 points were selected for training the RBF 
network at a grid of ∆ϕ=2’30” × ∆λ= 4’10” resolution. (The 
original grid’s resolution was ∆ϕ=0’30” × ∆λ= 0’50”). The 
training procedure was executed with different numbers of 
neurons. The best configuration was using 35 neurons 
(Zaletnyik 2003). After the training procedure the network was 
tested in the whole database with the 211680 points. The 
summarized statistical data of the training set (teaching points) 
and the testing set are in Table 2. 
 

 Min 
[m] 

Max 
[m] 

Mean 
[m] 

St. dev. 
[m] 

Teaching set (8484 
points, RBF network) -0.367 0.585 0.000 0.098 

Testing set (211680 
points, RBF network) -0.416 0.600 0.000 0.099 

 
Table 2. Quality of the estimation with RBF neural network 

 
The results of the testing set and the teaching set are very 
similar, between the two standard deviations the difference is 1 
mm and the maximum, minimum values are also very close to 
each other. All things considered can be declared that the 
training set with the 8484 points can represent quite well the 
whole database of the known geoid heights. 
 
For our purposes the accuracy of the results was not enough. 
Generally the accuracy can be improved with increasing the 
number of the neurons, but in this case with more neurons the 
efficiency of the network decreased, the training procedure was 
slower and the improvement of the accuracy was not significant. 
Therefore to improve the estimation of the network we had to 
look for a new method. 
 
3.2 Sequence of neural networks 

To improve the approximation a sequence of neural networks 
has been applied. The first term of this series of networks 
estimates the values of the geoid heights, while the second term 
estimates the error of the first network, the third term estimates 
the error of the second network and so on. Assuming that the 
relative error of every network in this sequence is less than 
100%, the sum of the estimated error can be reduced very 
significantly and efficiently (Paláncz, Völgyesi 2003). 

 
According to our experience, the iteration process is converging 
rapidly, and after 3-4 iteration steps there was no further 
significant change in the values. Therefore in this study 4 
networks were used. The first was a RBF neural network, and 
then the later used neural networks had saturated line activation 
function. The network learned fairly well. The results of the 4th 
order network are summarized in Table 3. 
 

 Min 
[m] 

Max 
[m] 

Mean 
[m] 

St. dev. 
[m] 

Teaching set (8484 
points, 4th order) -0.367 0.362 0.000 0.066 

Testing set (211680 
points, 4th order) -0.506 0.433 0.000 0.068 

 
Table 3. Quality of the 4th order network 

 
Comparing the results of the first network with the fourth 
network the value of standard deviations was reduced with 
about 30 percents. And comparing these results with the 
polynomial approach the improvement is more significant, 
about 60 percents. However the maximum errors are still too 
big. Figure 3 shows differences between the estimated and the 
original geoid heights. 
 

 
 

Figure 3. Differences between the estimated and the original 
geoid heights 

 
Examining the distribution of the errors it was noticed that the 
greatest errors are outside of Hungary, in the south-east region, 
in Romania. In that region the quality of the input data of the 
geoid solution was not reliable. This could be the reason of 
these big errors. For our purposes these data are not necessary, 
because we only try to find a good geoid approximation in the 
region of Hungary, so they can be left out cutting them along a 
line. The equation of this line is very simple: ϕ=λ+25. Figure 4 
shows this cutting line. 
 



 

 
 
Figure 4. Cutting out the unreliable data of the south east region  
 
Cutting out these data the number of points of the teaching set 
was reduced to 7438 and that of the testing set was reduced to 
184910. Executing again the teaching and testing procedures 
the results of these networks were significantly better.  
 
 

 Min 
[m] 

Max 
[m] 

Mean 
[m] 

St. dev. 
[m] 

Teaching set (7438 
points, 4th order) -0.234 0.284 0.000 0.049 

Testing set (184910 
points, 4th order) -0.351 0.291 0.000 0.050 

 
Table 4. Quality of the 4th order network cutting out the south 

east region 
 
The standard deviation is reduced to 5 cm, and the maximum 
errors are lower with 10-15 cm than the maximum errors of the 
first sequence of neural networks. Figure 5 shows the 
differences between the estimated and the original geoid heights 
leaving out the south east region. The accuracy of the original 
geoid heights was about ±3-4 cm. In Figure 5 the errors smaller 
than 4 cm are indicated with white color. According to Figure 5 
in the greatest area of Hungary the errors of the estimation are 
of the same order as the errors of the original data. The 
estimation via sequence of neural networks provides a good 
approximation of the geoid heights in Hungary. 
 

 
 

Figure 5. Differences between the estimated and the original 
geoid heights cutting out the south east region  

 

4. SUMMARY 
 
In this research a sequence of neural networks was applied to 
approximate the geoid surface in the area of Hungary. To 
analyze the result, the errors of the estimation were compared 
with the errors of other approximation methods, with 
polynomial fitting and with a single RBF neural network. In 
both cases the sequence of neural networks proved to be better. 
On the basis of our research can be statred that using this 
method the error of the estimation can be reduced efficiently, 
even in the case of a morphologically so sophisticated data 
structure as a geoid. 
 
For the approximation of the geoid surface a gravimetric geoid 
solution was used with 211680 known geoid heights in a 
regular grid. 8484 points were selected for the teaching set from 
the whole database, and the approximation method was tested in 
every known point. In accordance with the results the teaching 
set can represent quite well the whole database of the known 
geoid heights. 
 
Cutting out an area with unreliable data outside of Hungary the 
estimation was improved significantly. The standard deviation 
of the errors of estimation was reduced to 5 cm and this 
accuracy is of the same order as the accuracy of the original 
data. 
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